首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis C virus (HCV) is a major human pathogen causing chronic liver disease, which leads to cirrhosis of liver and hepatocellular carcinoma. The HCV core protein, a viral nucleocapsid, has been shown to affect various intracellular events, including cell proliferation and apoptosis. However, the precise mechanisms of the effects are not fully understood. In this study, we show that HCV core protein sensitizes human hepatocellular carcinoma cell line, Huh7, conferred sensitivity to TRAIL-, but not Fas ligand-mediated apoptosis. Huh7 cells are resistant to TRAIL, despite the induction of caspase-8 after TRAIL engagement. However, HCV core protein induces TRAIL apoptosis signaling via sequential induction of caspase-8, Bid cleavage, activation of mitochondrial pathway, and effector caspase-3. HCV core protein also induces activation of caspase-9 after TRAIL engagement, and the induction of TRAIL sensitivity by HCV core protein could be reversed by caspase-9 inhibitor. Therefore, the HCV core protein-induced TRAIL-mediated apoptosis is dependent upon activation of caspase-8 downstream pathway to convey the death signal to mitochondria, leading to activation of mitochondrial signaling pathway and breaking the apoptosis resistance. These results combined indicate that the HCV core protein enhances TRAIL-, but not Fas ligand-mediated apoptotic cell death in Huh7 cells via a mechanism dependent on the activation of mitochondria apoptosis signaling pathway. These results suggest that HCV core protein may have a role in immune-mediated liver cell injury by modulation of TRAIL-induced apoptosis.  相似文献   

2.
Mithramycin A (MMA, trade name Plicamycin) can facilitate TNFα- (Tumor Necrosis Factor) and Fas ligand-induced apoptosis. Besides, several drugs play their anticancer effect through Fas apoptotic pathway. So we investigated the effect of MMA on Fas signaling. In this study we show that MMA induces apoptosis in Fas sensitive Jurkat cells and Fas resistant KG1a cells. This effect involves Fas apoptotic pathway: cell exposure to MMA leads to Fas clustering at the cell surface, DISC (Death Inducing Signaling Complex) formation and caspase cleavage. This phenomenon is independent of Fas ligand/Fas interaction and blockade of Fas death pathway partially inhibits MMA-induced apoptosis. Moreover the activation of Fas apoptotic pathway by MMA is correlated to the modulation of c-FlipL expression. Finally, pre-treatment with sub-lethal doses of MMA sensitizes KG1a cells to chemotherapeutic agents. Thus all these results may have important implications to improve clinical treatments.  相似文献   

3.
Caspase activation and apoptotic volume decrease are fundamental features of programmed cell death; however, the relationship between these components is not well understood. Here we provide biochemical and genetic evidence for the differential involvement of initiator caspases in the apoptotic volume decrease during both intrinsic and extrinsic activation of apoptosis. Apoptosis induction in Jurkat T lymphocytes by Fas receptor engagement (intrinsic) or ultraviolet (UV)-C radiation (extrinsic) triggered the loss of cell volume, which was restricted to cells with diminished intracellular K(+) ions. These characteristics kinetically coincided with the proteolytic processing and activation of both initiator and effector caspases. Although the polycaspase inhibitor benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone completely inhibited the Fas-mediated apoptotic volume decrease and K(+) efflux, it was much less effective in preventing these processes during UV-induced cell death under conditions whereby caspase activities and DNA degradation were blocked. To define the roles of specific initiator caspases, we utilized Jurkat cells genetically deficient in caspase-8 or stably transfected with a dominant-negative mutant of caspase-9. The results show that the activation of caspase-8, but not caspase-9, is necessary for Fas-induced apoptosis. Conversely, caspase-9, but not caspase-8, is important for UV-mediated shrunken morphology and apoptosis progression. Together, these findings indicate that cell shrinkage and K(+) efflux during apoptosis are tightly coupled, but are differentially regulated by either caspase-8 or caspase-9 depending on specific pathways of cell death.  相似文献   

4.
Tocotrienols, a subclass in the vitamin E family of compounds, have been shown to induce apoptosis by activating caspase-8 and caspase-3 in neoplastic mammary epithelial cells. Since caspase-8 activation is associated with death receptor apoptotic signaling, studies were conducted to determine the exact death receptor/ligand involved in tocotrienol-induced apoptosis. Highly malignant +SA mouse mammary epithelial cells were grown in culture and maintained in serum-free media. Treatment with 20 microM gamma-tocotrienol decreased+SA cell viability by inducing apoptosis, as determined by positive terminal dUTP nick end labeling (TUNEL) immunocytochemical staining. Western blot analysis showed that gamma-tocotrienol treatment increased the levels of cleaved (active) caspase-8 and caspase-3. Combined treatment with caspase inhibitors completely blocked tocotrienol-induced apoptosis. Additional studies showed that treatment with 100 ng/ml tumor necrosis factor-alpha (TNF-alpha), 100 ng/ml FasL, 100 ng/ml TNF-related apoptosis-inducing ligand (TRAIL), or 1 microg/ml apoptosis-inducing Fas antibody failed to induce death in +SA cells, indicating that this mammary tumor cell line is resistant to death receptor-induced apoptosis. Furthermore, treatment with 20 microM gamma-tocotrienol had no effect on total, membrane, or cytosolic levels of Fas, Fas ligand (FasL), or Fas-associated via death domain (FADD) and did not induce translocation of Fas, FasL, or FADD from the cytosolic to the membrane fraction, providing additional evidence that tocotrienol-induced caspase-8 activation is not associated with death receptor apoptotic signaling. Other studies showed that treatment with 20 microM gamma-tocotrienol induced a large decrease in the relative intracellular levels of phospho-phosphatidylinositol 3-kinase (PI3K)-dependent kinase 1 (phospho-PDK-1 active), phospho-Akt (active), and phospho-glycogen synthase kinase3, as well as decreasing intracellular levels of FLICE-inhibitory protein (FLIP), an antiapoptotic protein that inhibits caspase-8 activation, in these cells. Since stimulation of the PI3K/PDK/Akt mitogenic pathway is associated with increased FLIP expression, enhanced cellular proliferation, and survival, these results indicate that tocotrienol-induced caspase-8 activation and apoptosis in malignant +SA mammary epithelial cells is associated with a suppression in PI3K/PDK-1/Akt mitogenic signaling and subsequent reduction in intracellular FLIP levels.  相似文献   

5.
In this study, we examined the role of Fas apoptotic inhibitory molecule 2 (Faim2), an inhibitor of the Fas signaling pathway, and its regulation by stress kinase signaling during Fas-mediated apoptosis of 661W cells, an immortalized photoreceptor-like cell line Treatment of 661W cells with a Fas-activating antibody led to increased levels of Faim2. Both ERK and JNK stress kinase pathways were activated in Fas-treated 661W cells, but only the inhibition of the ERK pathway reduced the levels of Faim2. Blocking the ERK pathway using a pharmacological inhibitor increased the susceptibility of 661W cells to Fas-induced caspase activation and apoptosis. When the levels of Faim2 were reduced in 661W cells by siRNA knockdown, Fas activating antibody treatment resulted in earlier and more robust caspase activation, and increased cell death. These results demonstrate that Faim2 acts as a neuroprotectant during Fas-mediated apoptosis of 661W cells. The expression of Faim2 is triggered, at least in part, by Fas-receptor activation and subsequent ERK signaling. Our findings identify a novel protective pathway that auto-regulates Fas-induced photoreceptor apoptosis in vitro. Modulation of this pathway to increase Faim2 expression may be a potential therapeutic option to prevent photoreceptor death.  相似文献   

6.
Kim JH  Yoon YD  Shin I  Han JS 《IUBMB life》1999,48(4):445-452
Although recent studies have demonstrated that ovarian follicular atresia occurs by apoptosis of granulosa cells, the intracellular signaling pathways involved in apoptotic cell death are still poorly characterized. We examined the role of ceramide as a candidate intracellular mediator of Fas-mediated signaling in cultured granulosa cells. Expression of Fas antigen was demonstrated by Western blot of granulosa cell lysates and immunostaining of cultured granulosa cells. Exposure of granulosa cells to anti-Fas monoclonal antibody (anti-Fas mAb) resulted in significant sphingomyelin hydrolysis, which was accompanied by a progressive increase in endogenous levels of ceramide. The addition of exogenous C6-ceramide induced drastic morphological change, including nuclear fragmentation and typical apoptotic DNA degradation. Furthermore, both anti-Fas mAb and C6-ceramide decreased phospholipase D (PLD) activity and diacylglycerol (DAG) concentrations in a time- or a dose-dependent manner. In addition, treatment with phorbol 12-myristate 13-acetate completely attenuated the ceramide-induced inhibition of PLD activity and partially suppressed ceramide-induced apoptosis. These results indicate that the Fas/ceramide signaling pathway might play a role in granulosa cell apoptosis and suggest that the PLD/DAG pathway might be cross-linked to the Fas/ceramide pathway in apoptotic processes of granulosa cells.  相似文献   

7.
Activation of protein kinase C (PKC) can protect cells from apoptosis induced by various agents, including Fas ligation. To elucidate a possible interaction between Fas-mediated apoptotic signals and activation-related protective signals, we investigated the impact of Fas ligation on PKC activity. We demonstrate that engagement of Fas on human lymphoid Jurkat cells triggered apoptosis, and Fas ligation resulted in partial blockade of cellular PKC activity. The phorbol 12-myristate 13-acetate-mediated translocation of PKCtheta from the cytoplasm to the membrane was inhibited by treatment with anti-Fas antibody, whereas the translocation of PKCalpha or epsilon was not affected. In vitro kinase assay of PKCalpha or epsilon phosphotransferase activity demonstrated that Fas ligation inhibited the ability of PKCalpha to phosphorylate histone H1 as substrate but did not inhibit epsilon isozyme activity. This inhibition of PKCalpha activity mediated by Fas ligation was reversed by okadaic acid, a phosphatase inhibitor, suggesting the involvement of a member of the protein phosphatase 2A subfamily in this component of Fas signaling. Identical patterns of PKC isozyme inhibition were obtained using mouse thymoma cells overexpressing the fas gene (LF(+)). These results suggest that the selective inhibition of a potentially protective, PKC-mediated pathway by Fas activation may, to some extent, contribute to Fas-induced apoptotic signaling.  相似文献   

8.
The loss of intracellular potassium is a pivotal step in the induction of apoptosis but the mechanisms underlying this response are poorly understood. Here we report caspase-dependent stimulation of potassium channels by the Fas receptor in a human Jurkat T cell line. Receptor activation with Fas ligand for 30 min increased the amplitude of voltage-activated potassium currents 2-fold on average. This produces a sustained outward current, approximately 10 pA, at physiological membrane potentials during Fas ligand-induced apoptosis. Both basal and Fas ligand-induced currents were blocked completely by toxins that selectively inhibit Kv1.3 potassium channels. Kv1.3 stimulation required the expression of Fas-associated death domain protein and activation of caspase 8, but did not require activation of caspase 3 or protein synthesis. Furthermore, Kv1.3 stimulation by Fas ligand was prevented by chronic stimulation of protein kinase C with 20 nm phorbol 12-myristate 13-acetate during Fas ligand treatment, which also blocks apoptosis. Thus, Fas ligand increases Kv1.3 channel activity through the same canonical apoptotic signaling cascade that is required for potassium efflux, cell shrinkage, and apoptosis.  相似文献   

9.
Regulation of acidification and apoptosis by SHP-1 and Bcl-2.   总被引:13,自引:0,他引:13  
Recruitment of the SH2 domain containing cytoplasmic protein-tyrosine phosphatase SHP-1 to the membrane by somatostatin (SST) is an early event in its antiproliferative signaling that induces intracellular acidification-dependent apoptosis in breast cancer cells. Fas ligation also induces acidification-dependent apoptosis in a manner requiring the presence of SHP-1 at the membrane. Moreover, we have recently reported that SHP-1 is required not only for acidification, but also for apoptotic events that follow acidification (Thangaraju, M., Sharma, K., Liu, D., Shen, S. H., and Srikant, C. B. (1999) Cancer Res. 59, 1649-1654). Here we show that ectopically expressed SHP-1 was predominantly membrane-associated and amplified the cytotoxic signaling initiated upon SST receptor activation and Fas ligation. The catalytically inactive mutant of SHP-1 (SHP-1C455S) abolished the ability of the SST agonists to signal apoptosis by preventing the recruitment of wild type SHP-1 to the membrane. Overexpression of the anti-apoptotic protein Bcl-2 in MCF-7 cells inhibited SST-induced apoptosis upstream of acidification by inhibiting p53-dependent induction of Bax as well as by raising the resting pH(i) and attenuating SST-induced decrease in pH(i). By contrast, Bcl-2 failed to prevent apoptosis triggered by direct acidification. These data demonstrate that (i) membrane-associated SHP-1 is required for receptor-mediated cytotoxic signaling that causes intracellular acidification and apoptosis, and (ii) Bcl-2 acts distal to SHP-1 and p53 to prevent SST-induced acidification but cannot inhibit the apoptotic events that ensue intracellular acidification.  相似文献   

10.
Most animal cell types regulate their cell volume after an osmotic volume change. The regulatory volume increase (RVI) occurs through uptake of NaCl and osmotically obliged water after osmotic shrinkage. However, apoptotic cells undergo persistent cell shrinkage without showing signs of RVI. Persistence of the apoptotic volume decrease is a prerequisite to apoptosis induction. We previously demonstrated that volume regulation is inhibited in human epithelial HeLa cells stimulated with the apoptosis inducer. Here, we studied signaling mechanisms underlying the apoptotic inhibition of RVI in HeLa cells. Hypertonic stimulation was found to induce phosphorylation of a Ser/Thr protein kinase Akt (protein kinase B). Shrinkage-induced Akt activation was essential for RVI induction because RVI was suppressed by an Akt inhibitor, expression of a dominant negative form of Akt, or small interfering RNA-mediated knockdown of Akt1 (but not Akt2). Staurosporine, tumor necrosis factor-α, or a Fas ligand inhibited both RVI and hypertonicity-induced Akt activation in a manner sensitive to a scavenger for reactive oxygen species (ROS). Any of apoptosis inducers also induced phosphorylation of apoptosis signal-regulating kinase 1 (ASK1) in a ROS-dependent manner. Suppression of (ASK1) expression blocked the effects of apoptosis, in hypertonic conditions, on both RVI induction and Akt activation. Thus, it is concluded that in human epithelial cells, shrinkage-induced activation of Akt1 is involved in the RVI process and that apoptotic inhibition of RVI is caused by inhibition of Akt activation, which results from ROS-mediated activation of ASK1.  相似文献   

11.
MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis.   总被引:4,自引:0,他引:4  
Although the protease cascade initiated by Fas (CD95, Apo-1) is well characterized, there remains little known about how kinase pathways may impact on Fas-mediated apoptosis. We recently observed that in T lymphocytes Fas strongly induced activation of JNK (c-Jun N-terminal kinase) but not of second messengers leading to activation of ERK (extracellular regulated kinase). Additionally, Fas-mediated apoptosis was significantly inhibited with PMA, a potent activator of the ERK signaling pathway. This suggested a model whereby activation of the ERK pathway might attenuate Fas-mediated apoptosis. This was confirmed in the current study by showing that activation of MEK1, the upstream regulator of ERK, reduces Fas-mediated apoptosis, whereas inhibition of MEK1 augments apoptosis by Fas. Furthermore, Fas-mediated apoptosis of Jurkat T cells is not affected by constitutively active or dominant negative variants that modulate the JNK pathway. These results demonstrate that Fas-induced JNK activation is not required for apoptosis by Jurkat T cells, but rather is more likely secondary to cell stress during the early phases of apoptosis. This is supported by the ability of the caspase blocker zVAD to inhibit both apoptosis and JNK activation by Fas.  相似文献   

12.
The BRCA1 tumor suppressor gene has previously been implicated in induction of high levels of apoptosis in osteocarcinoma cell lines. Overexpression of BRCA1 was shown to induce an apoptotic signaling pathway involving the c-Jun N-terminal kinase (JNK), but the signaling steps upstream and downstream of JNK were not delineated. To better understand the role of BRCA1 in apoptosis, we examined the effect of wild-type and C-terminal-truncated dominant negative BRCA1 on breast and ovarian cancer cell lines subjected to a number of different pro-apoptotic stimuli, including growth factor withdrawal, substratum detachment, ionizing radiation, and treatment with anticancer agents. All of these treatments were found to induce substantial levels of apoptosis in the presence of wild-type BRCA1, whereas dominant negative BRCA1 truncation mutants diminished the apoptotic response. Subsequent mapping of the apoptotic pathway induced by growth factor withdrawal demonstrated that BRCA1 enhanced signaling through a pathway that sequentially involved H-Ras, MEKK4, JNK, Fas ligand/Fas interactions, and caspase-9 activation. In addition, the pathway functioned independently of the p53 tumor suppressor. These data suggest that BRCA1 is an important modulator of the response to cellular stress and that loss of this apoptotic potential due to BRCA1 mutations may contribute to tumor development.  相似文献   

13.
Liao X  Wang X  Gu Y  Chen Q  Chen LY 《Life sciences》2005,77(2):160-174
Recent evidences suggest that mechanical overload associated with abnormal blood pressure causes apoptosis in cardiovascular system. Still, the intracellular signaling leading to cardiomyocyte apoptosis has not been fully defined. Previous reports ascribed stretch-induced cardiomyocyte apoptosis to rennin-angiotensin-system (RAS) signaling and/or mitochondria-dependent apoptosis pathway. The present study shows the involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. By employing a well-described in vitro stretch model, we studied stretch-induced apoptosis and found that the death receptor-mediated apoptotic signaling was activated in stretch-induced apoptosis in neonatal rat cardiomyocytes. The major finding are as following: (1) The mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes, including activation of caspases 8, 9 and 3, up-regulation of Fas, FasL expression and cell surface trafficking of death ligands (FasL and TRAIL); (2) That exogenous death ligand (TRAIL) enhanced, while soluble death receptor (sDR5) neutralized, stretch-induced apoptosis; (3) Adenovirus-delivered dominant negative FADD (FADD-DN) significantly reduced apoptosis, caspases 8, 9, and 3 activation, and stretch-induced cyt c release from mitochondria. These data clearly suggested mechanical stretch activated death receptor-mediated apoptotic signaling in cardiomyocytes. In conclusion, our data suggest that the FADD-linked death receptor signaling may contribute to stretch-induced cardiomyocyte apoptosis, probably through activating mitochondria-dependent apoptotic signaling.  相似文献   

14.
To date, two major apoptotic pathways, the death receptor and the mitochondrial pathway, have been well documented in mammalian cells. However, the involvement of these two apoptotic pathways, particularly the death receptor pathway, in transforming growth factor-beta 1 (TGF-beta 1)-induced apoptosis is not well understood. Herein, we report that apoptosis of human gastric SNU-620 carcinoma cells induced by TGF-beta 1 is caused by the Fas death pathway in a Fas ligand-independent manner, and that the Fas death pathway activated by TGF-beta 1 is linked to the mitochondrial apoptotic pathway via Bid mediation. We showed that TGF-beta 1 induced the expression and activation of Fas and the subsequent caspase-8-mediated Bid cleavage. Interestingly, expression of dominant negative FADD and treatment with caspase-8 inhibitor efficiently prevented TGF-beta 1-induced apoptosis, whereas the treatment with an activating CH11 or a neutralizing ZB4 anti-Fas antibody, recombinant Fas ligand, or Fas-Fc chimera did not affect activation of Fas and the subsequent induction of apoptosis by TGF-beta 1. We further demonstrated that TGF-beta 1 also activates the mitochondrial pathway showing Bid-mediated loss of mitochondrial membrane potential and subsequent cytochrome c release associated with the activations of caspase-9 and the effector caspases. Moreover, all these apoptotic events induced by TGF-beta 1 were found to be effectively inhibited by Smad3 knockdown and also completely abrogated by Smad7 expression, suggesting the involvement of the Smad3 pathway upstream of the Fas death pathway by TGF-beta 1.  相似文献   

15.
Daxx enhances Fas-mediated apoptosis in a murine pro-B cell line,BAF3   总被引:3,自引:0,他引:3  
Daxx has been shown to play an essential in type I interferon (IFN-/β)-mediated suppression of B cell development and apoptosis. Recently, we demonstrated that Tyk2 is directly involved in IFN signaling for the induction and nuclear translocation of Daxx, which may result in growth arrest and/or apoptosis of B lymphocyte progenitors. To clarify the mechanism of Daxx-mediated apoptosis signaling in B lymphocyte progenitors, here we introduced an efficient suicide switch in a murine pro-B cell line, BAF3, by expressing FK506-binding protein-fused Fas intracellular domain (FKBP-Fas) and Daxx. It allows us to monitor Fas/Daxx-mediated signal by induction of Fas dimerization with the dimerizer drug AP20187. AP20187-mediated Fas dimerization induced not only apoptosis but also Jun N-terminal kinase (JNK) activation. However, AP20187 had no effect on cells expressing either Fas or Daxx only. Furthermore, expression of a JNK inhibitor, the JNK-binding domain of JIP-1, resulted in resistance to AP20187-mediated apoptosis in cells expressing FKBP-Fas and Daxx. These results imply that our novel suicide switch system may provide a powerful tool to delineate or identify the signaling molecules for Daxx-mediated apoptotic machinery in B lymphocyte progenitors through JNK activation.  相似文献   

16.
Phenylketonuria (PKU), an autosomal recessive disorder of amino acid metabolism caused by mutations in the phenylalanine hydroxylase (PAH) gene, leads to childhood mental retardation by exposing neurons to cytotoxic levels of phenylalanine (Phe). A recent study showed that the mitochondria-mediated (intrinsic) apoptotic pathway is involved in Phe-induced apoptosis in cultured cortical neurons, but it is not known if the death receptor (extrinsic) apoptotic pathway and endoplasmic reticulum (ER) stress-associated apoptosis also contribute to neurodegeneration in PKU. To answer this question, we used specific inhibitors to block each apoptotic pathway in cortical neurons under neurotoxic levels of Phe. The caspase-8 inhibitor Z-IETD-FMK strongly attenuated apoptosis in Phe-treated neurons (0.9 mM, 18 h), suggesting involvement of the Fas receptor (FasR)-mediated cell death receptor pathway in Phe toxicity. In addition, Phe significantly increased cell surface Fas expression and formation of the Fas/FasL complex. Blocking Fas/FasL signaling using an anti-Fas antibody markedly inhibited apoptosis caused by Phe. In contrast, blocking the ER stress-induced cell death pathway with salubrinal had no effect on apoptosis in Phe-treated cortical neurons. These experiments demonstrate that the Fas death receptor pathway contributes to Phe-induced apoptosis and suggest that inhibition of the death receptor pathway may be a novel target for neuroprotection in PKU patients.  相似文献   

17.
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.  相似文献   

18.
Fas-mediated caspase-dependent cell apoptosis has been well investigated. However, recent studies have shown that Fas can induce nonapoptotic caspase-independent cell death (CICD) when caspase activity is inhibited. Currently, the molecular mechanism of this alternative cell death mediated by Fas remains unclear. In this study, we investigated the signaling pathway of Fas-induced CICD in mouse embryonic fibroblasts (MEFs) whose caspase function was disrupted by the pan-caspase inhibitor Z-VAD-FMK and its coupling to inflammatory responses. Our results revealed that receptor-interacting protein 1 and tumor necrosis factor receptor-associated factor 2 play important roles in FasL-induced CICD. This death is associated with intracellular reactive oxygen species (ROS) production from mitochondria, as a ROS scavenger (BHA), antioxidants (trolox, NAC), and a mitochondrial respiratory chain uncoupler (rotenone) could prevent this event. Furthermore, delayed and sustained JNK activation, mitochondrial membrane potential breakdown, and loss of intracellular GSH were observed. In addition to CICD, FasL also induces cyclooxygenase-2 and MIP-2 gene upregulation, and both responses are attributed to ROS-dependent JNK activation. Taken together, these results demonstrate alternative signaling pathways of Fas upon caspase inhibition in MEFs that are unrelated to the classical apoptotic pathway, but steer cells toward necrosis and an inflammatory response through ROS production.  相似文献   

19.
The signaling events leading to apoptosis can be divided into two major pathways, involving either mitochondria (intrinsic) or death receptors (extrinsic). In a recent study, we have shown the involvement of the mitochondria-dependent apoptotic pathway in heat-induced male germ cell apoptosis in the rat. In additional studies, using the gld (generalized lymphoproliferation disease) and lprcg (lymphoproliferation complementing gld) mice, which harbor loss-of-function mutations in Fas L and Fas, respectively, we have shown that heat-induced germ cell apoptosis is not blocked, thus providing evidence that the Fas signaling system is not required for heat-induced germ cell apoptosis in the testis. In the present study, we have found that the initiation of apoptosis in wild-type mice was preceded by a redistribution of Bax from a cytoplasmic to paranuclear localization in heat-susceptible germ cells. The relocation of Bax is accompanied by sequestration of ultracondensed mitochondria into paranuclear areas of apoptotic germ cells, cytosolic translocation of mitochondrial cytochrome c and DIABLO, and is associated with activation of the initiator caspase 9 and the executioner caspase 3. Similar events were also noted in both gld and lprcg mice. Taken together, these results indicate that the mitochondria-dependent pathway is the key apoptotic pathway for heat-induced male germ cell death in mice.  相似文献   

20.
Cytotoxic T cells use Fas (CD95), a member of the tumor necrosis factor (TNF) receptor superfamily, to eliminate virus-infected cells by activation of the apoptotic pathway for cell death. The adenovirus E3 region encodes several proteins that modify immune defenses, including TNF-dependent cell death, which may allow this virus to establish a persistent infection. Here we show that, as an early event during infection, the adenovirus E3-10.4K/14.5K complex selectively induces loss of Fas surface expression and blocks Fas-induced apoptosis of virus-infected cells. Loss of surface Fas occurs within the first 4 h postinfection and is not due to decreased production of Fas protein. The decrease in surface Fas is distinct from the 10.4K/14.5K-mediated loss of the epidermal growth factor receptor on the same cells, because intracellular stores of Fas are not affected. Further, 10.4K/14.5K, which was previously shown to protect against TNF cytolysis, does not induce a loss of TNF receptor, indicating that this complex mediates more than one function to block host defense mechanisms. These results suggest yet another mechanism by which adenovirus modulates host cytotoxic responses that may contribute to persistent infection by human adenoviruses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号