首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions.  相似文献   

2.

Background

Lévy flights are random walks, the step lengths of which come from probability distributions with heavy power-law tails, such that clusters of short steps are connected by rare long steps. Lévy walks maximise search efficiency of mobile foragers. Recently, several studies raised some concerns about the reliability of the statistical analysis used in previous analyses. Further, it is unclear whether Lévy walks represent adaptive strategies or emergent properties determined by the interaction between foragers and resource distribution. Thus two fundamental questions still need to be addressed: the presence of Lévy walks in the wild and whether or not they represent a form of adaptive behaviour.

Methodology/Principal Findings

We studied 235 paths of solitary and clustered (i.e. foraging in group) fallow deer (Dama dama), exploiting the same pasture. We used maximum likelihood estimation for discriminating between a power-tailed distribution and the exponential alternative and rank/frequency plots to discriminate between Lévy walks and composite Brownian walks. We showed that solitary deer perform Lévy searches, while clustered animals did not adopt that strategy.

Conclusion/Significance

Our demonstration of the presence of Lévy walks is, at our knowledge, the first available which adopts up-to-date statistical methodologies in a terrestrial mammal. Comparing solitary and clustered deer, we concluded that the Lévy walks of solitary deer represent an adaptation maximising encounter rates with forage resources and not an epiphenomenon induced by a peculiar food distribution.  相似文献   

3.
The probability distributions for changes in transverse plane fingertip speed are Lévy distributed in human pole balancing. Six subjects learned to balance a pole on their index finger over three sessions while sitting and standing. The Lévy or decay exponent decreased as a function of learning, showing reduced decay in the probability for large speed steps and was significantly smaller in the sitting condition. However, the probability distribution for changes in fingertip speed was truncated so that the probability for large steps was reduced in this condition. These results show a learning-induced tolerance for large speed step sizes and demonstrate that motor learning in continuous tasks may be characterized by changing distributions that reflect sensorimotor skill acquisition.  相似文献   

4.

Background

Ecologists are collecting extensive data concerning movements of animals in marine ecosystems. Such data need to be analysed with valid statistical methods to yield meaningful conclusions.

Principal Findings

We demonstrate methodological issues in two recent studies that reached similar conclusions concerning movements of marine animals (Nature 451∶1098; Science 332∶1551). The first study analysed vertical movement data to conclude that diverse marine predators (Atlantic cod, basking sharks, bigeye tuna, leatherback turtles and Magellanic penguins) exhibited “Lévy-walk-like behaviour”, close to a hypothesised optimal foraging strategy. By reproducing the original results for the bigeye tuna data, we show that the likelihood of tested models was calculated from residuals of regression fits (an incorrect method), rather than from the likelihood equations of the actual probability distributions being tested. This resulted in erroneous Akaike Information Criteria, and the testing of models that do not correspond to valid probability distributions. We demonstrate how this led to overwhelming support for a model that has no biological justification and that is statistically spurious because its probability density function goes negative. Re-analysis of the bigeye tuna data, using standard likelihood methods, overturns the original result and conclusion for that data set. The second study observed Lévy walk movement patterns by mussels. We demonstrate several issues concerning the likelihood calculations (including the aforementioned residuals issue). Re-analysis of the data rejects the original Lévy walk conclusion.

Conclusions

We consequently question the claimed existence of scaling laws of the search behaviour of marine predators and mussels, since such conclusions were reached using incorrect methods. We discourage the suggested potential use of “Lévy-like walks” when modelling consequences of fishing and climate change, and caution that any resulting advice to managers of marine ecosystems would be problematic. For reproducibility and future work we provide R source code for all calculations.  相似文献   

5.
Recently, Lévy walks have been put forward as a new paradigm for animal search and many cases have been made for its presence in nature. However, it remains debated whether Lévy walks are an inherent behavioural strategy or emerge from the animal reacting to its habitat. Here, we demonstrate signatures of Lévy behaviour in the search movement of mud snails (Hydrobia ulvae) based on a novel, direct assessment of movement properties in an experimental set-up using different food distributions. Our experimental data uncovered clusters of small movement steps alternating with long moves independent of food encounter and landscape complexity. Moreover, size distributions of these clusters followed truncated power laws. These two findings are characteristic signatures of mechanisms underlying inherent Lévy-like movement. Thus, our study provides clear experimental evidence that such multi-scale movement is an inherent behaviour rather than resulting from the animal interacting with its environment.  相似文献   

6.
Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant) to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.  相似文献   

7.

Background

Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple Brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a Brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention.

Methodology/Principal Findings

We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a Brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years.

Conclusions/Significance

Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals'' behaviour but also individuals'' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.  相似文献   

8.
We re-evaluate the long standing and widely held belief that ballistic movements (i.e. straight-lines movements) outperform Lévy walks when searching for targets that once located are not revisited. The belief stems from the results of analyses of one-dimensional searches, analyses which have not accounted for the fact that target numbers can be continually depleted during the search process. This is a crucial oversight because continual depletion promotes the searching efficiencies of some Lévy walks above that of ballistic motion. The continual depletion effect is not so important for two- and three-dimensional searches. Nevertheless, we show that Lévy walks and ballistic movements can be equally or almost equally effective when searching within two- and three-dimensional environments for randomly and sparsely distributed targets or when searching for targets that are occasionally concealed. We also show that Lévy walks are advantageous when searching for targets that can occasionally evade capture. These situations represent common predator–prey interactions in which predators are involved in ‘imperfect destructive’ searches. Our model suggests that accounting for coevolutionary arms races at the predator–prey detection/reaction scales can explain to some extent Lévy walk searching patterns of predators at larger scales. This result provides new insights into the Lévy walk movement patterns of some destructive foragers.  相似文献   

9.

Background

Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior.

Methodology/Principal Findings

We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates.

Conclusions/Significance

Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.  相似文献   

10.
Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patterns described by power-laws. Here we show by analyzing over half a million movement displacements that isolated termite workers actually exhibit a range of very interesting dynamical properties –including Lévy flights– in their exploratory behaviour. Going beyond the current trend of statistical model fitting alone, our study analyses anomalous diffusion and structure functions to estimate values of the scaling exponents describing displacement statistics. We evince the fractal nature of the movement patterns and show how the scaling exponents describing termite space exploration intriguingly comply with mathematical relations found in the physics of transport phenomena. By doing this, we rescue a rich variety of physical and biological phenomenology that can be potentially important and meaningful for the study of complex animal behavior and, in particular, for the study of how patterns of exploratory behaviour of individual social insects may impact not only their feeding demands but also nestmate encounter patterns and, hence, their dynamics at the social scale.  相似文献   

11.
In biological systems, because of higher intracellular viscosity and/or the restriction of the diffusion space inside cells, the (apparent) diffusion coefficient of an intracellular species (e.g., water) is generally smaller than when it is in the extracellular medium. This difference affects the spin-echo signal attenuation in the pulsed field gradient NMR experiment and thus affords a means of separating the intracellular from the extracellular species, thereby providing a basis for studying transmembrane transport. Such experiments have commonly been analyzed using the macroscopic model of Kärger (see Adv. Magn. Reson. 21:1-89 (1988)). In our previous study, we considered a microscopic model of diffusive transport through a spherical interface using the short gradient pulse approximation (J. Magn. Reson. A114:39-46 (1995)). The spins in the external medium were modeled with the "partially absorbing wall" condition or as having a small but finite lifetime. In the present paper, we extend our treatment to the case in which there is no limitation upon the lifetime in either medium. We also consider a simple modification of Kärger's model that more properly accounts for the restricted intracellular diffusion. Importantly, it was found that the exact solution within the short gradient pulse approximation developed here and the modified Kärger model are in close agreement in the (experimentally relevant) long-time limit. The results of this study show that when there is no limitation upon the lifetime of the transported species in either phase, the spin-echo attenuation curve is very sensitive to transport.  相似文献   

12.
Sexuality in the marine araphid diatom Tabularia involves an unusual type of gamete, not only among diatoms but possibly in all of nature. The non-flagellated male gamete is free and vigorously motile, propelled by pseudopodia. However, the cues (if any) in their search for compatible female gametes and the general search patterns to locate them are unknown. We tracked and compared male gamete movements in the presence and absence of receptive female gametes. Path linearity of male movement was not affected by presence of female gametes. Male gametes did not move towards female gametes regardless of their proximity to each other, suggesting that the detection range for a compatible mate is very small compared to known algal examples (mostly spermatozoids) and that mate recognition requires (near) contact with a female gamete. We therefore investigated how male gametes move to bring insight into their search strategy and found that it was consistent with the predictions of a random-walk model with changes in direction coming from an even distribution. We further investigated the type of random walk by determining the best-fit distribution on the tail of the move length distribution and found it to be consistent with a truncated power law distribution with an exponent of 2.34. Although consistent with a Lévy walk search pattern, the range of move lengths in the tail was too narrow for Lévy properties to emerge and so would be best described as Brownian motion. This is somewhat surprising because female gametes were often outnumbered by male gametes, thus contrary to the assumption that a Brownian search mode may be most optimal with an abundant target resource. This is also the first mathematically analysed search pattern of a non-flagellated protistan gamete, supporting the notion that principles of Brownian motion have wide application in biology.  相似文献   

13.
Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motility without attaching to the ECM, or sliding and stepping motility with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells’ speed and persistence decreases. Additionally, the model predicts random walks with short-term persistent but long-term subdiffusive properties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front allow for more persistent motility than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.  相似文献   

14.
Cells synthesize proteins using 20 standard amino acids and expand their biochemical repertoire through intricate enzyme-mediated post-translational modifications (PTMs). PTMs can either be static and represent protein editing events or be dynamically regulated as a part of a cellular response to specific stimuli. Protein histidine methylation (Hme) was an elusive PTM for over 5 decades and has only recently attracted considerable attention through discoveries concerning its enzymology, extent, and function. Here, we review the status of the Hme field and discuss the implications of Hme in physiological and cellular processes. We also review the experimental toolbox for analysis of Hme and discuss the strengths and weaknesses of different experimental approaches. The findings discussed in this review demonstrate that Hme is widespread across cells and tissues and functionally regulates key cellular processes such as cytoskeletal dynamics and protein translation. Collectively, the findings discussed here showcase Hme as a regulator of key cellular functions and highlight the regulation of this modification as an emerging field of biological research.  相似文献   

15.
The multiscale attributes of mammalian muscle confer significant challenges for structural imaging in vivo. To achieve this, we employed a magnetic resonance method, termed “generalized Q-space imaging”, that considers the effect of spatially distributed diffusion-weighted magnetic field gradients and diffusion sensitivities on the morphology of Q-space. This approach results in a subvoxel scaled probability distribution function whose shape correlates with local fiber orientation. The principal fiber populations identified within these probability distribution functions can then be associated by streamline methods to create multivoxel tractlike constructs that depict the macroscale orientation of myofiber arrays. We performed a simulation of Q-space input parameters, including magnetic field gradient strength and direction, diffusion sensitivity, and diffusional sampling to determine the optimal achievable fiber angle separation in the minimum scan time. We applied this approach to resolve intravoxel crossing myofiber arrays in the setting of the human tongue, an organ with anatomic complexity based on the presence of hierarchical arrays of intersecting myocytes. Using parameters defined by simulation, we imaged at 3T the fanlike configuration of the human genioglossus and the laterally positioned merging fibers of the styloglossus, inferior longitudinalis, chondroglossus, and verticalis. Comparative scans of the excised mouse tongue at 7T demonstrated similar midline and lateral crossing fiber patterns, whereas histological analysis confirmed the presence and distribution of these myofiber arrays at the microscopic scale. Our results demonstrate a magnetic resonance method for acquiring and displaying diffusional data that defines highly ordered myofiber patterns in architecturally complex tissue. Such patterns suggest inherent multiscale fiber organization and provide a basis for structure-function analyses in vivo and in model tissues.  相似文献   

16.
Laurent Loison 《Genetics》2013,195(2):295-302
This Perspectives is devoted to the ideas of the French zoologist Georges Teissier about the mechanisms of evolution and the relations between micro- and macroevolution. Working in an almost universally neo-Lamarckian context in France, Teissier was one of the very few Darwinians there at the time of the evolutionary synthesis. The general atmosphere of French zoology during the 1920s and the 1930s will first be recalled, to understand the specific conditions in which Teissier became a zoologist. After a brief overview of his joint work with Philippe L’Héritier on the experimental genetics of Drosophila, this article describes the ways Teissier, during the 1950s, conceptualized the mechanisms that could allow for macroevolutionary transitions.IT is usually acknowledged that France did not significantly participate in the elaboration of 20th century evolutionary theory, often designated The Modern Synthesis. In their classical book on the history of the synthesis, Ernst Mayr and William B. Provine devoted a whole—nonetheless small—chapter to this specific issue (Mayr and Provine 1998, pp. 309–328). Mayr clearly stated that “France is the only major scientific nation that did not contribute significantly to the evolutionary synthesis” (Mayr 1998, p. 309). In the absence of a French architect of the synthesis, Mayr and Provine asked Ernest Boesiger, a Swiss population geneticist and a former student of Georges Teissier, to tell the story of what had happened in French biology at the time of the evolutionary synthesis. Boesiger, who died in 1975, wrote a paper in 1974 that provided the firm basis of the chapter. In very strong terms, he depicted French biology as “a kind of living fossil in the rejection of modern evolutionary theories” (Boesiger 1998, p. 309). He insisted on the fact that, even in 1974, most French biologists and philosophers were still reluctant to accept Darwinism. As regards the period of the 1930s, Boesiger was able to think of only two exceptions: Georges Teissier and Philippe L’Héritier. He then referred to their joint research in population genetics, which was based on the new technique of the population cages with the species Drosophila melanogaster, and listed their contributions to this new discipline.If Teissier and L’Héritier’s works on Drosophila are nowadays more widely recognized than in 1974, due in particular to the efforts of Jean Gayon and Michel Veuille (Gayon and Veuille 2001), this recognition could have as an unintended consequence the reduction of both Teissier and L’Héritier to being simply the inventors of a useful technique, namely the population cages (see especially how Mayr presented their work in his other classical book, Mayr 1982, p. 574), or as the founders of a French school of population geneticists (Gayon and Veuille 2001). The aim of this article is to reevaluate the way Georges Teissier (1900–1972) conceived Darwinian natural selection not only as an important mechanism for evolution at the population level but more fundamentally as a general key for the unification of biology, exactly as Julian Huxley or Ernst Mayr did during the same period (1930–1970). However, starting in the early 1950s, Teissier went on to conceive a very specific understanding of the evolutionary synthesis.In this article, I will first describe the general atmosphere of evolutionary issues in French biology at the time when Teissier started working as a zoologist, to understand against what he developed his joint research program with L’Héritier and afterward his general conceptions about evolution. During the 1930s and the 1940s, only a very few scientists in France could be seen as Darwinians. In addition to Teissier and L’Héritier, one may also consider Marcel Prenant, Boris Ephrussi, and the mathematician Gustave Malécot. Building on Jean Gayon and Michel Veuille’s work, I will then give a quick overview of L’Héritier and Teissier’s most important achievements in the field of population genetics. In the third part, I will discuss the discovery made by Teissier and L’Héritier of a case of cytoplasmic inheritance in Drosophila. This unexpected finding led them into the field of non-Mendelian heredity. I will then develop in detail the way Teissier finally went on to conceive the relation between microevolution and macroevolution, in light of the general context of French biology and of the development of the field of cytoplasmic inheritance.  相似文献   

17.
The diffusive properties of anaerobic methanogenic and sulfidogenic aggregates present in wastewater treatment bioreactors were studied using diffusion analysis by relaxation time-separated pulsed-field gradient nuclear magnetic resonance (NMR) spectroscopy and NMR imaging. NMR spectroscopy measurements were performed at 22°C with 10 ml of granular sludge at a magnetic field strength of 0.5 T (20 MHz resonance frequency for protons). Self-diffusion coefficients of H2O in the investigated series of mesophilic aggregates were found to be 51 to 78% lower than the self-diffusion coefficient of free water. Interestingly, self-diffusion coefficients of H2O were independent of the aggregate size for the size fractions investigated. Diffusional transport occurred faster in aggregates growing under nutrient-rich conditions (e.g., the bottom of a reactor) or at high (55°C) temperatures than in aggregates cultivated in nutrient-poor conditions or at low (10°C) temperatures. Exposure of aggregates to 2.5% glutaraldehyde or heat (70 or 90°C for 30 min) modified the diffusional transport up to 20%. In contrast, deactivation of aggregates by HgCl2 did not affect the H2O self-diffusion coefficient in aggregates. Analysis of NMR images of a single aggregate shows that methanogenic aggregates possess a spin-spin relaxation time and self-diffusion coefficient distribution, which are due to both physical (porosity) and chemical (metal sulfide precipitates) factors.  相似文献   

18.
Pulse field gradient (PFG) diffusion NMR spectroscopy is a non-invasive method for the spectroscopic separation and identification of compounds of interest from a mixture. Because it relies on differences in translational diffusion rates to resolve NMR signals from individual components, pulse field gradient NMR is a unique method for analyzing complex mixtures and for detecting intermolecular interactions. A number of multidimensional pulse field gradient NMR experiments have been developed to alleviate the overlap of NMR signals arising from a complex mixture and facilitate component identification. The applications of pulse field gradient NMR for mixture analysis and for the direct identification of high affinity ligands are reviewed.  相似文献   

19.
20.
Homing studies have provided tantalizing evidence that the remarkable ability of shearwaters (Procellariiformes) to pinpoint their breeding colony after crossing vast expanses of featureless open ocean can be attributed to their assembling cognitive maps of wind-borne odours but crucially, it has not been tested whether olfactory cues are actually used as a system for navigation. Obtaining statistically important samples of wild birds for use in experimental approaches is, however, impossible because of invasive sensory manipulation. Using an innovative non-invasive approach, we provide strong evidence that shearwaters rely on olfactory cues for oceanic navigation. We tested for compliance with olfactory-cued navigation in the flight patterns of 210 shearwaters of three species (Cory''s shearwaters, Calonectris borealis, North Atlantic Ocean, Scopoli''s shearwaters, C. diomedea Mediterranean Sea, and Cape Verde shearwaters, C. edwardsii, Central Atlantic Ocean) tagged with high-resolution GPS loggers during both incubation and chick rearing. We found that most (69%) birds displayed exponentially truncated scale-free (Lévy-flight like) displacements, which we show are consistent with olfactory-cued navigation in the presence of atmospheric turbulence. Our analysis provides the strongest evidence yet for cognitive odour map navigation in wild birds. Thus, we may reconcile two highly disputed questions in movement ecology, by mechanistically connecting Lévy displacements and olfactory navigation. Our approach can be applied to any species which can be tracked at sufficient spatial resolution, using a GPS logger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号