首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shoot tips of in vitro grown plantlets of Rosa multiflora were cryopreserved using an encapsulation/dehydration procedure. The influence of sucrose and silica gel pretreatments on pre- and post-freeze shoot growth were examined. Shoot tips recovered from liquid nitrogen only grew after 24h pretreatment in medium containing 0.5 M sucrose, followed by 2 h drying with silica gel and rapid freezing.Abbreviations RSC1 modified Murashige and Skoog medium for Rosa multiflora shoot culture  相似文献   

2.
In vitro-grown shoot tips of the LN33 hybrid (Vitis L.) and cv. Superior (Vitis vinifera L.) were successfully cryopreserved by encapsulation-dehydration. Encapsulated shoot tips were precultured stepwise on half-strength MS medium supplemented with increasing sucrose concentrations of 0.25, 0.5, 0.75 and 1.0 M for 4 days, with one day for each step. Following preculture, encapsulated shoot tips were dehydrated prior to direct immersion in liquid nitrogen for 1 h. After thawing, cryopreserved shoot tips were post-cultured on a post-culture medium for survival. An optimal survival of cryopreserved shoot tips was achieved when encapsulated shoot tips were dehydrated to 15.6 and 17.6% water content for the LN33 hybrid and cv. Superior, respectively. Comparison between the effects of dehydration with silica gel and by air drying on cryopreserved shoot tips, showed that survival was dependent on water content, not on dehydration method. The thawing method markedly affected survival of cryopreserved shoot tips, and thawing at 40 °C for 3 min was found best. No callus formation and fastest shoot elongation were obtained when cryopreserved shoot tips were post-cultured on the post-culture medium composed of half-strength MS supplemented with 1 mg l−1 BA and 0.1 mg l−1 NAA. With these optimized parameters, 60 and 40% survival of cryopreserved shoot tips were obtained for the LN33 hybrid and cv. Superior, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Shoot tips excised from dormant axillary buds of persimmon (Diospyros kaki Thunb.) were cryopreserved by vitrification. These excised shoot tips were dehydrated in a highly concentrated vitrification solution for 20 min at 25°C and then plunged directly into liquid nitrogen. After rapid warming in water at 40°C, the shoot tips were rinsed in a 1.2 M sucrose solution for 20 min and then plated on a solidified culture medium. Successfully vitrified shoot tips resumed growth within 10 days of plating and developed shoots within 3 weeks without intermediary callus formation. This simple protocol was successfully applied to the 16 cultivars found in the temperate zone. The average rate of shoot formation was 89%. Even the subtropical species of Diospyros demonstrated a very high recovery growth when the shoot tips had been previously osmoprotected with a mixture of 2 M glycerol plus 0.4 M sucrose for 20 min following sucrose preculture. Little or no contamination occurred in the cryopreserved shoot tips excised from sterilized winter axillary buds. Thus, this simple and reliable vitrification protocol using dormant shoot tips appears to be promising as a routine method for the long-term conservation of Diospyros germplasm of both temperate and subtropical origins.  相似文献   

4.
. In vitro-grown shoot tips excised from preconditioned stock shoots of 'Troyer' citrange were successfully cryopreserved by encapsulation-dehydration. Optimal survival of cryopreserved shoot tips was achieved when encapsulated shoot tips were dehydrated to 17.1% water content. The sucrose concentration in the preconditioning medium significantly influenced the growth and dry matter percentage of the stock shoots as well as subsequent survival of the cryopreserved shoot tips. Maximal growth of stock shoots was obtained in sucrose concentrations in the range of 0.15 M to 0.29 M, while the dry matter percentage increased as sucrose concentration increased up to 0.44 M. The survival of cryopreserved shoot tips increased from 40% to approximately 80% as the sucrose concentration for stock shoots increased from 0.09 M to 0.22 M or 0.29 M. The benzyladenine concentration in the post-culture medium significantly affected the survival and regrowth of the cryopreserved shoot tips. Survival of the shoot tips was lowest when they were post-cultured on benzyladenine-free medium. However, high benzyladenine concentrations (3-4 µM) induced callus formation. Optimal recovery was obtained in post-culture medium containing 2 µM benzyladenine and 0.05 µM !-naphthalene acetic acid. The extraction of shoot tips from alginate beads greatly improved the regrowth of cryopreserved shoot tips.  相似文献   

5.
Here, we report an efficient and widely applicable method for cryopreservation of Malus shoot tips by encapsulation–dehydration using adventitious shoots. Shoots were induced from leaf segments cultured on a shoot induction medium containing 2–3 mg L?1 thidiazuron, depending on genotype, and 0.5 mg L?1 indole-3-butyric acid. Shoot tips (3 mm in length) containing six leaf primordia excised from 11-wk-old adventitious shoots were encapsulated and precultured with 0.5 M sucrose for 5 d, followed by air-drying for 6 h prior to direct immersion in liquid nitrogen. With our protocol, we obtained a mean organogenesis rate of 100%, a mean of 4.5 adventitious shoots per explant (leaf segment), and a mean shoot recovery of 57.0% from cryopreserved shoot tips in four Malus species. Inter-simple sequence repeat (ISSR) analysis did not reveal any polymorphic bands in regenerants recovered from either leaf segments or cryopreserved shoot tips of ‘Gala’. To the best of our knowledge, this is the first report on cryopreservation of Malus shoot tips using adventitious shoots derived from leaf segments and is the most widely applicable protocol so far reported for cryopreservation of Malus. Establishment of this protocol provides an alternative means for cryopreservation of Malus.  相似文献   

6.
Shoot tips of in vitro-grown plantlets of cassava (Manihot esculenta Crantz), representing a wide range of germplasm, were cryopreserved as follows: pre-cultured for 3 days, cryoprotected and dehydrated for 1 h, then frozen in liquid nitrogen using a six-step protocol. After 3 h in liquid nitrogen, the shoot tips were removed, rapidly warmed, and recultured sequentially in three recovery media. After 2 weeks, the regeneration of frozen shoot tips was completed. Genotypes with a low response were identified. Their response was attributed to the effects of pre and post-freezing steps. Refining the methodology led to a consistent 50–70% plant recovery.Abbreviations DMSO Dimethylsulfoxide - MS Murashige and Skoog medium (1962) - LN liquid nitrogen  相似文献   

7.
Summary The objective of this study was to establish a cryopreservation protocol for sour orange (Citrus aurantium L.). Cryopreservation was carried out via encapsulation-dehydration, vitrification, and encapsulation-vitrification on shoot tips excised from in vitro cultures. Results indicated that a maximum of 83% survival and 47% regrowth of encapsulated-dehydrated and cryopreserved shoot tips was obtained with 0.5M sucrose in the preculture medium and further dehydration for 6 h to attain 18% moisture content. Dehydration of encapsulated shoot tips with silica gel for 2h resulted in 93% survival but only 37% regrowth of cryopreserved shoot tips. After preculturing with 0.5M sucrose, 80% of the vitrified cryopreserved shoots survived when 2M sucrose plus 10% dimethyl sulfoxide (DMSO) was used as a cryoprotectant for 20 min at 25°C. Survival and regrowth of vitrified cryopreserved shoot tips were 67% and 43%, respectively, when 0.4M sucrose plus 2M glycerol was used as a loading solution followed by application of 100% plant vitrification solution (PVS2) for 20 min. Increased duration of exposure to the loading solution up to 60 min increased survival (83%) and regrowth (47%) of cryopreserved shoot tips. With encapsulation-vitrification, dehydration with 100% PVS2 for 2 or 3 h at 0°C resulted in 50 or 57% survival and 30 or 40% regrowth, respectively, of cryopreserved shoot tips.  相似文献   

8.
Hirai D  Sakai A 《Plant cell reports》2003,21(10):961-966
Shoot tips of sweet potato were successfully cryopreserved using an encapsulation vitrification method. Encapsulated shoot tips were pre-incubated in liquid Murashige-Skoog medium containing 30 g/l sucrose for 24 h, then precultured in sucrose-enriched medium (0.3 M sucrose) for 16 h. Shoot tips were osmoprotected with a mixture of 2 M glycerol and 1.6 M sucrose for 3 h before being dehydrated with a highly concentrated vitrification solution (PVS2) for 1 h at 25 degrees C. The encapsulated and dehydrated shoot tips were transferred to a 2 ml cryotube, suspended in 0.5 ml PVS2, and plunged directly into liquid nitrogen. Rapidly warmed shoot tips developed normal shoots and roots in 21 days without any morphological abnormalities after plating on a recovery medium. High levels (average of about 80%) of shoot formation were obtained for three cultivars of sweet potato. This encapsulation vitrification method appears promising for cryopreservation of sweet potato germplasm.  相似文献   

9.
A study was conducted to elucidate the effect of N form, either NH4 + or NO3 , on growth and solute composition of the salt-tolerant kallar grass [Leptochloa fusca (L.) Kunth] grown under 10 mM or 100 mM NaCl in hydroponics. Shoot biomass was not affected by N form, whereas NH4 + compared to NO3 nutrition caused an almost 4-fold reduction in the root biomass at both salinity levels. Under NH4 + nutrition, salinity had no effect on the biomass yield, whereas under NO3 nutrition, increasing salinity from 10 mM to 100 mM caused 23% and 36% reduction in the root and shoot biomass, respectively. The reduced root growth under NH4 + nutrition was not attributable to impaired shoot to root C allocation since N form did not affect the overall root sugar concentration and the starch concentration was even higher under NH4 + compared to NO3 nutrition. The low NH4 + (2 mM) and generally higher amino-N concentrations in NH4 +- compared to NO3 -fed plants indicated that the grass was able to effectively detoxify NH4 +. Salinity had no effect on Ca2+ and Mg2+ levels, whereas their concentration in shoots was lower under NH4 + compared to NO3 nutrition (over 66% reduction in Ca2+; over 20% reduction in Mg2+), but without showing deficiency symptoms. Ammonium compared to NO3 nutrition did not inhibit K+ uptake, and the K+-Na+ selectivity either remained unaffected or it was higher under NH4 + than under NO3 nutrition. Results suggested that while NH4 + versus NO3 nutrition substantially reduced root growth, and also strongly modified anion concentrations and to a minor extent concentrations of divalent cations in shoots, it did not influence salt tolerance of kallar grass.  相似文献   

10.
Summary A method was developed for plant regeneration from alginate-encapsulated shoot tips of Phyllanthus amarus. Shoot tips excised from in vitro proliferated shoots were encapsulated in calcium alginate beads. The best gel complexation was achieved using 3% sodium alginate and 75 mM CaCl2·2H2O. Maximum percentage response for conversion of encapsulated shoot tips into plantlets was 90% after 5 wk of culture on Murashige and Skoog (MS) medium without plant growth regulator. The regrowth ability of encapsulated shoot tips was affected by the concentration of sodium alginate, storage duration, and the presence or absence of MS nutrients in calcium alginate beads. Plantlets with well-developed shoot and roots were transferred to pots containing an autoclaved mixture of soilrite and peat moss (1∶1). The conversion of encapsulated shoot tips into plantlets also occurred when calcium alginate beads were directly sown in autoclaved soilrite moistened with 1/4-MS salts. Encapsulation of vegetative propagules in calcium alginate beads can be used as an alternative to synthetic seeds derived from somatic embryos.  相似文献   

11.
Propagation of banana through encapsulated shoot tips   总被引:4,自引:0,他引:4  
Plants were regenerated from encapsulated shoot tips of banana. Shoot tips (ca 4 mm) isolated from multiple shoot cultures of banana cv. Basrai were encapsulated in 3% sodium alginate containing different gel matrices. The encapsulated shoot tips regenerated in vitro on different substrates. Use of White's medium resulted in 100% conversion of encapsulated shoot tips into plantlets. The plantlets were successfully established in soil.Abbreviations BA Benzylaminopurine - NAA Naphthalene acetic acid - DMSO Dimethyl sulphoxide  相似文献   

12.
Nitrogen is a major driver of plant growth and the nitrogen source can be critical to good growth in vitro. A response surface methodology mixture-component design and a data mining algorithm were applied to nitrogen (N) nutrition for improving the micropropagation of Prunus armeniaca Lam. Data taken on shoot cultures included a subjective quality rating, shoot number, shoot length, leaf characteristics and physiological disorders. Data were analyzed using the Classification and Regression Tree data mining algorithm. The best overall shoot quality as well as leaf color were on medium with NO3??>?25 mM and NH4+/Ca+ >?0.8. Improving shoot length to15 mm required 25?<?NO3? ≤?35 mM with NH4+/Ca2+ ≤?2.33. The most shoots (11.6) were produced with NO3? >?25 mM and NH4+/Ca2+ ≤ 0.8, but there were 5–10 shoots at other NO3? concentrations regardless of NH4+/Ca2+ proportion. Leaves increased in size with higher NO3? concentrations (>?55 mM). Physiological disorders were also influenced by the nitrogen components. Shoot tip necrosis was rarely present with NO3? > 45 mM. Callus production decreased somewhat with NH4+/Ca2+ >?2.33. Suggested concentrations for an improved medium considering all of these growth characteristics would be 25?<?NO3? ≤?35 mM and NH4+/Ca+ ≤ 0.8. Validation experiments comparing WPM and three trial media showed improvements in several shoot growth parameters on medium with optimized mesos and optimized nitrogen components.  相似文献   

13.
Shoot tips obtained from in vitro Rosa plants (three cultivars) were successfully cryopreserved by a combined droplet vitrification method and subsequently shoots regenerated. The excised shoot tips (1–4 mm long) were incubated in a liquid MS medium supplemented with 2.5 mg l−1 thiamine, 0.2 mg l−1 biotin, 0.2 mg l−1 pyridoxine, 0.25 mg l−1 6-benzylaminopurine (BAP), 0.5 mg l−1 gibberellic acid (GA3) and 0.08 M sucrose, for 24 h. Following that incubation shoot tips were pre-cultured in this MS medium containing 0.1 till 1.0 M sucrose for 24 and 48 h, respectively. Pre-cultured shoot tips were dehydrated with concentrated PVS2 cryoprotective solution for 10–30 min at room temperature, prior to a direct plunge in liquid nitrogen. After rapid rewarming in the above mentioned liquid medium shoot tips were plated on a modified MS medium (5 g l−1 agar) supplemented with vitamins and plant growth regulators as mentioned above for regrowth. Cryopreserved shoot tips resumed growth within 10 days and regenerated shoots within 3 weeks. The highest numbers of regrowing shoot tips were 64.44% for cv. Kardinal, 67.73% for cv. Fairy and 57.57% for cv. Maidy.  相似文献   

14.
Shoot tips of Amembranaceus excised from in vitro grown axillary bud were encapsulated in calcium alginate beads. Subsequently, shoot tips were precultured in liquid MS medium enriched with 075mol·L-1 sucrose for 5d at 25℃ and then desiccated aseptically on dried silica gel for 5h to a water content of 231% (fresh weight basis) prior to immersion in liquid nitrogen (LN) for 1d. After rewarming at a 40℃ water bath for 2-3min and transferred to solid culture medium for shoot tip recovery. About 50% of cryopreserved shoot tips grew into shoots within 2 weeks after plating. Cryopreservation of Astragalus membranaceus (Fisch.) Bge. shoot tips by encapsulation vitrification has also been developed. Excised shoot tips were firstly encapsulated into alginate gel beads and then precultured in liquid MS medium containing 1mg·L-1 6 BA, 005mg·L-1 NAA and 075mol·L-1 sucrose at 25℃ for 3d. After loading for 90min with a mixture of 2mol·L-1 glycerol and 04mol·L-1 sucrose at 25℃, shoot tips were dehydrated with PVS2 for 120min at 0℃ prior to direct immersion in liquid nitrogen for 1d. After rapidly thawing at a 37℃ water bath for 2-3min, shoot tips were washed for 10min with liquid MS medium supplemented with 1mg·L-1 6 BA, 005mg·L-1 NAA and 12mol·L-1 sucrose at 25℃ and then post cultured on solid MS medium supplemented with 2mg·L-1 6 BA, 005mg·L-1 NAA. The regeneration rate of shoot tips amounted to nearly 80%. Both of plantlets regenerated from cryopreserved shoot tips were morphologically uniform, which both showed as that of control plants. Thus, this encapsulation dehydration and encapsulation vitrification technique appears promising as a routine method for the cryopreservation of shoot tips of Amembranaceus.  相似文献   

15.
An efficient and broad-spectrum protocol for cryopreservation of Vitis spp. shoot tips by droplet-vitrification is reported. Shoot tips (1.0 mm) containing 5–6 leaf primordia (LPs) were precultured for 3 d with a preculture medium containing 0.3 M sucrose, 0.16 μM glutathione, and 0.14 μM ascorbic acid. Precultured shoot tips were treated for 20 min at 24°C with a loading solution composed of 2 M glycerol and 0.4 M sucrose, followed by exposure at 0°C to half-strength plant vitrification solution 2 (PVS2) for 30 min, and then full-strength PVS2 for 50 min. Dehydrated shoot tips were transferred into 2.5-μL PVS2 carried on aluminum foil, prior to a direct immersion in liquid nitrogen. With this method, an average shoot regrowth level of 50.5% was obtained from cryopreserved shoot tips in six V. vinifera genotypes (three wine cultivars, two table cultivars, and one rootstock) and two V. pseudoreticulata genotypes. Vegetative growth of the regenerants recovered from cryopreservation, significantly increased as the number of subculture cycles increased and was greater than the control after the third subculture following cryopreservation. Inter-simple sequence repeats (ISSR) and random amplification of polymorphic DNA (RAPD) analyses did not detect any polymorphic loci in the plants of V. vinifera L. cv. ‘Cabernet Sauvignon’ from cryopreserved shoot tips compared to the original cultures. This droplet-vitrification cryopreservation method provides a technical platform to set up cryobanks of Vitis spp.  相似文献   

16.
The effect of various basal salts media, containing different nitrogen levels on in vitro adventitious shoot regeneration from leaf explants of Louise Bonne Panachee and Seckel pear (Pyrus communis L.) were investigated. Among the different basal salt formulae tested, Nitsch (1969) gave significantly better regeneration in most of the experiments. Shoot regeneration was altered with different NH4 +-N/NO3 -N ratios. The best regeneration was obtained when NH4 +:NO3 was either 1:2 or 1:3 regardless of overall N concentration. In addition, these data show that NH4 + was essential for adventitious shoot regeneration from pear leaf explants on White's (1943) medium.  相似文献   

17.
Alginate beads containing axillary buds of in vitro-grown gentian (Gentiana scabra Bunge var. buergeri Maxim.), were successfully cryopreserved following 2 step-preculture with sucrose and desiccation. The optimal preculture conditions were as follows: axillary buds were excised from in vitro-grown gentian plants and precultured on semi-solid Murashige and Skoog (MS) medium containing 0.1 M sucrose for 10 days (25 °C, 16-h photoperiod) (first step). This was followed by incubation on semi-solid MS media containing 0.4 M (1 day) and then 0.7 M sucrose (1 day) (second step). After preculture, the buds were encapsulated in alginate beads and desiccated aseptically on silica gel for 9 h to a water content of 10% (fresh weight basis), followed by immersion in liquid nitrogen (LN). With this protocol, 87% of the gentian buds survived exposure to LN and showed normal development of shoots and roots in vitro and in vivo. Depletion of NH4NO3 in the regeneration medium did not improve survival following desiccation and exposure to LN. The results show that 2 step-preculture with sucrose is effectively applicable in encapsulation–desiccation based cryopreservation of gentian axillary buds. This preculture can replace the conventionally used lengthy cold-hardening treatment and is useful for routine cryopreservation of gentian germplasm.  相似文献   

18.
In vitro-grown shoot tips of Emmenopterys henryi Oliv. were successfully cryopreserved by vitrification. Shoot tips excised from 3-month old plantlets were precultured in a liquid hormone-free Murashige and Skoog (MS) medium supplemented with 0.5 M sucrose for 3 days at 25°C and then treated with a mixture of 2 M glycerol plus 0.4 M sucrose (LS solution) for 40 min at 25°C. Osmo-protected shoot tips were first dehydrated with 60% vitrification solution (PVS2) for 30 min at 0°C and followed by 100% PVS2 for 40 min at 0°C. After changing the solution with fresh 100% PVS2, the shoot tips were directly plunged into liquid nitrogen. After rapid warming in a water-bath at 40°C for 2 min, the shoot tips were washed for 20 min at 25°C with liquid MS medium containing 1.2 M sucrose and then transferred onto solid MS medium supplemented with kinetin 2 mg l−1, α-naphthaleneacetic acid 0.1 mg l−1, 3% (w/v) sucrose and 0.75% (w/v) agar. The shoot tips were kept in the dark for 7 days prior to exposure to the light (12 h photoperiod cycle). Direct shoot elongation was observed in approximately 12 days. The regeneration rate was approximately 75–85%. This method appears to be a promising technique for cryopreserving shoot tips of Emmenopterys henryi Oliv. germplasm.  相似文献   

19.
Supplying both N forms (NH4 ++NO3 ) to the maize (Zea mays L.) plant can optimize productivity by enhancing reproductive development. However, the physiological factors responsible for this enhancement have not been elucidated, and may include the supply of cytokinin, a growth-regulating substance. Therefore, field and gravel hydroponic studies were conducted to examine the effect of N form (NH4 ++NO3 versus predominantly NO3 ) and exogenous cytokinin treatment (six foliar applications of 22 μM 6-benzylaminopurine (BAP) during vegetative growth versus untreated) on productivity and yield of maize. For untreated plants, NH4 ++NO3 nutrition increased grain yield by 11% and whole shoot N content by 6% compared with predominantly NO3 . Cytokinin application to NO3 -grown field plants increased grain yield to that of NH4 ++NO3 -grown plants, which was the result of enhanced dry matter partitioning to the grain and decreased kernel abortion. Likewise, hydroponically grown maize supplied with NH4 ++NO3 doubled anthesis earshoot weight, and enhanced the partitioning of dry matter to the shoot. NH4 ++NO3 nutrition also increased earshoot N content by 200%, and whole shoot N accumulation by 25%. During vegetative growth, NH4 ++NO3 plants had higher concentrations of endogenous cytokinins zeatin and zeatin riboside in root tips than NO3 -grown plants. Based on these data, we suggest that the enhanced earshoot and grain production of plants supplied with NH4 ++NO3 may be partly associated with an increased endogenous cytokinin supply.  相似文献   

20.
Shoot tips excised from in vitro proliferated shoots derived from nodal explants of jojoba [Simmondsia chinensis (Link) Schneider] were encapsulated in calcium alginate beads for germplasm exchange and distribution. A gelling matrix of 3 % sodium alginate and 100 mM calcium chloride was found most suitable for formation of ideal calcium alginate beads. Best response for shoot sprouting from encapsulated shoot tips was recorded on 0.8 % agar-solidified full-strength MS medium. Rooting was induced upon transfer of sprouted shoots to 0.8 % agar-solidified MS medium containing 1 mg l−1 IBA. About 70 % of encapsulated shoot tips were rooted and converted into plantlets. Plants regenerated from encapsulated shoot tips were acclimatized successfully. The present encapsulation approach could also be applied as an alternative method of propagation of desirable elite genotype of jojoba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号