首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rous sarcoma virus pre-mRNA contains an element known as the negative regulator of splicing (NRS) that acts to inhibit viral RNA splicing. The NRS binds serine/arginine-rich (SR) proteins, hnRNP H and the U1/U11 snRNPs, and appears to inhibit splicing by acting as a decoy 5 splice site. Deletions within the gag gene that encompass the NRS also lead to increased read-through past the viral polyadenylation site, suggesting a role for the NRS in promoting polyadenylation. Using NRS-specific deletions and mutations, we show here that a polyadenylation stimulatory activity maps directly to the NRS and is most likely dependent upon SR proteins and U1 and/or U11 snRNP. hnRNP H does not appear to mediate splicing control or stimulate RSV polyadenylation, since viral RNAs containing hnRNP H-specific mutations were spliced and polyadenylated normally. However, the ability of hnRNP H mutations to suppress the read-through caused by an SR protein mutation suggests the potential for hnRNP H to antagonize polyadenylation. Interestingly, disruption of splicing control closely correlated with increased read-through, indicating that a functional NRS is necessary for efficient RSV polyadenylation rather than binding of an individual factor. We propose a model in which the NRS serves to enhance polyadenylation of RSV unspliced RNA in a process analogous to the stimulation of cellular pre-mRNA polyadenylation by splicing complexes.  相似文献   

3.
Incomplete RNA splicing is a key feature of the retroviral life cycle. This is in contrast to the processing of most cellular pre-mRNAs, which are usually spliced to completion. In Rous sarcoma virus, splicing control is achieved in part through a cis-acting RNA element termed the negative regulator of splicing (NRS). The NRS is functionally divided into two parts termed NRS5' and NRS3', which bind a number of splicing factors. The U1 and U11 small nuclear ribonucleoproteins interact with sequences in NRS3', whereas NRS5' binds several proteins including members of the SR [corrected] family of proteins. Among the proteins that specifically bind NRS5' is a previously unidentified 55-kDa protein (p55). In this report we describe the isolation and identification of p55. The p55 binding site was localized by UV cross-linking to a 31-nucleotide segment, and a protein that binds specifically to it was isolated by RNA affinity selection and identified by mass spectrometry as hnRNP H. Antibodies against hnRNP H immunoprecipitated cross-linked p55 and induced a supershift of a p55-containing complex formed in HeLa nuclear extract. Furthermore, UV cross-linking and electrophoretic mobility shift assays indicated that recombinant hnRNP H specifically interacts with the p55 binding site, confirming that hnRNP H is p55. The possible roles of hnRNP H in NRS function are discussed.  相似文献   

4.
We have characterized an RNP complex that assembles in nuclear extracts on the negative regulator of splicing (NRS) element from Rous sarcoma virus. While no complex was detected by native gel electrophoresis under conditions that supported spliceosome assembly, gel filtration revealed a specific ATP-independent complex that rapidly assembled on NRS RNA. No complexes were formed on non-specific RNA. Unlike the non-specific H complex, factors required for NRS complex assembly are limiting in nuclear extract. The NRS complex was not detected in reactions containing ATP and pre-formed complexes were dissociated in the presence of ATP. In addition, the assembly process was sensitive to high salt but NRS complexes were salt stable once formed. Assembly of the NRS complex appears functionally significant since mutated NRS RNAs that fail to inhibit splicing in vivo are defective for NRS complex assembly in nuclear extract. The probable relationship of the NRS complex to spliceosomal complexes is discussed.  相似文献   

5.
Retroviruses require both spliced and unspliced RNAs for replication. Accumulation of Rous Sarcoma virus (RSV) unspliced RNA depends upon the negative regulator of splicing (NRS). Its 5'-part is considered as an ESE binding SR proteins. Its 3'-part contains a decoy 5'-splice site (ss), which inhibits splicing at the bona fide 5'-ss. Only the 3D structure of a small NRS fragment had been experimentally studied. Here, by chemical and enzymatic probing, we determine the 2D structure of the entire RSV NRS. Structural analysis of other avian NRSs and comparison with all sequenced avian NRSs is in favour of a phylogenetic conservation of the NRS 2D structure. By combination of approaches: (i) in vitro and in cellulo splicing assays, (ii) footprinting assays and (iii) purification and analysis of reconstituted RNP complex, we define a small NRS element retaining splicing inhibitory property. We also demonstrate the capability of the SR protein 9G8 to increase NRS activity in vitro and in cellulo. Altogether these data bring new insights on how NRS fine tune splicing activity.  相似文献   

6.
Regulation of Rous sarcoma virus RNA splicing and stability.   总被引:30,自引:10,他引:30       下载免费PDF全文
  相似文献   

7.
Rous sarcoma virus (RSV) requires large amounts of unspliced RNA for replication. Splicing and polyadenylation are coupled in the cells they infect, which raises the question of how viral RNA is efficiently polyadenylated in the absence of splicing. Optimal RSV polyadenylation requires a far-upstream splicing control element, the negative regulator of splicing (NRS), that binds SR proteins and U1/U11 snRNPs and functions as a pseudo-5' splice site that interacts with and sequesters 3' splice sites. We investigated a link between NRS-mediated splicing inhibition and efficient polyadenylation. In vitro, the NRS alone activated a model RSV polyadenylation substrate, and while the effect did not require the snRNP-binding sites or a downstream 3' splice site, SR proteins were sufficient to stimulate polyadenylation. Consistent with this, SELEX-binding sites for the SR proteins ASF/SF2, 9G8, and SRp20 were able to stimulate polyadenylation when placed upstream of the RSV poly(A) site. In vivo, however, the SELEX sites improved polyadenylation in proviral clones only when the NRS-3' splice site complex could form. Deletions that positioned the SR protein-binding sites closer to the poly(A) site eliminated the requirement for the NRS-3' splice site interaction. This indicates a novel role for SR proteins in promoting RSV polyadenylation in the context of the NRS-3' splice site complex, which is thought to bridge the long distance between the NRS and poly(A) site. The results further suggest a more general role for SR proteins in polyadenylation of cellular mRNAs.  相似文献   

8.
L Karnitz  S Faber    R Chalkley 《Nucleic acids research》1987,15(23):9841-9859
We have documented that the Rous sarcoma virus (RSV) internal enhancer functions in the nontransformed Baby Hamster Kidney (BHK) cell line. The sequences within this region were assayed for their ability to bind to specific factors present in BHK nuclear extracts using the gel retardation assay and DNAse I footprinting. At least two sequences within the internal enhancer which can specifically bind nuclear factors in vitro have been identified. These regions are located between nucleotides 813-850 and 856-877. These sites map within the overall region of the internal enhancer which has been shown to be essential for enhancer activity and within the specific region which can function as an orientation independent enhancer. Using the DNase I footprinting and binding data to design an oligonucleotide, we have demonstrated that an oligonucleotide extending from nucleotides 804-877 will substitute efficiently as an enhancer. We also demonstrate that the SV40 enhancer does not compete for the factors which bind to the RSV internal enhancer, whereas an oligonucleotide to the binding site for EFII in the LTR can compete for factor binding to the internal enhancer.  相似文献   

9.
A modified method of cycled selection was used to characterize splicing enhancers for exon inclusion from a pool of beta-globin-based three exon/two intron pre-mRNAs with a variable number of random nucleotides incorporated in the internal exon. The pre-mRNAs generated by this method contained random sequences ranging from 0 to 18 nucleotides in length. This method was used to isolate particular splicing enhancer motifs from a previously enriched pool of extremely diverse enhancers. After four cycles of selection for mRNA containing the internal exon, a distinct enhancer motif (GACGAC...CAGCAG) was highly enriched. This motif served as strong splicing enhancers in a heterogeneous exon. We have shown here that the selected enhancer motif promotes exon inclusion through specific interaction with SRp30. We have also shown that although present in many of our selected splicing enhancers conforming to this motif, a typical purine-rich enhancer sequence is dispensable for either enhancer activity or binding with SRp30.  相似文献   

10.
p60src, the transforming protein of Rous sarcoma virus, was found to contain 0.5 to 0.9 mol of total phosphate per mol of polypeptide. The protein is known to be phosphorylated at two sites, a serine in the amino-terminal domain and a tyrosine in the carboxy-terminal domain. Because our indirect analysis suggests that the serine is phosphorylated to approximately twice the extent of the tyrosine, we estimate that p60src contains approximately 0.3 to 0.6 mol of phosphoserine and 0.2 to 0.3 mol of phosphotyrosine per mol of polypeptide. p60src was found to represent approximately 0.02% of the total incorporated radioactivity in Rous sarcoma virus-transformed chick cells labeled with [35S]methionine for 48 h. This corresponds to approximately 500,000 molecules of p60src per cell. Pulse-chase experiments revealed that the half-life of p60src ranged from 2 to 7 h, depending on the strain of virus examined. The P60src of the Schmidt-Ruppin strain was significantly more stable than that of the Prague strain.  相似文献   

11.
cis-acting sequences of Rous sarcoma virus (RSV) RNA involved in control of the incomplete splicing that is part of the retroviral life cycle have been studied. The 5' and two alternative 3' splice sites, as well as negative regulator of splicing element in the intron, have been introduced into chimeric constructs, and their responsive roles in splicing inhibition have been evaluated by transient transfection experiments. Although the RSV 5' splice site was used efficiently in these assays, substrates containing either the RSV env or the RSV src 3' splice site were not spliced completely, resulting in 40 to 50% unspliced RNA. Addition of the negative regulator of splicing element to substrates containing RSV 3' splice sites resulted in greater inhibition of splicing (70 to 80% unspliced RNA), suggesting that the two elements function independently and additively. Deletion of sequences more than 70 nucleotides upstream of the src 3' splice site resulted in efficient splicing at this site, suggesting that inefficient usage is not inherent in this splice site but is instead due to to sequences upstream of it. Insertion of these upstream sequences into the intron of a heterologous pre-mRNA resulted in partial inhibition of its splicing. In addition, secondary structure interactions were predicted to occur between the src 3' splice site and the inhibitory sequences upstream of it. Thus, RSV splicing control involves both intronic sequences and 3' splice sites, with different mechanisms involved in the underutilization of the env and src splice acceptor sites.  相似文献   

12.
Three avian nuclear proteins which bind to the Rous sarcoma virus long terminal repeat have been detected. Two of the proteins bind to sequences within the enhancer, and the third protein binds to a sequence spanning the enhancer and an upstream promoter region.  相似文献   

13.
Site-directed mutagenesis has shown that the nucleocapsid (NC) protein of Rous sarcoma virus (RSV) is required for packaging and dimerization of viral RNA. However, it has not been possible to demonstrate, in vivo or in vitro, specific binding of viral RNA sequences by NC. To determine whether specific packaging of viral RNA is mediated by NC in vivo, we have constructed RSV mutants carrying sequences of Moloney murine leukemia virus (MoMuLV). Either the NC coding region alone, the psi RNA packaging sequence, or both the NC and psi sequences of MoMuLV were substituted for the corresponding regions of a full-length RSV clone to yield chimeric plasmid pAPrcMNC, pAPrc psi M, or pAPrcM psi M, respectively. In addition, a mutant of RSV in which the NC is completely deleted was tested as a control. Upon transfection, each of the chimeric mutants produced viral particles containing processed core proteins but were noninfectious. Thus, MoMuLV NC can replace RSV NC functionally in the assembly and release of mature virions but not in infectivity. Surprisingly, the full-deletion mutant showed a strong block in virus release, suggesting that NC is involved in virus assembly. Mutant PrcMNC packaged 50- to 100-fold less RSV RNA than did the wild type; in cotransfection experiments, MoMuLV RNA was preferentially packaged. This result suggests that the specific recognition of viral RNA during virus assembly involves, at least in part, the NC protein.  相似文献   

14.
G Jay  R P Shiu  F T Jay  A S Levine  I Pastan 《Cell》1978,13(3):527-534
Using antisera obtained from rats bearing Schmidt-Ruppin strain Rous sarcoma virus-induced tumors, we have idnetified a protein with an apparent molecular weight of 56,000 daltons and an isoelectric point of 6.3 in extracts of chick embryo fibroblasts transformed by a wild-type nondefective Rous sarcoma virus (Schmidt-Ruppin strain). This protein was not found in cells infected by trnasformation-defective mutants with either a partial or complete deletion of the src gene, nor in cells infected by a nontransforming avian leukosis virus. The 56,000 dalton molecular weight protein was found to be synthesized at both the permissive and nonpermissive temperatures in cells infected by either of two conditionallethal mutants that are temperature-sensitive in cell transformation. The amount of this protein, however, accumulated in cells infected by these temperature-sensitive mutants, relative to the structural polypeptides, differed significnatly from that seen with the nondefective virus. Pulsechase experiments indicate that the protein is extremely unstable, with a half-life of about 20 min, and does not serve as a precursor to any of the detectable virion polypeptides. Furthermore, incubation of the rat antiserum with purified, disrupted virus did not affect its immunoreactivity to this particular protein. We conclude that this 56,000 dalton molecular weight protein is a nonstructural protein specific to cells transformed by Rous sarcoma virus.  相似文献   

15.
J H Weis  A J Faras 《Biochemistry》1983,22(1):165-170
The two major phosvitin-utilizing kinases have been purified from virions of the Prague C strain of Rous sarcoma virus by the use of ion-exchange and affinity chromatography. The two kinases isolated may be differentiated by their molecular weights as well as by their ability to utilize GTP as a phosphate donor. Protein kinase G, which will use either GTP or ATP as a phosphate donor, has a molecular weight of 120 000 as determined under nondenaturing conditions by glycerol gradient centrifugation and 28 000 when assayed under denaturation in sodium dodecyl sulfate (Na-DodSO4)-polyacrylamide gels. Protein kinase A, which will only efficiently use ATP as the phosphate donor, has an apparent molecular weight of 43 000 estimated by glycerol gradient sedimentation and 40 000 by NaDodSO4-polyacrylamide electrophoresis. Both kinases possess the ability to autophosphorylate. Phosvitin is the major, and casein the minor, phosphate-accepting substrate for both kinases in vitro; however, kinase G will also phosphorylate histones to an extent similar to that observed with casein.  相似文献   

16.
The interactions between Rous Sarcoma virus (RSV) RNA and the viral proteins in the virus have been analysed by Sen & Todaro (1977) using ultraviolet light irradiation; they showed that the major protein ultraviolet light cross-linked to the viral RNA was P19 as identified by polyacrylamide gel electrophoresis. We report here that it is not viral protein P19 but P12 that binds tightly to RSV RNA upon ultraviolet light irradiation of the virus. Therefore, the binding sites of the viral protein along RSV RNA that we have characterized previously should be correctly attributed now to P12 and not P19.  相似文献   

17.
Cells transformed by Rous sarcoma virus release transforming growth factors   总被引:3,自引:0,他引:3  
Chicken embryo fibroblasts and hamster BHK cells transformed by Rous sarcoma virus (RSV) release in their culture media growth factors which enhance markedly anchorage-independent colony formation in gelified medium, at the restrictive temperature (41 degrees 5 C), of chicken embryo fibroblasts (CEF) infected by RSV mutants with a ts mutation of the src gene. This action is not observed with uninfected CEF, and, therefore, appears to require some expression of the viral src gene in the target cells. The enhancing factors are proteins related to the family of the transforming growth factors (TGFs) by their molecular weight (about 20 kd), their heat and acid resistance, and their sensitivity to dithiothreitol. They do not compete with 125I EGF for binding on the EGF receptors of the membrane of A431 cells. As chicken embryo fibroblasts are devoid of EGF receptors, their activity is not potentiated by EGF.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号