首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression analysis of the genes involved in germination, conidiogenisis and pathogenesis of Metarhizium anisopliae during its saprophytic and pathogenic life stages can help plan strategies to increase its efficacy as a biological control agent. We quantified relative expression levels of the nitrogen response regulator gene (nrr1) and a G-protein regulator of genes involved in conidiogenesis (cag8), using an RT-qPCR assay. Comparisons were made between M. anisopliae var. anisopliae and M. anisopliae var. acridum during germination and conidiogenesis and at different stages of pathogenesis. The cag8 gene was repressed during germination and induced during conidial development and the pathogenic phase, and the nrr1 gene was induced during germination, conidiogenesis and the pathogenic phase. Both genes were more expressed in M. anisopliae var. anisopliae, demonstrating that different varieties of M. anisopliae differ in activation of genes linked to virulence for certain environments and hosts. This suggests that differences among these varieties in the ability to adapt could be attributed not only to specific genomic regions and genes, but also to differential gene expression in this fungus, modulating its ability to respond to environmental stimuli.  相似文献   

2.
Recombinants were generated from the ectomycorrhizal basidiomycete, Suillus grevillei, through agroinfection using a binary vector carrying the hygromycin B resistance and the autofluorescent protein, DsRed2, markers. DsRed2 was driven by a cis-regulatory region of the glyceraldeyde-3-phosphate dehydrogenase gene (gpd) from the wood-rotting basidiomycete, Coriolus hirsutus, which contains promoters and 5′ gpd sequences with first through fourth exons and expressed for the first time in Suillus spp. The transformation system and recombinants expressing an autofluorescent protein may be useful in genetic analysis of the symbiosis.  相似文献   

3.
Catalases and peroxidases are the most important enzymes that degrade hydrogen peroxide into water and oxygen. These enzymes and superoxide dismutase are the first lines of cell defense against reactive oxygen species. Metarhizium anisopliae displays an increase in catalase–peroxidase activity during germination and growth. To determine the importance of catalase during the invasion process of M. anisopliae, we isolated the cat1 gene. cat1 cDNA expression in Escherichia coli and the subsequent purification of the protein confirmed that the cat1 gene codes for a monofunctional catalase. Expression analysis of this gene by RT-PCR from RNA isolated from fungus grown in liquid cultures showed a decrease in the expression level of the cat1 gene during germination and an increase during mycelium growth. The expression of this gene in the fungus during the infection process of the larvae of Plutella xylostella also showed a significant increase during invasive growth. Transgenic strains overexpressing the cat1 gene had twice the catalase activity of the wild-type strain. This increase in catalase activity was accompanied by a higher level of resistance to exogenous hydrogen peroxide and a reduction in the germination time. This improvement was also observed during the infection of P. xylostella larvae. M. anisopliae transgenic strains overexpressing the cat1 gene grew and spread faster in the soft tissue of the insect, reducing the time to death of the insect by 25% and the dose required to kill 50% of the population 14-fold.  相似文献   

4.
Characterization of pathogenesis genes of Metarhizium anisopliae, will provide better understanding of the role of these genes during pathogenesis. The expression profiles of pathogenesis-related genes encoding for a subtilisin-like protease (PR1), two types of chitinases (CHI2 and CHI3), and a peptide synthetase (PES) were studied during the different stages of M. anisopliae infection in Spodoptera exigua larvae using quantitative real-time RT-PCR. Sampling were at 0, 2, 12, and 24 h after infection, when the infected larvae reached the moribund stage (36 h), when mycelia emerged from the cadavers, when few conidia had formed on the mycelia, and when the cadavers were covered by conidia. For comparison, conidia and mycelial samples harvested from culture media were also included. Among the studied genes, PR1 expression was detected early at 2 h after infection and increased as the infection progressed. CHI2 and CHI3 expressions were detected 12 h after infection and when the mycelia emerged from cadavers, respectively. The expression levels of PR1, CHI2 and CHI3 genes increased significantly at the beginning of conidiogenesis on cadavers, but decreased at later stages. As expected, their expressions in pure fungal propagules were at very low levels. For PES gene, fold changes were not significant between different samples (less than onefold), indicating it might not have a major role in infecting stages. High expression levels of PR1, CHI2, and CHI3 genes during the post-mortem hyphal growth and conidiation stages of M. anisopliae clearly indicate the importance of these genes during the saprophytic phase of this fungus on host insect.  相似文献   

5.
Insects degrade their own cuticle during moulting, a process which is catalysed by a complex mixture of enzymes. Entomopathogenic fungi infect the insect host by penetration of the cuticle, utilizing enzymatic and/or physical mechanisms. Protein is a major component of insect cuticle and a major recyclable resource for the insect and, therefore, represents a significant barrier to the invading fungus. To this end, both insects and entomopathogenic fungi produce a variety of cuticle degrading proteases. The aim of this paper is to review these proteases and to highlight their similarities, with particular reference to the tobacco hornworm, Manduca sexta, and the entomopathogenic fungus, Metarhizium anisopliae  相似文献   

6.
The effects of various insecticides on the mycelial growth, sporulation and conidial germination of Metarhizium anisopliae var. anisopliae isolate E9 were studied in the laboratory. Chlorpyrifos was the most toxic organophosphate to mycelial growth and sporulation at all concentrations. Temephos, malathion and leptophos were highly toxic to sporulation while malathion was the most inhibitory to germination. The carbamates, carbofuran, methomyl and oxamyl were moderately toxic to mycelial growth and sporulation while oxamyl had an adverse effect on germination. The pyrethroids (pyrethrin, permethrin and resmethrin) and the insect growth regulators (diflubenzuron and methoprene) were not inhibitory to the various developmental stages of isolate E9. The chlorinated hydrocarbons (chlordane, lindane and toxaphene) were more deleterious than all other insecticide groups tested. Among the fungicides, benomyl and maneb produced the greatest inhibition.  相似文献   

7.
Chronological histological alterations of Metarhizium anisopliae during interaction with the cattle tick Boophilus microplus were investigated by light and scanning electron microscopy. M. anisopliae invades B. microplus by a process which involves adhesion of conidia to the cuticle, conidia germination, formation of appressoria and penetration through the cuticle. Twenty-four hours post-infection conidia are adhered and germination starts on the surface of the tick. At this time, the conidia differentiate to form appressoria exerting mechanical pressure and trigger hydrolytic enzyme secretion leading to penetration. Massive penetration is observed 72 h post-inoculation, and after 96 h, the hyphae start to emerge from the cuticle surface to form conidia. The intense invasion of adjacent tissues by hyphae was observed by light microscopy, confirming the ability of M. anisopliae to produce significant morphological alterations in the cuticle, and its infective effectiveness in B. microplus.  相似文献   

8.
We have developed a single-embryo RT-PCR protocol for studying gene expression during plant embryogenesis. Four genes,glyceraldhyde-3-phosphate dehydrogenase (GAPC), shoot-meristemless (STM), monopteros (MP), andshaggy-like kinase etha (ASKη), fromArabidopsis thaliana were used to test the sensitivity and reliability of this method by analyzing the differential signal intensities of their RT-PCR products. The method could detect genes expressed during embryogenesis at a single-embryo level and, therefore, can be used to identify phenotypes. When in vitro, embryogenesis also is used to control the time course of zygote development exactly. The single-embryo RT-PCR protocol becomes a powerful method to survey the dynamics of specific gene expression.  相似文献   

9.
The subtilisin-like protease Pr1A plays a role in insect cuticle breach and has been used in the development of advanced engineered biopesticides. We have identified and cloned the Pr1A gene from a locust specific Metarhizium anisopliae strain, CQMa102. The cDNA of Pr1A and its deduced protein sequence were deposited in GenBank (accession numbers EF627449 and ABR20899, respectively). Sequence analysis reveals that Pr1A belongs to the subtilisin-like serine protease family. Analysis of homologous species shows that the protein exhibits 99% identity with the subtilisin Pr1A from M. anisopliae var. acridum strain FI-985. The CQMa102 Pr1A protein was expressed in Pichia pastoris to verify its protease activity. Our results show that the Pr1A gene cloned from M. anisopliae strain CQMa102 has cuticle-degrading function and is a potential virulence factor for the development of engineered biopesticides.  相似文献   

10.
11.
The trans-sialidase of Trypanosoma cruzi mammalian forms transfers sialic acids from host's cell-surface glycoconjugates to acceptor molecules on parasite cell surface. To investigate the mechanism by which the mammalian stages of Trypanosoma cruzi have acquired their trans-sialidase, we compared the nucleotide and predicted amino acid sequences of trans-sialidase genes expressed in different developmental stages and strains of Trypanosoma cruzi with the sialidase gene of Trypanosoma rangeli and the sialidase genes of the prokaryotic genera Clostridium, Salmonella, and Actinomyces. The trans-sialidase gene products of Trypanosoma cruzi have a significant degree of structural and biochemical similarity to the sialidases found in bacteria and viruses, which would hint that horizontal gene transfer occurred in Trypanosome cruzi trans-sialidase evolutionary history. The comparison of inferred gene trees with species trees suggests that the genes encoding the T. cruzi trans-sialidase of mammalian forms might be derived from genes expressed in the insect forms of the genus Trypanosome. The branching order of trees inferred from T. cruzi trans-sialidase sequences, the sialidase from Trypanosoma rangeli, and bacterial sialidases parallels the expected branching order of the species and suggests that the divergence times of these sequences are remarkably long. Therefore, a vertical inheritance from a hypothetical eukaryotic trans-sialidase gene expressed in insect forms of trypanosomes is more likely to have occurred than the horizontal gene transfer from bacteria, and thus explains the presence of this enzyme in the mammalian infective forms of Trypanosoma cruzi.Correspondence to: M.R.S. Briones  相似文献   

12.
Troponin C (TpnC), the calcium-binding subunit of the troponin regulatory complex in the muscle thin filament, is encoded by multiple genes in insects. To understand how TpnC genes have evolved, we characterized the gene number and structure in a number of insect species. The TpnC gene complement is five genes in Drosophilidae as previously reported for D. melanogaster. Gene structures are almost identical in D. pseudoobscura, D. suboboscura, and D. virilis. Developmental patterns of expression are also conserved in Drosophila subobscura and D. virilis. Similar, but not completely equivalent, TpnC gene repertoires have been identified in the Anopheles gambiae and Apis mellifera genomes. Insect TpnC sequences can be divided into three groups, allowing a systematic classification of newly identified genes. The pattern of expression of the Apis mellifera genes essentially agrees with the pattern in Drosophilidae, providing further functional support to the classification. A model for the evolution of the TpnC genes is proposed including the most likely pathway of insect TpnC diversification. Our results suggest that the rapid increase in number and sequence specialization of the adult Type III isoforms can be correlated with the evolution of the holometabolous mode of development and the acquisition of asynchronous indirect flight muscle function in insects. This evolutionarily specialization has probably been achieved independently in different insect orders.Reviewing Editor: Dr. Rüdiger Cerff  相似文献   

13.
Ackerman CM  Yu Q  Kim S  Paull RE  Moore PH  Ming R 《Planta》2008,227(4):741-753
In the ABC model of flower development, B function organ-identity genes act in the second and third whorls of the flower to control petal and stamen identity. The trioecious papaya has male, female, and hermaphrodite flowers and is an ideal system for testing the B-class gene expression patterns in trioecious plants. We cloned papaya B-class genes, CpTM6-1, CpTM6-2, and CpPI, using MADS box gene specific degenerate primers followed by cDNA library screening and sequencing of positive clones. While phylogenetic analyses show that CpPI is the ortholog of the Arabidopsis gene PI, the CpTM6-1 and CpTM6-2 loci are representatives of the paralogous TM6 lineage that contain paleoAP3 motifs unlike the euAP3 gene observed in Arabidopsis. These two paralogs appeared to have originated from a tandem duplication occurred approximately 13.4 million year ago (mya) (bootstrap range 13.36 ± 2.42). In-situ hybridization and RT-PCR showed that the papaya B-class genes were highly expressed in young flowers across all floral organ primordia. As the flower organs developed, all three B-class genes were highly expressed in petals of all three-sex types and in stamens of hermaphrodite and male flowers. CpTM6-1 expressed at low levels in sepals and carpels, whereas CpTM6-2 expressed at a low level in sepals and at a high level in leaves. Our results showed that B-class gene homologs could function as predicted by the ABC model in trioecous flowers but differential expressions of CpTM6-1, and CpTM6-2, and CpPI suggested the diversification of their functions after the duplication events. Christine M. Ackerman, Qingyi Yu contributed equally to this work.  相似文献   

14.
In Drosophila, maintenance of parasegmental boundaries and formation of segmental grooves depend on interactions between segment polarity genes. Wingless and Engrailed appear to have similar roles in both short and long germ segmentation, but relatively little is known about the extent to which Hedgehog signaling is conserved. In a companion study to the Tribolium genome project, we analyzed the expression and function of hedgehog, smoothened, patched, and cubitus interruptus orthologs during segmentation in Tribolium. Their expression was largely conserved between Drosophila and Tribolium. Parental RNAi analysis of positive regulators of the pathway (Tc-hh, Tc-smo, or Tc-ci) resulted in small spherical cuticles with little or no evidence of segmental grooves. Segmental Engrailed expression in these embryos was initiated but not maintained. Wingless-independent Engrailed expression in the CNS was maintained and became highly compacted during germ band retraction, providing evidence that derivatives from every segment were present in these small spherical embryos. On the other hand, RNAi analysis of a negative regulator (Tc-ptc) resulted in embryos with ectopic segmental grooves visible during germband elongation but not discernible in the first instar larval cuticles. These transient grooves formed adjacent to Engrailed expressing cells that encircled wider than normal wg domains in the Tc-ptc RNAi embryos. These results suggest that the en–wg–hh gene circuit is functionally conserved in the maintenance of segmental boundaries during germ band retraction and groove formation in Tribolium and that the segment polarity genes form a robust genetic regulatory module in the segmentation of this short germ insect.  相似文献   

15.
Summary We have constructed several plasmid expression vectors to express foreign genes in stably transformed insect cells. Unlike baculovirus-based expression vectors by which genes of interest are expressed transiently before lysis of the virus-infected cells, genes can be expressed continuously over many passages in a stable cell line. Furthermore, the function of a gene or genes expressed in a stable cell line from an insect-specific promoter that is constitutively expressed can be studied in the absence of virus infection and viral gene expression. In this study, we have expressed a novel, selectable marker gene, puromycin acetyltransferase, under the control of the Drosophila melanogaster hsp70 promoter or under the control of the AcMNPV ie-1 promoter which is active in Spodoptera frugiperda cells in the absence of virus infection. In addition, we have constructed expression vectors which coexpress two genes from separate promoters, the pac gene which confers resistance to puromycin and a baculovirus gene which inhibits apoptosis, derived from Orygia pseudotsugata nuclear polyhedrosis virus. Both genes were expressed in stable populations of S. frugiperda cells in the absence of continuous drug selection.  相似文献   

16.
We report the simultaneous introduction of three insecticidal genes (the Bt genes cry1Ac and cry2A, and the snowdrop lectin gene gna) into commercially important indica rice varieties M7 and Basmati 370, by particle bombardment. Transgenic plants expressed Cry1Ac, Cry2A and GNA at different levels, either singly or in combination at 0.03–1%, 0.01–0.5% and 0.01–2.5% of total soluble protein, respectively. The transgenes showed stable transmission and expression, and R1 transgenic plants provided significant (p<0.01) protection against three of the most important insect pests of rice: rice leaf folder (Cnaphalocrocis medinalis), yellow stemborer (Scirpophaga incertulas) and brown planthopper (Nilaparvata lugens). The triple transformants showed significantly (p<0.05) higher resistance to these insects than plants expressing single transgenes. Bioassays using the triple-transgenic plants showed 100% eradication of the rice leaf folder and yellow stem borer, and 25% reduction in the survival of the brown planthopper. The greatest reduction in insect survival, and the greatest reduction in plant damage, occurred in plants expressing all three transgenes. This approach maximises the utility of gene transfer technology to introduce combinations of genes whose products disrupt different biochemical or physiological processes in the same insect, providing a multi-mechanism defence.  相似文献   

17.
【目的】研究金霉素产生菌中SARP家族转录调控基因ctc B的作用。【方法】利用大肠杆菌、链霉菌的属间接合转移和同源重组双交换的方法,构建ctc B基因缺失突变株。通过c DNA在相邻同转录方向的基因间隔进行PCR验证,确定金霉素生物合成基因簇中的转录单元。利用荧光定量RT-PCR方法进行突变株金霉素生物合成基因簇的转录水平检测。随后,生物信息学预测分析了金霉素生物合成基因簇内Ctc B与DNA的结合位点。【结果】获得了ctc B基因缺失的双交换突变株。发酵结果显示,该突变株失去产生金霉素与四环素的能力。金霉素生物合成基因簇内有6个共转录单元,其中4个共转录单元在ctc B基因缺失突变株中转录水平明显下降。软件分析预测到一致性较高的Ctc B结合重复序列。【结论】ctc B正调控金霉素生物合成结构基因ctc G-D、ctc H-K、ctc N-P、ctc W-T 4个转录单元和ctc Q,为进一步研究ctc B调控机制奠定了基础。  相似文献   

18.
The expression of iron homeostasis-related genes during rice germination   总被引:1,自引:1,他引:0  
To characterize Fe homeostasis during the early stages of seed germination, a microarray analysis was performed. mRNAs extracted from fully mature seeds or seeds harvested 1–3 days after sowing were hybridized to a rice microarray containing approximately 22,000 cDNA oligo probes. Many Fe deficiency-inducible genes were strongly expressed throughout early seed germination. These results suggest that the demand for Fe is extremely high during germination. Under Fe-deficient conditions, rice produces and secretes a metal-cation chelator called deoxymugineic acid (DMA) to acquire Fe from the soil. In addition, DMA and its intermediate nicotianamine (NA) are thought to be involved in long distance Fe transport in rice. Using promoter-β-glucuronidase (GUS) analysis, we investigated the expression patterns during seed germination of the Fe deficiency-inducible genes OsNAS1, OsNAS2, OsNAS3, OsNAAT1, and OsDMAS1, which encode enzymes that participate in the biosynthesis of DMA, and the transporter genes OsYSL2 and OsIRT1, which are involved in Fe transport. All of these genes were expressed in germinating seeds prior to protrusion of the radicle. These results suggest that DMA and NA are produced and involved in Fe transport during germination. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The two homologous genes GPD1 and GPD2, encoding two isoenzymes of NAD+-dependent glycerol-3-phosphate dehydrogenase in industrial yeast Saccharomyces cerevisiae CICIMY0086, had been deleted. The obtained two kinds of mutants gpd1Δ and gpd2Δ were studied under alcoholic fermentation conditions. gpd1Δ mutants exhibited a 4.29% (relative to the amount of substrate consumed) decrease in glycerol production and 6.83% (relative to the amount of substrate consumed) increased ethanol yield while gpd2Δ mutants exhibited a 7.95% (relative to the amount of substrate consumed) decrease in glycerol production and 7.41% (relative to the amount of substrate consumed) increased ethanol yield compared with the parental strain. The growth rate of the two mutants were slightly lower than that of the wild type under the exponential phase whereas ANG1 (gpd1Δ) and the decrease in glycerol production was not accompanied by any decline in the protein content of the strain ANG1 (gpd1Δ) but a slight decrease in the strain ANG2 (gpd2Δ). Meanwhile, dramatic decrease of acetate acid formation was observed in strain ANG1 (gpd1Δ) and ANG2 (gpd2Δ) compared to the parental strain. Therefore, it is possible to improve the ethanol yield by interruption of glycerol pathway in industrial alcoholic yeast.  相似文献   

20.
The entomopathogenic fungus Metarhizium anisopliae (strain ME1) failed to swell or form germ-tubes in distilled water. However, a period of soaking in distilled water (10–44 h) accelerated the process of germination when a suitable nutrient source was provided. The implications of this novel observation are discussed in terms of mechanisms of germination and the use of parasitic fungi for insect pest control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号