首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 795 毫秒
1.
We estimated the outcrossing rates at small-scale flowering sites of an endemic dwarf bamboo species, Sasa cernua. The multi-locus estimation of the outcrossing rate of the dwarf bamboo population was 0.148 (SD 0.118). Two culms with the highest outcrossing rates had heterozygous genotypes at one locus, but other culms in the locus were homozygotes. Five culms with high outcrossing rates bore 2–17% seeds with homozygous genotypes. Due to predominant selfing, the overall inbreeding coefficient of seeds was high, although it declined in seedlings. This suggests that selection against inbred progenies began early in the establishment process in the natural habitat.  相似文献   

2.
Ten polymorphic microsatellite markers were isolated from the dwarf bamboo species Sasa cernua and Sasa kurilensis. The applicability of these markers was confirmed by genotyping of open‐pollinated seeds and leaf samples from natural populations. Genotypes of seeds from each culm shared at least one allele from the maternal parent without contradiction. All 10 loci were polymorphic in S. cernua with 2–15 alleles (average HE = 0.532). Eight loci were polymorphic in S. kurilensis with 2–10 alleles (average HE = 0.532). These markers will be useful in detailing the extent of clonal and sexual reproduction in these species.  相似文献   

3.
  • The reproductive characteristics of understory bamboo and the effects of dieback on overstory tree seedlings through temporal changes in the environment at the forest floor have only been examined in a few bamboo species, due to the unpredictable occurrence of flowering events and long intervals between them but provide valuable information on tree regeneration and succession in a forest with dense dwarf bamboo cover.
  • We investigated environmental conditions and assessed seedlings (< 30-cm tall) of the dwarf bamboo Sasa borealis and overstory tree species at 44–50 measurement points during 2016–2021, which included a S. borealis mass flowering event in 2017. We also conducted seed germination tests to determine germination rates and patterns in S. borealis. Environmental factors affecting seedling recruitment of S. borealis and of overstory trees were analysed using spatiotemporal generalized linear mixed models in the Bayesian framework.
  • We observed gradual temporal changes in the environment, including increasing canopy openness and decreasing maximum height of dead S. borealis culms. The seeds germinated slowly and the emergence of current-year S. borealis seedlings peaked in spring–summer in 2019. The tree seedling density after 2019 increased significantly compared to that before the dieback. The model results suggest that tree seedling establishment was enhanced by increased light availability.
  • Continuous field observation beginning before S. borealis dieback revealed gradually enhanced tree recruitment in response to slow decay of the remaining dead culms and slow recovery of S. borealis. The seedling regeneration pattern of understory bamboo partly contributes to a prolonged opportunity for overstory tree regeneration.
  相似文献   

4.
Abundant, codominant simple sequence repeats (SSRs) markers can be used for constructing genetic linkage maps and in marker-assisted breeding programs. Enrichment methods for SSR motifs were optimized with the ultimate aim of developing numerous loci in flowering dogwood (C. florida L.) genome. Small insert libraries using four motifs (GT, CT, TGG, and AAC) were constructed with C. florida ‘Cherokee Brave’ deoxyribonucleic acid (DNA). Colony polymerase chain reaction (PCR) of 2,208 selected clones with three primers we reported previously indicated that 47% or 1,034 of the clones harbored one of the four targeted SSR motifs. Sequencing the putative positive clones confirmed that nearly 99% (1,021 of 1,034) of them contained the desired motifs. Of the 871 unique SSR loci, 617 were dinucleotide repeats (70.8%), and 254 were trinucleotide or longer repeats (29.2%). In total, 379 SSR loci had perfect structure, 237 had interrupted, and 255 had compound structure. Primer pairs were designed from 351 unique sequences. The ability of the 351 SSR primer pairs to amplify specific loci was evaluated with genomic DNA of ‘Appalachian Spring’ and ‘Cherokee Brave’. Of these primers, 311 successfully amplified product(s) with ‘Cherokee Brave’ DNA, 21 produced weak or faint products, and 19 did not amplify any products. Additionally, 218 of the 311 primers pairs revealed polymorphisms between the two cultivars, and 20 out of 218 primers detected an average of 13.7 alleles from 38 selected Cornus species and hybrids. These SSR loci constitute a valuable resource of ideal markers for both genetic linkage mapping and gene tagging of flowering dogwood. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Successful regeneration of bamboos from seed is a key issue in the ecology of many tropical regions and the livelihoods of their inhabitants. The gregarious monocarpy of many bamboos may be driven by a need to satiate seed predators by seeding in abundance at infrequent intervals. In long‐lived clonal monocarps, seed production is expected to be positively related to the success of the clone in generating more and larger ramets during its lifetime. Ramification may be constrained by harvesting of culms, but it is unclear whether the reduction in productivity is proportional to the loss of reproductive biomass. We counted the seed produced by 661 culms (ramet stems) sampled from 90 clumps of the gregariously monocarpic bamboo Schizostachyum dullooa that is intensively harvested by villagers in northeastern India. The smallest clumps had fewer culms and few or no culms more than one year old. Seed production was indeed positively related to culm size and the number of culms in a clump. First‐year culms were markedly more productive than older culms after controlling for culm diameter and clump size. There was a negative effect of clump size on productivity per culm which may occur because clumps that had been harvested heavily were able to exploit resources retained in rhizomes from harvested culms. Nevertheless, small clumps produced much less seed than larger clumps, generating a risk of unknown magnitude that heavily harvested stands of monocarpic bamboos may be unable to satiate seed predators during their single opportunity for reproduction.  相似文献   

6.
Recently, a dwarf bamboo species,Sasa kurilensis; Poaceae, has invaded into alpine snow-meadows in the wilderness area of the Taisetsu Mountains, northern Japan. This dwarf bamboo species has a wide distribution range from lowland to alpine sites of snowy regions. Because of the formation of dense evergreen culms and an extensive rhizome system, other plants are excluded following invasion by this dwarf bamboo, resulting in low species diversity. Dwarf bamboo originally inhabited the leeward slopes of alpine dwarf pine (Pinus pumila) clumps in alpine regions. During the last 32 years, however, dwarf bamboo has expanded its distribution area by up to 47% toward snow-meadows, especially on southeastern facing slopes. This rapid change may be related to the decrease in soil moisture and expansion of the annual growing period caused by the recent acceleration of snowmelt time. A multiyear census revealed that the density of bamboo culms increased 30-150% during 2 years, and the annual expansion of bamboo rhizomes was 39 cm on average. In addition to the expansion of bamboo clumps by vegetative growth, the possibility of migration by seed dispersal was also suggested by a genet analysis. With the increase in culm density, the species richness of snow-meadow vegetation decreased to less than one-quarter of the original level due to intense shading by dwarf bamboo. The rapid vegetation change in these almost pristine alpine environments isolated from the human activity implies that global climate change already influences the alpine ecosystem.  相似文献   

7.
Dwarf bamboos in the genus Sasa are believed to be long-lived, synchronously flowering, and monocarpic plants. However, the monocarpy of dwarf bamboo has not been confirmed, because whether all ramets within one genet flower at the same time cannot be determined without differentiating the genetic structure among ramets. This study aims to evaluate the reproductive traits of Sasa pubiculmis by verifying the monocarpy and physiological integration between flowering ramets and non-flowering ramets during a 4-year flowering period. One genotypically identified genet, which covered an area of approximately 3 ha, had both flowering and non-flowering patches of ramets during the 4-year flowering period (2004–2007). A fraction of the flowering genet remained non-flowering during the 4 years of observation, and did not die after mass flowering. Flowering ramets were physically connected to non-flowering ramets via rhizomes, and assimilated 13C was allocated from non-flowering ramets to flowering ramets. Consequently, we clarified that this dwarf bamboo potentially has polycarpic reproductive traits rather than monocarpic, and a genet can keep rhizomes and non-flowering patches alive to sustain the organism after mass flowering.  相似文献   

8.
Public sequence databases provide a rapid, simple and cost-effective source of microsatellite markers. We analyzed 1,532 bamboo (Phyllostachys pubescens) sequences available in public domain DNA databases, and found 3,241 simple sequence repeat (SSR) loci comprising repeats of two or more nucleotides in 920 genomic survey sequences (GSSs) and 68 cDNA sequences. This corresponded to one SSR per 336 bp of GSS DNA and one SSR per 363 bp of cDNA. The SSRs consisted of 76.6 and 74.5% dinucleotide repeats, 20.0 and 22.3% trinucleotide repeats, and 3.4 and 3.2% higher-number repeats in the GSS DNA and cDNA sequences, respectively. The repeat motif AG/CT (or GA/TC) was the most abundant. Nineteen microsatellite markers were developed from Class I and Class II SSRs, showing that the limited polymorphism in Ph. pubescens cultivars and provenances could be attributed to clonal propagation of the bamboo plant. The transferability of the microsatellites reached 75.3%, and the polymorphism of loci successfully transferred was 66.7% for six additional Phyllostachys species. Microsatellite PBM014 transferred successfully to all six species, showed rich polymorphism, and could serve as species-specific alleles for the identification of Phyllostachys interspecies hybrids.  相似文献   

9.
Bamboos are typical examples of highly synchronized semelparous species. Their mass-flowering events occur at supra-annual intervals but they sometimes flower on a small scale in off-years. If some bamboo ramets (culms) of a genet flower and die in off-years, whereas other culms of the same genet do not flower synchronously, the genet can still survive blooming in an off-year and could participate in the next mass-flowering event. At genet level, the effect might be similar to that achieved by synchronously reproducing iteroparous plants. In addition, if multiple genets flower simultaneously in off-years, cross-pollination will be promoted. However, it is not known whether all the culms in a genet flower synchronously and whether multiple genets flower in off-years. We determined the clonal structure of three temperate dwarf bamboo species, i.e., Sasa senanensis, S. kurilensis, and S. palmata, at 24 off-year flowering sites and the surrounding areas in northern Japan using seven microsatellite markers. We also estimated seed set at seven of the sites and self-pollination rates at five sites to determine off-year reproductive success. Next, we investigated whether seed sets at the culm level were related to flowering area and/or number of flowering genets, using generalized linear mixed-effect models (GLMMs). Multiple genets flowered at 9/24 flowering sites. We found that 40/96 of the genets identified had some flowering culms. Non-flowering culms were present in 24/40 flowering genets. Seed set was in the range 2.2%–12.5% and the self-pollination rate was 96.3%. In the best GLMM, seed set increased with flowering area. Seeds were produced in off-years, but cross-pollination was rare in off-years. We suggest that some dwarf bamboos may exhibit iteroparity or imperfectly synchronized semelparity at the genet level, a characteristic similar to that of other reproductively synchronous plants. We also found synchronous flowering of a few genets even in off-years.  相似文献   

10.
Sasa borealis, a monocarpic species of dwarf bamboo, is widely distributed throughout Korea. It dominates forest floors, thereby inhibiting mainly the biodiversity. Although it flowers very rarely, examples have recently been observed in multiple locations, providing a good opportunity to study reproduction phenomena, and to aid in biodiversity restoration. Therefore, we investigated the nationwide timing of flowering events by using data collected from a social network service (SNS). We also more closely examined flowering and decline event, focusing at the patch and culm levels on Mt. Jeombong. We then analyzed the main factors affecting flowering. Our SNS and survey results showed that S. borealis is in a current flowering cycle that started in 2013 and continues to the present (83% of all events happening within this period) with a peak in 2015 (48% of the cases occurring in that year). This clearly demonstrated nationwide, synchronized, and massive flowering. Although the culm density in patches was not related to flowering, patches with large culms tended to flower (F = 8.241, p = 0.01). We suspected that this nationwide flowering event was triggered by prolonged drought during the spring months of 2014 and 2015 (F = 5.207, p < 0.05), which led to concurrent, massive flowering in patches mature enough to do so. Because this species prefers a wet habitat, we concluded that severe, prolonged drought induced environmental stress for those plants. After flowering, culms in those particular patches tended to die off within one year. This large-scale synchronized decline should have an enormous effect on the vegetation dynamics of a forest dominated and suppressed by Sasa. Future investigations might incorporate methods of ecological control and manipulation to increase biodiversity there.  相似文献   

11.
12.
A set of expressed sequence tag–simple sequence repeat (EST‐SSR) loci has been developed for Arabidopsis lyrata ssp. petraea. From 768 root cDNA clones, 126 microsatellites, including di‐, tri‐, tetra‐ and pentanucleotide repeat motifs were identified and primers were designed to 24 EST‐SSRs. Eleven loci were subsequently screened on 150 individuals sampled from five natural populations, which revealed three to nine alleles per locus (mean 5.36) and expected heterozygosity (HE) estimates ranging from 0.046 to 0.698. Significant deviations from random mating were observed at 10 EST‐SSR loci, likely due to inbreeding (global FIS = 0.151) and population structure (global FST = 0.246).  相似文献   

13.
An Illumina Infinium array comprising 5306 single nucleotide polymorphism (SNP) markers was used to genotype 175 individuals of a doubled haploid population derived from a cross between Skipton and Ag‐Spectrum, two Australian cultivars of rapeseed (Brassica napus L.). A genetic linkage map based on 613 SNP and 228 non‐SNP (DArT, SSR, SRAP and candidate gene markers) covering 2514.8 cM was constructed and further utilized to identify loci associated with flowering time and resistance to blackleg, a disease caused by the fungus Leptosphaeria maculans. Comparison between genetic map positions of SNP markers and the sequenced Brassica rapa (A) and Brassica oleracea (C) genome scaffolds showed several genomic rearrangements in the B. napus genome. A major locus controlling resistance to L. maculans was identified at both seedling and adult plant stages on chromosome A07. QTL analyses revealed that up to 40.2% of genetic variation for flowering time was accounted for by loci having quantitative effects. Comparative mapping showed Arabidopsis and Brassica flowering genes such as Phytochrome A/D, Flowering Locus C and agamous‐Like MADS box gene AGL1 map within marker intervals associated with flowering time in a DH population from Skipton/Ag‐Spectrum. Genomic regions associated with flowering time and resistance to L. maculans had several SNP markers mapped within 10 cM. Our results suggest that SNP markers will be suitable for various applications such as trait introgression, comparative mapping and high‐resolution mapping of loci in B. napus.  相似文献   

14.
The genetic diversity of protozoa in Surti buffalo rumen was studied by amplified ribosomal DNA restriction analysis, 18S rDNA sequence homology and phylogenetic and Real-time PCR analysis methods. Three animals were fed diet comprised green fodder Napier bajra 21 (Pennisetum purpureum), mature pasture grass (Dicanthium annulatum) and concentrate mixture (20% crude protein, 65% total digestible nutrients). A protozoa-specific primer (P-SSU-342f) and a eukarya-specific primer (Medlin B) were used to amplify a 1,360 bp fragment of DNA encoding protozoal small subunit (SSU) ribosomal RNA from rumen fluid. A total of 91 clones were examined and identified 14 different 18S RNA sequences based on PCR–RFLP pattern. These 14 phylotypes were distributed into four genera-based 18S rDNA database sequences and identified as Dasytricha (57 clones), Isotricha (14 clones), Ostracodinium (11 clones) and Polyplastron (9 clones). Phylogenetic analyses were also used to infer the makeup of protozoa communities in the rumen of Surti buffalo. Out of 14 sequences, 8 sequences (69 clones) clustered with the Dasytricha ruminantium-like clone and 4 sequences (13 clones) were also phylogenetically placed with the Isotricha prostoma-like clone. Moreover, 2 phylotypes (9 clones) were related to Polyplastron multivesiculatum-like clone. In addition, the number of 18S rDNA gene copies of Dasytricha ruminantium (0.05% to ciliate protozoa) was higher than Entodinium sp. (2.0 × 105 vs. 1.3 × 104) in per ml ruminal fluid.  相似文献   

15.
Aim (1) To describe the spatio‐temporal patterns of mass‐flowering and die‐off in a long‐lived, semelparous, clumping bamboo, Bambusa arnhemica, at landscape and local scales. (2) To discuss causal processes in the flowering patterns of semelparous bamboos. Location The entire range of B. arnhemica, in the monsoonal, tropical, north‐west of the Northern Territory of Australia, mostly along watercourses. Methods Landscape‐scale flowering patterns were assessed by a combination of air, boat and ground survey in each year from 2000 to 2002. Areas that flowered prior to 2000, and those in which no flowering occurred, were also recorded, and historic records collated. At local scales, initiation of flowering, rates of die‐off, and subsequent germination densities of seedlings were quantified by ground‐based counts. Results After an estimated 40–50 years of vegetative development, B. arnhemica flowered, seeded prolifically, then died. Flowering occurred synchronously within patches ranging from 0.002 to 3200 km2. One or more patches flowered in successive years from 1996 to 2002, forming a temporally‐structured but spatially‐chaotic flowering wave that affected c. 80% of the population. Synchronous flowering took the form of a flowering distribution in which over 95% of clumps within a patch initiated flowering in a central year, most of the remainder flowering the year before or after. Along the Daly River, an exception was observed in which 56% of clumps flowered in the peak year. Seedling densities were three orders of magnitude greater under clumps that flowered in the central rather than the leading year of the flowering distribution. Main conclusions Synchrony is argued to be the primal state in semelparous bamboos, promoted by intense selection acting on a endogenous (genetic or biological) clock whose influence largely overrides that of the environment. A flowering wave may develop within an initially synchronous population when stochastic events interact with the biological clock without permanently altering the clock setting, producing an off‐set patch. Off‐set groups may only survive if sufficient individuals are off‐set by the same amount at the same time and in the same vicinity so as to produce a new synchronously‐flowering patch. This could be driven by two processes. Inter‐year climatic variation may alter the biological clock's perception of time, producing off‐sets at local or regional scales or even affecting entire populations. Severe environmental pressures may also force one‐off changes to flowering schedules, as suggested by a severe flood event prior to flowering on the Daly River. A dynamic hypothesis for a wider range of bamboo flowering patterns is proposed in which synchronous flowering is fragmented and disrupted over time but renewed by allochronic speciation and dispersal.  相似文献   

16.
17.
Sasa senanensis is a dwarf bamboo species distributed on the floors of cool temperate forests in Japan and adjacent regions. We isolated eight polymorphic microsatellite loci from this species. The number of alleles ranged from two to eight and the observed heterozygosity per locus from 0.13 to 0.74. Seven of the eight loci were also polymorphic in Sasa nipponica. Most of these markers were successfully amplified in other dwarf bamboo species. These markers will be useful for investigating clonal structure and population genetics in some dwarf bamboo species.  相似文献   

18.
Two foliar applications of gibberellic acid (GA3, 250 mg l–1) enhanced the flowering in various clones of Papaver bracteatum. The most pronounced effects were obtained in late flowering clones in which GA3 increased significantly the number and weight of the capsules and thebaine yield per plant.Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No. 1267-E, 1984 series.  相似文献   

19.
20.
A Hordeum bulbosum L. (Poaceae) clone A17 was identified, which showed complete resistance to Barley yellow dwarf virus (BYDV) and Cereal yellow dwarf virus (CYDV). It was not possible to infect plants of A17 with BYDV‐PAV, ‐MAV, or with CYDV‐RPV by the aphid vectors Rhopalosiphum padi (L.) or Sitobion avenae (Fabricius) (both Hemiptera: Aphididae). Plants of the A17 clone and of the BYDV‐susceptible H. bulbosum clone A21 revealed some resistance to R. padi compared to the susceptible winter barley cultivar Rubina [Hordeum vulgare L. (Poaceae)]. The development time to the imago was longer and the number of nymphs was reduced on both clones compared with cv. Rubina. The probing and feeding behaviour of R. padi on plants of the H. bulbosum clones was studied over 12 h and compared with that on plants of the barley cv. Rubina. Principal component analysis of the results of the feeding behaviour revealed a clear separation of the H. bulbosum genotypes from Rubina. On H. bulbosum the number of penetrations was higher but total feeding time was shorter. Significant differences were mainly found in the phloem feeding parameters for plants of both clones in comparison to Rubina, with the virus resistant A17 clone having the strongest effect and the susceptible A21 clone being intermediate. Most significant differences were found in parameters of the phloem salivation phase. On A17, an average of less than one (0.9) E1 phase per plant was observed (3.3 on A21 and 5.7 on Rubina) and its duration was reduced to less than 1 min (0.9 min) in comparison to 2.4 min on A21 and 5.7 min on Rubina. Also, the phloem feeding (E2) phase was clearly reduced on A17 plants with 0.5 E2 phases per test and a mean duration of 1.1 min in contrast with 2.9 and 3.5 E2 phases per test and 34.1 and 421.3 min for A21 and Rubina, respectively. These results point towards a phloem‐localized factor for aphid resistance in H. bulbosum, i.e., on A17 plants the phloem salivation time is too short for a successful infection by BYDV leading to vector resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号