首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The protein-tyrosine phosphatase SHP-2 modulates signaling events through receptor tyrosine kinases and cytokine receptors including the receptor for prolactin (PRLR). Here we investigated mechanisms of SHP-2 recruitment within the PRLR signaling complex. Using SHP-2 and PRLR immunoprecipitation studies in 293 cells and in the mouse mammary epithelial cell line HC11, we found that SHP-2 co-immunoprecipitates with the PRLR and that the C-terminal tyrosine of the PRLR plays a regulatory role in both the tyrosine phosphorylation and the recruitment of SHP-2. Our results further indicate that SHP-2 association to the PRLR occurs via the C-terminal SH2 domain of the phosphatase. In addition, we determined that the newly identified adaptor protein Gab2, but not Gab1, is specifically tyrosine phosphorylated and is able to recruit SHP-2 and phosphatidyinositol 3-kinase in response to PRLR activation. Together, these studies suggest the presence of dual recruitment sites for SHP-2; the first is to the C-terminal tyrosine of the PRLR and the second is to the adaptor protein Gab2.  相似文献   

2.
Recent studies have shown that, in addition to its role as an adhesion receptor, platelet endothelial cell adhesion molecule 1/CD31 becomes phosphorylated on tyrosine residues Y663 and Y686 and associates with protein tyrosine phosphatases SHP-1 and SHP-2. In this study, we screened for additional proteins which associate with phosphorylated platelet endothelial cell adhesion molecule 1, using surface plasmon resonance. We found that, besides SHP-1 and SHP-2, platelet endothelial cell adhesion molecule 1 binds the cytoplasmic signalling proteins SHIP and PLC-gamma1 via their Src homology 2 domains. Using two phosphopeptides, NSDVQpY663TEVQV and DTETVpY686SEVRK, we demonstrate differential binding of SHP-1, SHP-2, SHIP and PLC-gamma1. All four cytoplasmic signalling proteins directly associate with cellular platelet endothelial cell adhesion molecule 1, immunoprecipitated from pervanadate-stimulated THP-1 cells. These results suggest that overlapping immunoreceptor tyrosine-based inhibition motif/immunoreceptor tyrosine-based activation motif-like motifs within platelet endothelial cell adhesion molecule 1 mediate differential interactions between the Src homology 2 containing signalling proteins SHP-1, SHP-2, SHIP and PLC-gamma1.  相似文献   

3.
p97/Gab2 is a recently characterized member of a large family of scaffold proteins that play essential roles in signal transduction. Gab2 becomes tyrosine-phosphorylated in response to a variety of growth factors and forms multimolecular complexes with SH2 domain-containing signaling molecules such as the p85-regulatory subunit of the phosphoinositide-3-kinase (p85-PI3K), the tyrosine phosphatase SHP-2 and the adapter protein CrkL. To characterize the interactions between Gab2 and its SH2-containing binding partners, we designed a modified yeast two-hybrid system in which the Lyn tyrosine kinase is expressed in a regulated manner in yeast. Using this assay, we demonstrated that p97/Gab2 specifically interacts with the SH2 domains of PI3K, SHP-2 and CrkL. Interaction with p85-PI3K is mediated by tyrosine residues Y452, Y476 and Y584 of Gab2, while interaction with SHP-2 depends exclusively on tyrosine Y614. CrkL interaction is mediated by its SH2 domain recognizing Y266 and Y293, despite the latter being in a non-consensus (YTFK) environment.  相似文献   

4.
5.
The genetic defect in X-linked lymphoproliferative syndrome (XLP) is the Src homology 2 domain-containing protein SAP. SAP constitutively associates with the cell surface molecule, signaling lymphocytic activation molecule (SLAM), and competes with SH2-domain containing protein tyrosine phosphatase-2 (SHP-2) for recruitment to SLAM. SLAM exhibits homology with the mouse cell surface receptor 2B4. The human homologue of 2B4 has now been identified. It is recognized by the c1.7 mAb, a mAb capable of activating human NK cells. Human 2B4 became tyrosine phosphorylated following pervanadate-treatment of transfected cells and recruited SHP-2. SAP was also recruited to 2B4 in activated cells. Importantly, the 2B4-SAP interaction prevented the association between 2B4 and SHP-2. These results suggest that the phenotype of XLP may result from perturbed signaling not only through SLAM, but also other cell surface molecules that utilize SAP as a signaling adaptor protein.  相似文献   

6.
Divergent roles of SHP-2 in ERK activation by leptin receptors   总被引:21,自引:0,他引:21  
The protein tyrosine phosphatase SHP-2 has been proposed to serve as a regulator of leptin signaling, but its specific roles are not fully examined. To directly investigate the role of SHP-2, we employed dominant negative strategies in transfected cells. We show that a catalytically inactive mutant of SHP-2 blocks leptin-stimulated ERK phosphorylation by the long leptin receptor, ObRb. SHP-2, lacking two C-terminal tyrosine residues, partially inhibits ERK phosphorylation. We find similar effects of the SHP-2 mutants after examining stimulation of an ERK-dependent egr-1 promoter-construct by leptin. We also demonstrate ERK phosphorylation and egr-1 mRNA expression in the hypothalamus by leptin. Analysis of signaling by ObRb lacking intracellular tyrosine residues or by the short leptin receptor, ObRa, enabled us to conclude that two pathways are critical for ERK activation. One pathway does not require the intracellular domain of ObRb, whereas the other pathway requires tyrosine residue 985 of ObRb. The phosphatase activity of SHP-2 is required for both pathways, whereas activation of ERK via Tyr-985 of ObRb also requires tyrosine phosphorylation of SHP-2. SHP-2 is thus a positive regulator of ERK by leptin receptors, and both the adaptor function and the phosphatase activity of SHP-2 are critical for this regulation.  相似文献   

7.
8.
The protein tyrosine phosphatase SHP-2 functions in many diverse signalling pathways. The recent identification of a SHP-2-binding protein as a homologue of the Grb2-associated adaptor protein Gab1 sheds light on the role of SHP-2 in immune signalling.  相似文献   

9.
The nontransmembrane protein tyrosine phosphatase SHP-2 plays a critical role in growth factor and cytokine signaling pathways. Previous studies revealed that a fraction of SHP-2 moves to focal contacts upon integrin engagement and that SHP-2 binds to SHP substrate 1 (SHPS-1)/SIRP-1alpha, a transmembrane glycoprotein with adhesion molecule characteristics (Y. Fujioka et al., Mol. Cell. Biol. 16:6887-6899, 1996; M. Tsuda et al., J. Biol. Chem. 273:13223-13229). Therefore, we asked whether SHP2-SHPS-1 complexes participate in integrin signaling. SHPS-1 tyrosyl phosphorylation increased upon plating of murine fibroblasts onto specific extracellular matrices. Both in vitro and in vivo studies indicate that SHPS-1 tyrosyl phosphorylation is catalyzed by Src family protein tyrosine kinases (PTKs). Overexpression of SHPS-1 in 293 cells potentiated integrin-induced mitogen-activated protein kinase (MAPK) activation, and potentiation required functional SHP-2. To further explore the role of SHP-2 in integrin signaling, we analyzed the responses of SHP-2 exon 3(-/-) and wild-type cell lines to being plated on fibronectin. Integrin-induced activation of Src family PTKs, tyrosyl phosphorylation of several focal adhesion proteins, MAPK activation, and the ability to spread on fibronectin were defective in SHP-2 mutant fibroblasts but were restored upon SHP-2 expression. Our data suggest a positive-feedback model in which, upon integrin engagement, basal levels of c-Src activity catalyze the tyrosyl phosphorylation of SHPS-1, thereby recruiting SHP-2 to the plasma membrane, where, perhaps by further activating Src PTKs, SHP-2 transduces positive signals for downstream events such as MAPK activation and cell shape changes.  相似文献   

10.
11.
B and T lymphocytes express receptors providing positive and negative co-stimulatory signals. We recently identified a novel co-stimulatory molecule, B and T lymphocyte attenuator (BTLA), which exerts inhibitory effects on B and T lymphocytes. The cytoplasmic domain of murine and human BTLA share three conserved tyrosine-based signaling motifs, a Grb-2 recognition consensus, and two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Phosphorylation of the cytoplasmic domain of BTLA induced the association with the protein tyrosine phosphatases SHP-1 and SHP-2. Association of SHP-1 and SHP-2 to other receptors can involve recruitment to either a single receptor ITIM or to two receptor ITIMs. Here, we analyzed the requirements of BTLA interaction with SHP-1 and SHP-2 in a series of murine and human BTLA mutants. For human BTLA, mutations of either Y257 or Y282, but not Y226, abrogated association with both SHP-1 and SHP-2. For murine BTLA, mutation of either Y274 or Y299, but not Y245, also abrogated association with both SHP-1 and SHP-2. These results indicate that for both murine and human BTLA, association with SHP-1 or SHP-2 requires both of conserved ITIM motifs and does not involve the conserved Grb-2 consensus. Thus, similar to the bisphosphoryl tyrosine-based activation motif (BTAM) by which the Grb-2 associated binder (Gab1), PDGF receptor, and PECAM-1 recruit SHP-2, BTLA also relies on dual ITIMs for its association with the phosphatases SHP-1 and SHP-2.  相似文献   

12.
Platelet-endothelial cell adhesion molecule-1 (PECAM-1) is a cell adhesion molecule with a cytoplasmic immunoreceptor tyrosine-based inhibitory motif (ITIM) that, when phosphorylated, binds Src homology 2 domain-containing protein-tyrosine phosphatase (SHP-2). PECAM-1 is expressed at endothelial cell junctions where exposure to inflammatory intermediates may result in post-translational amino acid modifications that affect protein structure and function. Reactive nitrogen species (RNS), which are produced at sites of inflammation, nitrate tyrosine residues, and several proteins modified by tyrosine nitration have been found in diseased tissue. We show here that the RNS, peroxynitrite, induced nitration of both full-length cellular PECAM-1 and a purified recombinant PECAM-1 cytoplasmic domain. Mass spectrometric analysis of tryptic fragments revealed quantitative nitration of ITIM tyrosine 686. A synthetic peptide containing 3-nitrotyrosine at position 686 could not be phosphorylated nor bind SHP-2. These data suggest that ITIM tyrosine nitration may represent a mechanism for modulating phosphotyrosine-dependent signal transduction pathways.  相似文献   

13.
The protein-tyrosine phosphatase SHP-1 plays a variety of roles in the "negative" regulation of cell signaling. The molecular basis for the regulation of SHP-1 is incompletely understood. Whereas SHP-1 has previously been shown to be phosphorylated on two tail tyrosine residues (Tyr(536) and Tyr(564)) by several protein-tyrosine kinases, the effects of these phosphorylation events have been difficult to address because of the intrinsic instability of the linkages within a protein-tyrosine phosphatase. Using expressed protein ligation, we have generated semisynthetic SHP-1 proteins containing phosphotyrosine mimetics at the Tyr(536) and Tyr(564) sites. Two phosphonate analogues were installed, phosphonomethylenephenylalanine (Pmp) and difluorophosphonomethylenephenylalanine (F(2)Pmp). Incorporation of Pmp at the 536 site led to 4-fold stimulation of the SHP-1 tyrosine phosphatase activity whereas incorporation at the 564 site led to no effect. Incorporation of F(2)Pmp at the 536 site led to 8-fold stimulation of the SHP-1 tyrosine phosphatase activity and 1.6-fold at the 564 site. A combination of size exclusion chromatography, phosphotyrosine peptide stimulation studies, and site-directed mutagenesis led to the structural model in which tyrosine phosphorylation at the 536 site engages the N-Src homology 2 domain in an intramolecular fashion relieving basal inhibition. In contrast, tyrosine phosphorylation at the 564 site has the potential to engage the C-Src homology 2 domain intramolecularly, which can modestly and indirectly influence catalytic activity. The finding that phosphonate modification at each of the 536 and 564 sites can promote interaction with the Grb2 adaptor protein indicates that the intramolecular interactions fostered by post-translational modifications of tyrosine are not energetically strong and susceptible to intermolecular competition.  相似文献   

14.
Focal adhesion complexes are actin-rich, cytoskeletal structures that mediate cell adhesion to the substratum and also selectively regulate signal transduction pathways required for interleukin (IL)-1beta signaling to the MAP kinase, ERK. IL-1-induced ERK activation is markedly diminished in fibroblasts deprived of focal adhesions whereas activation of p38 and JNK is unaffected. While IL-1 signaling is known to involve the activity of protein and lipid kinases including MAP kinases, FAK, and PI3K, little is known about the role of phosphatases in the regulation of IL-1 signal generation and attenuation. Here we demonstrate that SHP-2, a protein tyrosine phosphatase present in focal adhesions, modulates IL-1-induced ERK activation and the transient actin stress fiber disorganization that occurs following IL-1 treatment in human gingival fibroblasts. Using a combination of immunoblotting, immunoprecipitation, and immunostaining we show that SHP-2 is present in nascent focal adhesions and undergoes phosphorylation on tyrosine 542 in response to IL-1 stimulation. Blocking anti-SHP-2 antibodies, electoporated into the cytosol of fibroblasts, inhibited IL-1-induced ERK activation, actin filament assembly, and cell contraction, indicating a role for SHP-2 in these processes. In summary, our data indicate that SHP-2, a focal adhesion-associated protein, participates in IL-1-induced ERK activation likely via an adaptor function.  相似文献   

15.
The Src homology 2 (SH2) domain-containing protein tyrosine phosphatase, SHP-2, plays an important role in cell migration by interacting with various proteins. In this report, we demonstrated that SHP-2 inhibits tyrosine phosphorylation of Crk-associated substrate lymphocyte type (Cas-L), a docking protein which mediates cell migration, and found that SHP-2 negatively regulates migration of A549 lung adenocarcinoma cells induced by fibronectin (FN). We showed that overexpressed SHP-2 co-localizes with Cas-L at focal adhesions and that exogenous expression of SHP-2 abrogates cell migration mediated by Cas-L. SHP-2 inhibits tyrosine phosphorylation of Cas-L, and associates with Cas-L to form a complex in a tyrosine phosphorylation-dependent manner. Finally, immunoprecipitation experiments with deletion mutants revealed that both SH2 domains of SHP-2 are necessary for this association. These results suggest that SHP-2 regulates tyrosine phosphorylation of Cas-L, hence opposing the effect of kinases, and SHP-2 is a negative regulator of cell migration mediated by Cas-L.  相似文献   

16.
The transforming gene product of the S13 avian erythroblastosis virus, the env-sea protein, is a member of the hepatocyte growth factor receptor family of tyrosine kinases comprising Met, Ron, and Sea. Like all three members of this family, the env-sea protein has a so-called bidentate motif (Y557INMAVTY564VNL) composed of two tandemly arranged tyrosines in the carboxyl terminus. To investigate whether the tyrosine residues in this motif are essential for the env-sea-mediated transformation, we generated tyrosine to phenylalanine mutations. Substitutions of both tyrosine residues resulted in complete loss of the transforming activity. In contrast, single mutations at either tyrosine did not inhibit transformation of Rat1 cells, and mutation of tyrosine 564 actually increased transformation of Rat 1 cells. To define signaling pathways activated by the env-sea protein, we looked for protein-protein interactions mediated by these tyrosine residues. We show that the bidentate motif is responsible for interaction with the adapter protein Grb2, phosphatidylinositol 3-kinase, and the tyrosine phosphatase SHP-2. Furthermore, we show that microinjected Src homology 2 domains from either Grb2 or SHP-2 blocked the transforming activity of the env-sea protein. Together, these results suggest that the tyrosines within the bidentate motif are essential for the env-sea transformation.  相似文献   

17.

Background

The PDGF signaling pathway plays a major role in several biological systems, including vascular remodeling that occurs following percutaneous transluminal coronary angioplasty. Recent studies have shown that the LDL receptor-related protein 1 (LRP1) is a physiological regulator of the PDGF signaling pathway. The underlying mechanistic details of how this regulation occurs have yet to be resolved. Activation of the PDGF receptor β (PDGFRβ) leads to tyrosine phosphorylation of the LRP1 cytoplasmic domain within endosomes and generates an LRP1 molecule with increased affinity for adaptor proteins such as SHP-2 that are involved in signaling pathways. SHP-2 is a protein tyrosine phosphatase that positively regulates the PDGFRβ pathway, and is required for PDGF-mediated chemotaxis. We investigated the possibility that LRP1 may regulate the PDGFRβ signaling pathway by binding SHP-2 and competing with the PDGFRβ for this molecule.

Methodology/Principal Findings

To quantify the interaction between SHP-2 and phosphorylated forms of the LRP1 intracellular domain, we utilized an ELISA with purified recombinant proteins. These studies revealed high affinity binding of SHP-2 to phosphorylated forms of both LRP1 intracellular domain and the PDGFRβ kinase domain. By employing the well characterized dynamin inhibitor, dynasore, we established that PDGF-induced SHP-2 phosphorylation primarily occurs within endosomal compartments, the same compartments in which LRP1 is tyrosine phosphorylated by activated PDGFRβ. Immunofluorescence studies revealed colocalization of LRP1 and phospho-SHP-2 following PDGF stimulation of fibroblasts. To define the contribution of LRP1 to SHP-2-mediated PDGF chemotaxis, we employed fibroblasts expressing LRP1 and deficient in LRP1 and a specific SHP-2 inhibitor, NSC-87877. Our results reveal that LRP1 modulates SHP-2-mediated PDGF-mediated chemotaxis.

Conclusions/Significance

Our data demonstrate that phosphorylated forms of LRP1 and PDGFRβ compete for SHP-2 binding, and that expression of LRP1 attenuates SHP-2-mediated PDGF signaling events.  相似文献   

18.
Protein tyrosine phosphatases (PTPases), such as SHP-1 and SHP-2, that contain Src homology 2 (SH2) domains play important roles in growth factor and cytokine signal transduction pathways. A protein of approximately 115 to 120 kDa that interacts with SHP-1 and SHP-2 was purified from v-src-transformed rat fibroblasts (SR-3Y1 cells), and the corresponding cDNA was cloned. The predicted amino acid sequence of the encoded protein, termed SHPS-1 (SHP substrate 1), suggests that it is a glycosylated receptor-like protein with three immunoglobulin-like domains in its extracellular region and four YXX(L/V/I) motifs, potential tyrosine phosphorylation and SH2-domain binding sites, in its cytoplasmic region. Various mitogens, including serum, insulin, and lysophosphatidic acid, or cell adhesion induced tyrosine phosphorylation of SHPS-1 and its subsequent association with SHP-2 in cultured cells. Thus, SHPS-1 may be a direct substrate for both tyrosine kinases, such as the insulin receptor kinase or Src, and a specific docking protein for SH2-domain-containing PTPases. In addition, we suggest that SHPS-1 may be a potential substrate for SHP-2 and may function in both growth factor- and cell adhesion-induced cell signaling.  相似文献   

19.
SHP-1 and SHP-2 are two SH2 domain-containing tyrosine phosphatases. They share significant overall sequence identity but their functions are often opposite. The mechanism underlying this is not well understood. In this study, we have investigated the association of SHP-1 and SHP-2 with tyrosine-phosphorylated proteins in mouse tissues and in cultured cells treated with a potent tyrosine phosphatase inhibitor, pervanadate. Pervanadate was introduced into mice by intravenous injection. It induced robust tyrosine phosphorylation of cellular proteins in a variety of tissues. Both SHP-1 and SHP-2 were phosphorylated on tyrosyl residues upon pervanadate treatment, and they became associated with distinct tyrosine-phosphorylated proteins in different tissues and cells. Among these proteins, PZR and PECAM were identified as major SHP-2-binding proteins while LAIR-1 was shown to be a major SHP-1-binding protein. A number of other proteins are to be identified. We believe that the different binding proteins may determine the distinct physiological functions of SHP-1 and SHP-2. The present study also provides a general method to induce tyrosine phosphorylation of cellular proteins and to study protein-protein interactions involving tyrosine phosphorylation in vivo and in vitro.  相似文献   

20.
The neurally active cytokine leukemia inhibitory factor (LIF) signals through a bipartite receptor complex composed of LIF receptor alpha (LIFR) and gp130. gp130 and LIFR contain consensus binding motifs for the protein tyrosine phosphatase SHP-2 surrounding tyrosines 118 and 115 (Y118 and Y115) of their cytoplasmic domains, respectively. These sites are necessary for maximal activation of mitogen-activated protein kinase (MAPK). Coexpression of catalytically inactive, but not wild-type, SHP-2 reduced LIFR- and gp130-mediated activation of MAPK up to 75%. Conversely, coexpression of the wild-type, but not catalytically inactive, SHP-1, a related phosphatase, reduced activity up to 80%, demonstrating that SHP-2 and SHP-1 have opposing effects on the MAPK pathway. Mutation of Y115 of the cytoplasmic domain of LIFR eliminates receptor-mediated tyrosine phosphorylation of SHP-2. In contrast, SHP-1 association with gp130 and LIFR is constitutive and independent of Y118 and Y115, respectively. SHP-1 has a positive regulatory role on LIF-stimulated vasoactive intestinal peptide (VIP) reporter gene expression in neuronal cells, whereas the effect of SHP-2 is negative. Furthermore, LIF-stimulated MAPK activation negatively regulates this VIP reporter gene induction. SHP-2 also negatively regulates LIF-dependent expression of choline acetyltransferase, but this regulation could be dissociated from its effects on MAPK activation. These data indicate that SHP-1 and SHP-2 are important regulators of LIF-dependent neuronal gene expression via both MAPK-dependent and -independent pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号