首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type 2 diabetes mellitus (T2DM) is characterized by defects in haepatic glucose production, insulin action and insulin secretion, which can also lead to a variety of secondary disorders. The disease can lead to death without treatment and it has been predicted that T2DM will affect 215 million people world-wide by 2010. T2DM is a multifactorial condition whose precise genetic causes and biochemical defects have not been fully elucidated but at both levels, calpains appear to play a role. Positional cloning studies mapped T2DM susceptibility to CAPN10, the gene encoding the intracellular cysteine protease, calpain 10. Further studies have shown a number of non-coding polymorphisms in CAPN10 to be functionally associated with T2DM whilst the identification of coding polymorphisms, suggested that mutant calpain 10 proteins may also contribute to the disease. The presence of both calpain 10 and its mRNA have been demonstrated in tissues from several mammalian species whilst calpain 10 appears to be associated with pathways involved in glucose metabolism, insulin secretion and insulin action. It appears that other calpains may also participate in these pathways and here we present an overview of recent studies on calpains and their putative role in T2DM. (Mol Cell Biochem 261: 161–167, 2004)  相似文献   

2.
Calpain-10 (CAPN10) has been identified as a diabetes susceptibility gene. Previous studies have shown that alterations in calpain activity alter both glucose uptake and insulin secretion. In this report, we investigated the role of calpain activity in the actin reorganization required for glucose-stimulated insulin secretion. In pancreatic INS-1 cells, acute exposure to a high glucose environment stimulated CAPN10 gene expression with a concomitant increase in calpain activity. However, high glucose did not significantly alter expression of the two major ubiquitously expressed calpain family members, CAPN1 and CAPN2. Furthermore, glucose stimulation resulted in the reorganization of actin and inhibition of calpain activity impaired this reorganization in INS-1 cells. Finally, we identified a 54 kDa isoform as the major CAPN10 isoform that associates with the actin cytoskeleton. Based on our findings, we propose that calpain plays a role in facilitating the actin reorganization required for glucose-stimulated insulin secretion in INS-1 cells.  相似文献   

3.
Cardiovascular disease is the leading cause of morbidity and mortality in the industrialized world. Familial aggregation of cardiovascular risk factors is a frequent finding, but genetic factors affecting its presentation are still poorly understood. The calpain 10 gene (CAPN10) has been associated with type 2 diabetes (T2DM), a complex metabolic disorder with increased risk of cardiovascular disease. Moreover, the CAPN10 gene has been associated with the presence of metabolic syndrome (MS) in T2DM and in polycystic ovary syndrome (PCOS). In this work, we have analysed whether the polymorphisms UCSNP44, -43, -19 and -63 are related to several cardiovascular risk factors in the context of MS. Molecular analysis of CAPN10 gene was performed in 899 individuals randomly chosen from a cross-sectional population-based epidemiological survey. We have found that CAPN10 gene in our population is mainly associated with two indicators of the presence of insulin resistance: glucose levels two hours after a 75-g oral glucose tolerance test (OGTT) and HOMA values, although cholesterol levels and blood pressure values are also influenced by CAPN10 variants. In addition, the 1221/1121 haplogenotype is under-represented in individuals that fulfil the International Diabetes Federation (IDF) diagnostic criteria for MS. Our results suggest that CAPN10 gene is associated with insulin resistance phenotypes in the Spanish population.  相似文献   

4.
Calpain-10 (CAPN10) is the first type 2 diabetes susceptibility gene to be identified through a genome scan, with polymorphisms being associated with altered CAPN10 expression. Functional data have been hitherto elusive, but we report here a corresponding increase between CAPN10 expression level and regulated insulin secretion. Pancreatic beta-cell secretory granule exocytosis is mediated by the soluble N-ethylmaleimide-sensitive fusion protein attachment receptor protein complex of synaptosomal-associated protein of 25 kDa (SNAP-25), syntaxin 1, and vesicle-associated membrane protein 2. We report, for the first time, direct binding of a calpain-10 isoform with members of this complex. Furthermore, SNAP-25 undergoes a Ca2+-dependent partial proteolysis during exocytosis, with calpain protease inhibitor similarly suppressing both insulin secretion and SNAP-25 proteolysis. Based upon these findings, we postulate that an isoform of calpain-10 is a Ca2+-sensor that functions to trigger exocytosis in pancreatic beta-cells.  相似文献   

5.
Calpain has long been an enigmatic enzyme, although it is involved in a variety of biological phenomena. Recent progress in calpain genetics has highlighted numerous physiological contexts in which the functions of calpain are of great significance. This review focuses on recent findings in the field of calpain genetics and the importance of calpain function. Calpain is an intracellular Ca(2+)-dependent cysteine protease (EC 3.4.22.17; Clan CA, family C02) found in almost all eukaryotes. It is also present in a few bacteria, but not in archaebacteria. Calpain has limited proteolytic activity; rather, it transforms or modulates the structure and/or activity of its substrates. It is, therefore, referred to as a 'modulator protease'. Within the human genome, 15 genes (CAPN1-3, CAPN5-16) encode a calpain-like protease (CysPc) domain along with several different functional domains. Thus, calpains can be regarded as a distinct family of versatile enzymes that fulfil numerous tasks in vivo. Genetic studies show that a variety of defects in many different organisms, including lethality, muscular dystrophies and gastropathy, actually stem from calpain deficiencies. The cause-effect relationships identified by these studies form the basis for ongoing and future studies regarding the physiological role of calpains.  相似文献   

6.
The incidence of type 2 diabetes mellitus (T2DM) is rapidly increasing worldwide with significant consequences on individual quality of life as well as economic burden on states' healthcare costs. While origins of the pathogenesis of T2DM are poorly understood, an early defect in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is considered a hallmark of T2DM 1.Upon a glucose stimulus, insulin is secreted in a biphasic manner with an early first-phase burst of insulin, which is followed by a second, more sustained phase of insulin output 2. First phase insulin secretion is diminished early in T2DM as well is in subjects who are at risk of developing T2DM 3 4 5 6.An effective treatment of T2DM with incretin hormone glucagon-like peptide-1 (GLP-1) or its long acting peptide analogue exendin-4 (E4), restores first-phase and augments second-phase glucose stimulated insulin secretion. This effect of incretin action occurs within minutes of GLP-1/E4 infusion in T2DM humans. An additional important consideration is that incretin hormones augment GSIS only above a certain glucose threshold, which is slightly above the normal glucose range. This ensures that incretin hormones stimulate GSIS only when glucose levels are high, while they are ineffective when insulin levels are below a certain threshold 7 8.Activation of the GLP-1 receptor, which is highly expressed on pancreatic β-cells, stimulates 2 -distinct intracellular signaling pathways: a) the cAMP-protein kinase A branch and b) the cAMP-EPAC2 (EPAC=exchange protein activated by cAMP) branch. While the EPAC2 branch is considered to mediate GLP-1 effects on first-phase GSIS, the PKA branch is necessary for the former branch to be active 9 10. However, how these 2 branches interplay and converge and how their effects on insulin secretion and insulin vesicle exocytosis are coordinated is poorly understood.Thus, at the outset of our studies we have a poorly understood intracellular interplay of cAMP-dependent signaling pathways, which - when stimulated - restore glucose-dependent first phase and augment second phase insulin secretion in the ailing β-cells of T2DM.  相似文献   

7.
T N Dear  A M?ller  T Boehm 《Genomics》1999,59(2):243-247
Calpains are a superfamily of related proteins, some of which have been shown to function as calcium-dependent cysteine proteases. In mammals, eight different calpains have been identified. We report the identification of a new mammalian calpain gene, CAPN11. The predicted protein possesses the features typical of calpains including potential protease and calcium-binding domains. The CAPN11 mRNA exhibits a highly restricted tissue distribution with highest levels present in testis. Radiation hybrid mapping localized the gene to human chromosome 6, within a region mapped to p12. Phylogenetic analysis suggests that, in mammals, the predicted CAPN11 protein is most closely related to CAPN1 and CAPN2. However, of the calpain sequences available, the predicted CAPN11 sequence exhibits greatest homology to the chicken micro/m calpain. Thus CAPN11 may be the human orthologue of micro/m calpain. The discovery of this new calpain emphasizes the complexity of the calpain family, with members being distinguished on the basis of protease activity, calcium dependence, and tissue expression.  相似文献   

8.
Diabetes mellitus (DM) is a major health problem worldwide and it will rapidly increase. This disease is characterized by hyperglycemia caused by defects in insulin secretion, insulin action or both. DM has three types: T1DM, T2M and gestational DM (GDM), of them T2DM is more frequent. Multiple genes and their interactions are involved in insulin secretion pathway. Sulfonylurea receptor encoded by ABCC8 gene, together with inward-rectifier potassium ion channel (Kir6.2) regulates insulin secretion by ATP-sensitive K+ (KATP) channel located in the plasma membranes. Disruption of these molecules by different mutations is responsible for risk of DM. Several single nucleotide polymorphisms (SNPs) of ABCC8 gene and their interaction are involved in pathogenicity of DM. This review summarizes the current evidence of contribution of ABC8 genetic variants to the development of DM.  相似文献   

9.
Polycystic Ovary Syndrome (PCOS) is known to be characterized by metabolic disorder in which hyperinsulinemia and peripheral insulin resistance are central features. Given the physiological overlap between PCOS and type-2 diabetes (T2DM), and calpain 10 gene (CAPN10) being a strong candidate for T2DM, a number of studies have analyzed CAPN10 SNPs among PCOS women yielding contradictory results. Our study is first of its kind to investigate the association pattern of CAPN10 polymorphisms (UCSNP-44, 43, 56, 19 and 63) with PCOS among Indian women. 250 PCOS cases and 299 controls from Southern India were recruited for this study. Allele and genotype frequencies of the SNPs were determined and compared between the cases and controls. Results show significant association of UCSNP-44 genotype CC with PCOS (p = 0.007) with highly significant odds ratio when compared to TC (OR = 2.51, p = 0.003, 95% CI = 1.37–4.61) as well as TT (OR = 1.94, p = 0.016, 95% CI = 1.13–3.34). While the haplotype carrying the SNP-44 and SNP-19 variants (21121) exhibited a 2 fold increase in the risk for PCOS (OR = 2.37, p = 0.03), the haplotype containing SNP-56 and SNP-19 variants (11221) seems to have a protective role against PCOS (OR = 0.20, p = 0.004). Our results support the earlier evidence for a possible role of UCSNP-44 of the CAPN10 gene in the manifestation of PCOS.  相似文献   

10.
Four genes for the calpain family locate on four distinct human chromosomes   总被引:5,自引:0,他引:5  
Calcium dependent proteases (calpains, CAPNs, E.C.3.4.22.17) constitute a family of proteins which share a homologous cysteine-protease domain (large subunits, L1, L2, and L3) and an E-F hand Ca2(+)-binding domain (L1, L2, L3, and small subunit, S). We have mapped the genes for four calpain proteins (L1, L2, L3, and S) on four distinct human chromosomes by a combination of spot-blot hybridization to flow-sorted chromosomes and Southern hybridization of DNAs from a human x mouse hybrid cell panel. The genes for calpain L1 (CAPN1, large subunit of calpain I), L2 (CAPN2, large subunit of calpain II), L3 (CAPN3, a protein related to the large subunits), and S (CAPN4, a small subunit common to calpains I and II) were assigned to human chromosomes 11, 1, 15, and 19, respectively.  相似文献   

11.
12.
The calpains are a superfamily of proteases with extensive relevance to human health and welfare. Vast research attention is given to the vertebrate ‘classical’ subfamily, making it surprising that the evolutionary origins, distribution and relationships of these genes is poorly characterized. Consequently, there exists uncertainty about the conservation of gene family structure, function and expression that has been principally defined from work with mammals. Here, more than 200 vertebrate classical calpains were incorporated in phylogenetic analyses spanning an unprecedented range of taxa, including jawless and cartilaginous fish. We demonstrate that the common vertebrate ancestor had at least six classical calpains, including a single gene that gave rise to CAPN11, 1, 2 and 8 in the early jawed fish lineage, plus CAPN3, 9, 12, 13 and a novel calpain gene, hereafter named CAPN17. We reveal that while all vertebrate classical calpains have been subject to persistent purifying selection during evolution, the degree and nature of selective pressure has often been lineage-dependent. The tissue expression of the complete classic calpain family was assessed in representative teleost fish, amphibians, reptiles and mammals. This highlighted systematic divergence in expression across vertebrate taxa, with most classic calpain genes from fish and amphibians having more extensive tissue distribution than in amniotes. Our data suggest that classical calpain functions have frequently diverged during vertebrate evolution and challenge the ongoing value of the established system of classifying calpains by expression.  相似文献   

13.
Calpainopathy-a survey of mutations and polymorphisms.   总被引:5,自引:0,他引:5       下载免费PDF全文
Limb-girdle muscular dystrophy type 2A (LGMD2A) is an autosomal recessive disorder characterized mainly by symmetrical and selective atrophy of the proximal limb muscles. It derives from defects in the human CAPN3 gene, which encodes the skeletal muscle-specific member of the calpain family. This report represents a compilation of the mutations and variants identified so far in this gene. To date, 97 distinct pathogenic calpain 3 mutations have been identified (4 nonsense mutations, 32 deletions/insertions, 8 splice-site mutations, and 53 missense mutations), 56 of which have not been described previously, together with 12 polymorphisms and 5 nonclassified variants. The mutations are distributed along the entire length of the CAPN3 gene. Thus far, most mutations identified represent private variants, although particular mutations have been found more frequently. Knowledge of the mutation spectrum occurring in the CAPN3 gene may contribute significantly to structure/function and pathogenesis studies. It may also help in the design of efficient mutation-screening strategies for calpainopathies.  相似文献   

14.
Over the last decades, substantial progress has been made in defining the molecular events and relevant tissues controlling insulin action and the potential defects that lead to insulin resistance and later on Type 2 diabetes mellitus (T2DM). Mitochondrial dysfunction has been postulated as a common mechanism implicated in the development of insulin resistance and T2DM aetiology. Since then there has been growing interest in this area of research and many studies have addressed whether mitochondrial function/dysfunction is implicated in the progression of T2DM or if it is just a consequence. Mitochondria are adjusted to the specific needs of the tissue and to the environmental interactions or pathophysiological state that it encounters. This review offers a current state of the subject in a tissue specific approach. We will focus our attention on skeletal muscle, liver, and white adipose tissue as the main insulin sensitive organs. Hypothalamic mitochondrial function will be also discussed.  相似文献   

15.
Premature visual impairment due to lens opacification is a debilitating characteristic of untreated diabetes. Lens opacification is primarily due to the insolubilization of crystallins, proteins essential for lens optical properties, and recent studies have suggested that a major cause of this insolubilization may be the unregulated proteolysis of crystallins by calpains. These are intracellular cysteine proteases whose activation requires the presence of calcium (Ca2+) and elevated levels of lens Ca2+ is a condition associated with both diabetic cataractogenesis and other forms of the disorder. A number of calpains have been identified in the lens, including calpain 2, calpain 10 and two isozymes of calpain 3: Lp82 and Lp85. The use of animal hereditary cataract models have suggested that calpain 2 and/or Lp82 may be the major calpains involved in murine cataractogenesis with contributions from calpain 10 and Lp85. However, calpain 2 appears to be the major calpain involved in murine diabetic cataractogenesis and the strongest candidate of the calpains for a role in human types of cataractogenesis. Here, we present an overview of recent evidence on which these observations are based with an emphasis on the ability of calpains to proteolyse lens crystallins and calpain structural features, which appear to be involved in the Ca2+-mediated activation of these enzymes.  相似文献   

16.
Diabetes mellitus (DM) is a metabolic disorder with numerous symptoms categorized via serves hyperglycemia effect along with altered fat, protein and carbohydrate metabolism mainly resultant from defects in insulin action/secretion or both. The aim of the current experimental study was to comfort the neuroprotective effect of ganoderic acid against the streptozotocin (STZ)-induced type I diabetes mellitus in mice and explore the underlying mechanism. Differentiation of 3T3-L1 preadipocytes effect; hepatic and glucose consumption effect of ganoderic acid was estimated on HepG2 cell lines and peroxisome proliferator-activated receptor (PPAR). FFA content was estimated in adipose and hepatic tissues. Ganoderic acid induced the 3T3-L1 preadipocytes differentiation. The mRNA expression of PPAR was increased in the high glucose-treated group in HepG2 and ganoderic acid treatment down-regulated the mRNA expression of PPAR. Ganoderic acid exhibited the inhibitory effect of α-glucosidase and α-amylase. Ganoderic acid demonstrated the reduced blood glucose and increase insulin level and also reduced the free fatty in hepatic and adipose tissue. Histopathological study showed the enhancement of β-cells in ganoderic acid-treated mice. Finally, their prebiotic effects on gut microbiota were illustrated via enhancing the population of diabetes resistant bacteria and also reducing the quantity of diabetes sensitive bacteria. Ganoderic acid attenuated STZ induced T1DM in mice via inflammatory pathways.  相似文献   

17.
目的:研究糖尿病不同发展阶段胰岛素敏感性及胰岛素分泌功能的改变,指导2型糖尿病的早期诊断。方法:57例行OGTT体检者,分为NGT、IGT、IFG+IGT、新诊断T2DM四组,并行IVGTT,采用HOMA-IR评估胰岛素敏感性,采用葡萄糖处置指数[DI1=HOMA-β/HOMA-IR,DI2=ΔI30/ΔG30/HOMA-IR,DI3=MBCI×IAI,DI4=AIR0-10/HOMA-IR]及AUCINS/HOMA-IR评估胰岛素分泌功能。结果:IGT、IFG+IGT、新诊断T2DM组HOMA-IR无统计学差异(P>0.05),均显著高于NGT组(P<0.05)。IGT、IFG+IGT、新诊断T2DM组DI1逐步降低(P<0.05);NGT、IGT组DI1无统计学差异(P>0.05)。NGT、IGT、IFG+IGT、新诊断T2DM组DI2、DI3、DI4逐步降低(P<0.05)。IFG+IGT、新诊断T2DM组OGTTAUCINS/HOMA-IR逐步降低(P<0.05),且显著低于NGT组(P<0.05);NGT、IGT组OGTTAUCINS/HOMA-IR无统计学差异(P>0.05)。结论:(1)IGT阶段胰岛素抵抗及胰岛素1相、早期相分泌功能的下降同时存在。IFG+IGT阶段胰岛素1相、早期相分泌进一步下降,并出现基础相、2相分泌的减少,胰岛素抵抗加重不明显。新诊断T2DM阶段胰岛素各相分泌进一步减少,胰岛素抵抗加重不明显。(2)在T2DM发生过程中,胰岛素分泌功能下降较胰岛素敏感性下降更为明显。(3)胰岛素抵抗及胰岛素1相、早期相分泌功能的下降是T2DM的预测因子。(4)IFG+IGT阶段应积极干预。  相似文献   

18.
Homeostatic control of blood glucose is regulated by a complex feedback loop between glucose and insulin, of which failure leads to diabetes mellitus. However, physiological and pathological nature of the feedback loop is not fully understood. We made a mathematical model of the feedback loop between glucose and insulin using time course of blood glucose and insulin during consecutive hyperglycemic and hyperinsulinemic-euglycemic clamps in 113 subjects with variety of glucose tolerance including normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM). We analyzed the correlation of the parameters in the model with the progression of glucose intolerance and the conserved relationship between parameters. The model parameters of insulin sensitivity and insulin secretion significantly declined from NGT to IGT, and from IGT to T2DM, respectively, consistent with previous clinical observations. Importantly, insulin clearance, an insulin degradation rate, significantly declined from NGT, IGT to T2DM along the progression of glucose intolerance in the mathematical model. Insulin clearance was positively correlated with a product of insulin sensitivity and secretion assessed by the clamp analysis or determined with the mathematical model. Insulin clearance was correlated negatively with postprandial glucose at 2h after oral glucose tolerance test. We also inferred a square-law between the rate constant of insulin clearance and a product of rate constants of insulin sensitivity and secretion in the model, which is also conserved among NGT, IGT and T2DM subjects. Insulin clearance shows a conserved relationship with the capacity of glucose disposal among the NGT, IGT and T2DM subjects. The decrease of insulin clearance predicts the progression of glucose intolerance.  相似文献   

19.
In subjects with obesity and type 2 diabetes mellitus (T2DM), biliopancreatic diversion (BPD) improves glucose stimulated insulin secretion, whereas the effects on other secretion mechanisms are still unknown. Our objective was to evaluate the early effects of BPD on nonglucose‐stimulated insulin secretion. In 16 morbid obese subjects (9 with T2DM and 7 with normal fasting glucose (NFG)), we measured insulin secretion after glucose‐dependent arginine stimulation test and after intravenous glucose tolerance test (IVGTT) before and 1 month after BPD. After surgery the mean weight lost was 13% in both groups. The acute insulin response during IVGTT was improved in T2DM after BDP (from 55 ± 10 to 277 ± 91 pmol/l, P = 0.03). A reduction of insulin response to arginine was observed in NFG, whereas opposite was found in T2DM. In particular, acute insulin response to arginine at basal glucose concentrations (AIRbasal) was reduced but insulin response at 14 mmol/l of plasma glucose (AIR14) was increased. Therefore, after BPD any statistical difference in AIR14 between NFG and T2DM disappeared (1,032 ± 123 for NFG and 665 ± 236 pmol/l for T2DM, P = ns). The same was observed for SlopeAIR, a measure of glucose potentiation, reduced in T2DM before BPD but increased after surgery, when no statistically significant difference resulted compared with NFG (SlopeAIR after BPD: 78 ± 11 in NFG and 56 ± 18 pmol/l in T2DM, P = ns). In conclusion, in obese T2DM subjects 1 month after BPD we observed a great improvement of both glucose‐ and nonglucose‐stimulated insulin secretions. The mechanisms by which BDP improve insulin secretion are still unknown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号