首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A magnetic capture-hybridization PCR technique (MCH-PCR) was developed to eliminate the inhibitory effect of humic acids and other contaminants in PCRs targeting specific soil DNA. A single-stranded DNA probe, which was complementary to an internal part of the target gene, was used to coat magnetic beads. After hybridization in a suspension of soil DNA, magnetic extraction of the beads separated the hybrid DNA from all other soil DNA, humic acids, and other interfering soil components. The MCH was followed by PCR amplification of the specific target DNA. In barley rhizosphere soil, detection of a lux gene inserted in a Pseudomonas fluorescens strain could be demonstrated in nonsterile soil samples (0.5 mg). This corresponded to a detection of fewer than 40 bacterial cells per cm of barley root. The MCH-PCR technique greatly improves the current protocols for PCR detection of specific microorganisms or genes in soil because specific target DNA sequences from very small soil samples can be extracted and determined.  相似文献   

2.
The polymerase chain reaction (PCR) was used to amplify an Escherichia coli 16S ribosomal gene fragment from sediments with high contents of humic substances. Total DNA was extracted from 1 g of E. coli seeded or unseeded samples by a rapid freeze-and-thaw method. Several approaches (use of Bio-Gel P-6 and P-30 and Sephadex G-50 and G-200 columns, as well as use of the Stoffel fragment) were used to reduce interference with the PCR. The best results were obtained when crude DNA extracts containing humic substances were purified by using Sephadex G-200 spun columns saturated with Tris-EDTA buffer (pH 8.0). Eluted fractions were collected for PCR analyses. The amplified DNA fragment was obtained from seeded sediments containing fewer than 70 E. coli cells per g. Because only 1/100 of the eluted fractions containing DNA extracts from 70 cells per g was used for the PCR, the sensitivity of detection was determined to be less than 1 E. coli cell. Thus, DNA direct extraction coupled with this technique to remove interference by humic substances and followed by the PCR can be a powerful tool to detect low numbers of bacterial cells in environmental samples containing humic substances.  相似文献   

3.
The polymerase chain reaction (PCR) was used to amplify an Escherichia coli 16S ribosomal gene fragment from sediments with high contents of humic substances. Total DNA was extracted from 1 g of E. coli seeded or unseeded samples by a rapid freeze-and-thaw method. Several approaches (use of Bio-Gel P-6 and P-30 and Sephadex G-50 and G-200 columns, as well as use of the Stoffel fragment) were used to reduce interference with the PCR. The best results were obtained when crude DNA extracts containing humic substances were purified by using Sephadex G-200 spun columns saturated with Tris-EDTA buffer (pH 8.0). Eluted fractions were collected for PCR analyses. The amplified DNA fragment was obtained from seeded sediments containing fewer than 70 E. coli cells per g. Because only 1/100 of the eluted fractions containing DNA extracts from 70 cells per g was used for the PCR, the sensitivity of detection was determined to be less than 1 E. coli cell. Thus, DNA direct extraction coupled with this technique to remove interference by humic substances and followed by the PCR can be a powerful tool to detect low numbers of bacterial cells in environmental samples containing humic substances.  相似文献   

4.
AIMS: To develop PCR assays able to distinguish between groups within lactococcal 936-species bacteriophages, as defined by their different receptor-binding protein (RBP) genes. METHODS AND RESULTS: DNA sequences of RBP genes from 17 lactococcal bacteriophages of the 936-species were compared, and six phage groups were identified. For each phage group a specific primer pair targeting a variable region of the RBP genes was designed. In nine of 20 whey samples, from dairies with recorded phage problems, between one and six phage groups were identified by conventional PCR. The sensitivity and specificity of the method was improved by magnetic capture hybridization (MCH)-PCR using a capture probe targeting an 80-bp highly conserved region just upstream from the RBP gene in all the investigated phages. The MCH-PCR was performed on 100 microl whey samples and the detection limit of the assay was 10(2)-10(3) PFU ml(-1) as opposed to the detection limit of 10(4) PFU ml(-1) for conventional PCR performed on 1-microl whey samples. CONCLUSIONS: In this study, PCR assays have been developed to detect six different types of RBP genes in lactococcal 936-species bacteriophages. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR assays have practical applications at cheese plants for detection of 936-species phages with different RBP and thereby potentially with different host ranges. This knowledge will make it possible to improve starter culture rotation systems in the dairy industry.  相似文献   

5.
Standard methods for the detection of enteroviruses in environmental samples involve the use of cell culture, which is expensive and time-consuming. The polymerase chain reaction (PCR) is an attractive method for the detection of enteroviruses in water because primary cell culture is not needed and the increased sensitivity of PCR allows detection of the low numbers of target DNAs and RNAs usually found in environmental samples. However, environmental samples often contain substances that inhibit PCR amplification of target DNA and RNA. Procedures that remove substances that interfere with the amplification process need to be developed if PCR is to be successfully applied to environmental samples. An RNA-PCR assay for the detection of enteroviruses in water was developed and used to test a variety of groundwater concentrates and humic acid solutions seeded with poliovirus type 1. The groundwater samples and humic acid solutions were treated with Sephadex G-50, Sephadex G-100, Sephadex G-200, Chelex-100 resin, and a mixed bed resin to remove PCR-inhibitory material from the samples. Sephadex G-100 in combination with Chelex-100 was found to be very effective in removing inhibitory factors for the detection of enteroviruses in groundwater concentrates by PCR. Viruses were detected in two of the groundwater concentrates by the RNA-PCR assay after treatment with Sephadex G-100 plus Chelex-100. This was confirmed by tissue culture, suggesting that the treatment protocol and, subsequently, the RNA-PCR assay are applicable for the detection of enteroviruses in environmental samples.  相似文献   

6.
Real-time PCR has been widely used to evaluate gene abundance in natural microbial habitats. However, PCR-inhibitory substances often reduce the efficiency of PCR, leading to the underestimation of target gene copy numbers. Digital PCR using microfluidics is a new approach that allows absolute quantification of DNA molecules. In this study, digital PCR was applied to environmental samples, and the effect of PCR inhibitors on DNA quantification was tested. In the control experiment using λ DNA and humic acids, underestimation of λ DNA at 1/4400 of the theoretical value was observed with 6.58ngμL(-1) humic acids. In contrast, digital PCR provided accurate quantification data with a concentration of humic acids up to 9.34ngμL(-1). The inhibitory effect of paddy field soil extract on quantification of the archaeal 16S rRNA gene was also tested. By diluting the DNA extract, quantified copy numbers from real-time PCR and digital PCR became similar, indicating that dilution was a useful way to remedy PCR inhibition. The dilution strategy was, however, not applicable to all natural environmental samples. For example, when marine subsurface sediment samples were tested the copy number of archaeal 16S rRNA genes was 1.04×10(3)copies/g-sediment by digital PCR, whereas real-time PCR only resulted in 4.64×10(2)copies/g-sediment, which was most likely due to an inhibitory effect. The data from this study demonstrated that inhibitory substances had little effect on DNA quantification using microfluidics and digital PCR, and showed the great advantages of digital PCR in accurate quantifications of DNA extracted from various microbial habitats.  相似文献   

7.
In order to reduce the effects of inhibitors present in DNA extracts from lignified apple tissues, a magnetic capture-hybridisation PCR (MCH-PCR) technique was developed forNectria galligena using the ITS 1 region of the rRNA gene repeats as target. The trapping reagent used to coat the magnetic beads was an 81 bp single-stranded DNA oligonucleotide biotin-labelled on the 5é-terminal and designed to be complementary to part of the rRNA gene ITS 1 region ofN. galligena. For specificity, the probe was located from 14 bp downstream from the 3é-terminal nucleotide of theN. galligena forward primer Ch1 to the last ITS 1 nucleotide immediately upstream of the 5.8S rRNA gene. Following hybridisation in a total DNA extract of woody tissue, magnetic recovery of the bead-oligomer-template conjugate separated target template from other DNA species and inhibitory compounds. Magnetic capture-hybridisation was followed by PCR amplification with the previously designed species-specific primers, Ch1 and Ch2. Application of the MCH-PCR technique resulted in increased levels of sensitivity and reliability when compared to PCR without MCH when used on total DNA extracts from lignified tissues.  相似文献   

8.
A method in which the polymerase chain reaction (PCR) was used was developed to amplify either a uidA gene fragment or a 16S rRNA gene fragment from Escherichia coli in sewage and sludge. Because of interference caused by humic acidlike substances, crude DNA extracts were purified with a Sephadex G-200 spun column before the PCR was begun. A Southern analysis in which a nonradioactive chemiluminescent method was used was performed to confirm the presence of PCR products. The sensitivity of detection for PCR products when the chemiluminescent method was used was determined to be 30 ag of E. coli genomic DNA template. In seeded sludge, the PCR amplified the target DNA from 80 E. coli cells per g of sludge and 50 Shigella dysenteriae cells per g of sludge. Because only 0.05 aliquot of a sludge extract was used for the PCR, we deduced that the PCR detected target DNA equivalent to the DNA of 2.5 to 4 cells in the extract. The PCR amplified the uidA fragment from diluted sewage influents and effluents containing E. coli cells. Therefore, the PCR performed with a chemiluminescent gene probe can be used to detect the presence of potentially pathogenic microorganisms in sewage and sludge. This technique can be expanded to permit direct detection of pathogenic microorganisms in water samples, thus leading to enhanced public health protection.  相似文献   

9.
Quantitative PCR is becoming the method of choice for the detection of pathogenic microorganisms and other targets in the environment. A major obstacle when amplifying DNA is the presence of inhibiting substances like humic acids that decrease the efficiency of PCR. We combined the polymeric adsorbent Supelite™ DAX-8 with a large-volume (10 mL) nucleic acid extraction method to decrease the humic acid content prior to qPCR quantification in water samples. The method was tested by spiking with humic acid standards and the bacterial surrogate Acinetobacter baylyi ADP1. Improvements in qPCR detection of ADP1 after application of DAX-8 resin (5 and 10 w/v%) were compared with the effects of added bovine serum albumin (BSA) (50, 100 and 200 ng/μL). Both additions improved detection of ADP1 by counteracting inhibitory effects. There were no changes in mean cycle threshold difference (ΔCT) after application of DAX-8 compared to the control despite some loss of DNA, whereas significant increases occurred for BSA, irrespective of BSA concentration applied. The use of DAX-8 leads to an increase in qPCR amplification efficiency in contrast to BSA. The commonly used method to calculate genomic sample concentrations by comparing measured CT values relative to standard curves is only valid if amplification efficiencies of both are sufficiently similar. DAX-8 can provide this efficiency by removing humic acids permanently from nucleic acid extracts and has the potential to significantly increase the reliability of reported non-detects and measured results obtained by qPCR in environmental monitoring.  相似文献   

10.
Analysis of microbial community structure in complex environmental samples using nucleic acid techniques requires efficient unbiased DNA extraction procedures; however, humic acids and other contaminants complicate the isolation of PCR-amplifiable DNA from compost and other organic-rich samples. In this study, combinations of DNA extraction and purification methods were compared based on DNA yield, humic acid contamination, PCR amplifiability, and microbial community structure assessed by terminal restriction fragment length polymorphisms (TRFLP) of amplified 16S rRNA genes. DNA yield and humic acid contamination, determined by A230, varied significantly between extraction methods. Humic acid contamination of DNA obtained from compost decreased with increasing salt concentration in the lysis buffer. DNA purified by gel permeation chromatography (Sepharose 4B columns) gave satisfactory PCR amplification with universal eubacterial 16S rRNA gene primers only when A260/A280 ratios exceeded 1.5. DNA purified with affinity chromatography (hydroxyapatite columns), and showing A260/A280 ratios as high as 1.8, did not show consistently satisfactory PCR amplification using the same 16S rRNA primers. Almost all DNA samples purified by agarose gel electrophoresis showed satisfactory PCR amplification. Principal components analysis (PCA) of TRFLP patterns differentiated compost types based on the presence/absence of peaks and on the height of the peaks, but differences in TRFLP patterns were not appreciable between extraction methods that yielded relatively pure DNA. High levels of humic acid contamination in extracted DNA resulted in TRFLP patterns that were not consistent and introduced a bias towards lower estimates of diversity.  相似文献   

11.
Magnetic capture-hybridization PCR (MCH-PCR) was used for the detection of 36 verotoxigenic (verotoxin [VT]-producing) Escherichia coli (VTEC), 5 VTEC reference, and 13 non-VTEC control cultures. The detection system employs biotin-labeled probes to capture the DNA segments that contain specific regions of the genes for VT1 and VT2 by DNA-DNA hybridization. The hybrids formed were isolated by streptavidin-coated magnetic beads which were collected by a magnetic particle separator and, subsequently, amplified directly by conventional PCR. The detection system was found to be specific for VTEC: no amplification was obtained from non-VTEC controls, whereas VTEC isolates tested positive for one or two specific PCR products. With 5, 7, or 10 h of enrichment, the limits of detection were 103, 102, and 100 CFU/ml, respectively, by agarose gel electrophoresis. Southern hybridization did not seem to improve the limit of the detection. When applied to food, MCH-PCR was capable of detecting 100 CFU of VTEC per g of ground beef with 15 h of nonselective enrichment. The results of MCH-PCR for pure cultures of VT1- and/or VT2-producing E. coli cells were in total agreement with toxin production as measured by a VT enzyme-linked immunosorbent assay.  相似文献   

12.
Real-time PCR is a new and highly sensitive method for the quantification of microbial organisms in environmental samples. This work was conducted to evaluate real-time PCR with SybrGreen (SG) detection as quantification method for Desulfotomaculum lineage 1 organisms in samples of rice field soil. The method was optimized in several parameters like SG concentration. These allowed quantitative PCR with different primer combinations yielding PCR products with lengths up to 1066 bp and with sensitivities of 10(2) targets for all assays. The detection limit in environmental DNA extracts (rice bulk soil and rice roots) was 10(6) targets per gram dry weight according to the dilution of the DNA extracts necessary to overcome PCR inhibition of humic substances. A verification, that the fluorescence increase was due to specific PCR products, was done by agarose gel electrophoresis since melting curve analysis of the PCR products did not show a distinct peak in the first derivative, when the environmental DNA extracts were used in PCR. Amplification with a primer combination specific for Desulfotomaculum lineage 1 organisms showed an abundance of this group of approximately 2% and 0.5% of the eubacterial 16S rDNA targets in rice bulk soil and rice root samples, respectively. Approximately half of this number was obtained in both habitats with a PCR assay specific for a Desulfotomaculum sequence cluster obtained previously from rice field soil.  相似文献   

13.
PCR detection methods are useful in studies of organisms not amenable to culture. Inhibitors in environmental samples can interfere with such assays. We describe a magnetic bead DNA capture protocol that removes inhibitors from outdoor air samples, maintaining the sensitivity of a 16S Pneumocystis carinii mitochondrial rRNA gene-based PCR.  相似文献   

14.
A primer set was designed for the specific detection of methanotrophic bacteria in forest soils by PCR. The primer sequences were derived from highly conservative regions of the pmoA gene, encoding the α-subunit of the particulate methane monooxygenase present in all methanotrophs. In control experiments with genomic DNA from a collection of different type I, II, and X methanotrophs, it could be demonstrated that the new primers were specific for members of the genera Methylosinus, Methylocystis, Methylomonas, Methylobacter, and Methylococcus. To test the suitability of the new primers for the detection of particulate methane monooxygenase (pMMO) containing methanotrophs in environmental samples we used DNA extracts from an acid spruce forest soil. For simple and rapid purification of the DNA extracts, the samples were separated by electrophoresis on a low-melting-point agarose gel. This allowed us to efficiently separate the DNA from coextracted humic acids. The DNA from the melted agarose gel was ready for use in PCR reactions. In PCR reactions with DNA from the Ah soil layer, products of the correct size were amplified by PCR by use of the new primers. By sequencing of cloned PCR products, it could be confirmed that the PCR products represented partial sequences with strong similarity to the pmoA gene. The sequence was most related to the pmoA sequence of a type II methanotroph strain isolated from the Ah layer of the investigated soils. Received: 1 September 2000 / Accepted: 2 October 2000  相似文献   

15.
PCR detection methods are useful in studies of organisms not amenable to culture. Inhibitors in environmental samples can interfere with such assays. We describe a magnetic bead DNA capture protocol that removes inhibitors from outdoor air samples, maintaining the sensitivity of a 16S Pneumocystis carinii mitochondrial rRNA gene-based PCR.  相似文献   

16.
This research describes a method based on PCR to identify cattle fecal pollution in water using a portion of the heat labile toxin IIA (LTIIa) gene from enterotoxigenic Escherichia coli (ETEC). We describe the development of the primers and target. DNA extracts (221) from different animal fecal and human sewage samples were screened and showed no cross-reactivity. Minimum detection limits using centrifugation and filtration methods to concentrate E. coli seeded into stream, ocean, and secondary effluent waters were found to be at femtogram and attogram levels, respectively. Stability of the biomarker in stream, ocean, and secondary effluent waters was 2-4 weeks for all water types. Finally, 33 farm lagoon and waste samples were collected and 31 tested to validate the method; 93% were positive for the LTIIa trait when >1,000 E. coli were screened and 100% positive when >10(5) E. coli were screened. Prevalence of the toxin gene in the E. coli population affected the outcome of the analyses. The cow biomarker can be used in watershed studies to identify cattle waste with great accuracy if the appropriate numbers of E. coli are screened.  相似文献   

17.
A new multiplex PCR and two specific TaqMan assays were developed to target the emerging pathogens A. butzleri and A. cryaerophilus. The assays also included an internal control to verify the presence of bacterial target DNA and amplification integrity. The multiplex assay used a published primer set (CRY1 and CRY2) for detecting A. cryaerophilus DNA (Houf, K., Tutenel, A., De Zutter, L., Van Hoof, J. and Vandamme, P., 2000. Development of a multiplex PCR assay for the simultaneous detection and identification of Arcobacter butzleri, Arcobacter cryaerophilus and Arcobacter skirrowii. FEMS microbiology letters, 193 (1): 89-94.) and a novel A. butzleri primer set designed to target the rpoB/C gene sequences. To improve sample throughput and assay sensitivity a TaqMan assay for each Arcobacter spp. was developed which again utilised the heterogeneity contained in the rpoB/C and 23s rRNA gene sequences. The two TaqMan assays provided >2 log improvement in detection sensitivity for both Arcobacter spp. compared with the multiplex PCR assay and were able to detect <10 CFU per PCR reaction. To evaluate the effectiveness of the Arcobacter TaqMan assays with field isolates the assays were used to screen DNA samples prepared from faecal, hide and environmental samples obtained from two meat processing plants. In these studies, the TaqMan assays revealed that 2/150 (1.3%) samples were A. butzleri-positive, 11/150 (7.3%) were A. cryaerophilus-positive and the identity of generated amplicons was confirmed by DNA sequencing. Our results show that these TaqMan assays provide improvements in sensitivity and species-representation over other published Arcobacter PCR assays and they are compatible with detecting Arcobacters in sub-optimal matrices.  相似文献   

18.
The magnetic capture hybridization polymerase chain reaction (MCH-PCR) was used to detect Salmonella and also to simultaneously detect Salmonella and Shiga-like toxin-producing Escherichia coli (SLTEC). Fifty-seven Salmonella and 41 SLTEC were included in the study. Salmonella were detected either individually by a single MCH-PCR assay targeting the inv gene or simultaneously with SLTEC by a multiplex MCH-PCR in which SLTEC were detected using primers for the slt genes. Both single and multiplex assays were found to be specific for tested pathogens. The results indicate that MCH-PCR can be used as means of detecting single or multiple bacterial pathogen(s).  相似文献   

19.
A real time polymerase chain reaction (PCR) assay was developed and evaluated to detect the presence of the thermostable direct hemolysin gene (tdh), a current marker of pathogenicity in Vibrio parahaemolyticus. The real time PCR fluorogenic probe and primer set was tested against a panel of numerous strains from 13 different bacterial species. Only V. parahaemolyticus strains possessing the tdh gene generated a fluorescent signal, and no cross-reaction was observed with tdh negative Vibrio or non-Vibrio spp. The assay detected a single colony forming unit (CFU) per reaction of a pure culture template. This sensitivity was achieved when the same template amount per reaction was tested in the presence of 2.5 microl of a tdh negative oyster:APW enrichment (oyster homogenate enriched in alkaline peptone water overnight at 35 degrees C). This real time technique was used to test 131 oyster:APW enrichments from an environmental survey of Alabama oysters collected between March 1999 and September 2000. The results were compared to those previously obtained using a streak plate procedure for culture isolation from the oyster:APW enrichment combined with use of a non-radioactive DNA probe for detection of the tdh gene. Real time PCR detected tdh in 61 samples, whereas the streak plate/probe method detected tdh in 15 samples. Only 24 h was required for detection of pathogenic V. parahaemolyticus in oyster:APW enrichments by real time PCR, whereas the streak plate/probe method required 3 days and was more resource intensive. This study demonstrated that real time PCR is a rapid and reliable technique for detecting V. parahaemolyticus possessing the tdh gene in pure cultures and in oyster enrichments.  相似文献   

20.
A procedure has been developed for the rapid detection of enteroviruses and adenoviruses in environmental samples. Several systems for virus concentration and extraction of nucleic acid were tested by adding adenovirus type 2 and poliovirus type 1 to different sewage samples. The most promising method for virus recovery involved the concentration of viruses by centrifugation and elution of the virus pellets by treatment with 0.25 N glycine buffer, pH 9.5. Nucleic acid extraction by adsorption of RNA and DNA to silica particles was the most efficient. One aliquot of the extracted nucleic acids was used for a nested two-step PCR, with specific primers for all adenoviruses; and another aliquot was used to synthesize cDNA for a nested two-step PCR with specific primers for further detection of seeded polioviruses or all enteroviruses in the river water and sewage samples. The specificity and sensitivity were evaluated, and 24 different enterovirus strains and the 47 human adenovirus serotypes were recognized by the primers used. The sensitivity was estimated to be between 1 and 10 virus particles for each of the species tested. Twenty-five samples of sewage and polluted river water were analyzed and showed a much higher number of positive isolates by nested PCR than by tissue culture analysis. The PCR-based detection of enteroviruses and adenoviruses shows good results as an indicator of possible viral contamination in environmental wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号