首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Activated Cdc42-associated kinase-2 (ACK-2) is a non-receptor tyrosine kinase that appears to be a highly specific target for the Rho-related GTP-binding protein Cdc42. In order to understand better how ACK-2 activity is regulated in cells, we have expressed epitope-tagged forms of this tyrosine kinase in COS-7 and NIH3T3 cells. We find that ACK-2 can be activated by cell adhesion in a Cdc42-dependent manner. However, unlike the focal adhesion kinase, which also is activated by cell adhesion, the activation of ACK-2 is F-actin-independent and does not require cell spreading. In addition, overexpression of ACK-2 in COS-7 cells did not result in the stimulation of extracellular signal-regulated kinase activity but rather activated the c-Jun kinase. Both anti-integrin beta1 antibody and RGD peptides inhibited the activation of ACK-2 by cell adhesion. In addition, ACK-2 was co-immunoprecipitated with integrin beta1. Overall, these findings suggest that ACK-2 interacts with integrin complexes and mediates cell adhesion signals in a Cdc42-dependent manner.  相似文献   

2.
GTP-binding (G) proteins regulate the flow of information in cellular signaling pathways by alternating between a GTP-bound "active" state and a GDP-bound "inactive" state. Cdc42, a member of the Rho family of Ras-related small G-proteins, plays key roles in the regulation of cell shape, motility, and growth. Here we describe the high resolution x-ray crystal structure for Cdc42 bound to the GTP analog guanylyl beta,gamma-methylene-diphosphonate (GMP-PCP) (i.e. the presumed signaling-active state) and show that it is virtually identical to the structures for the signaling-inactive, GDP-bound form of the protein, contrary to what has been reported for Ras and other G-proteins. Especially surprising was that the GMP-PCP- and GDP-bound forms of Cdc42 did not show detectable differences in their Switch I and Switch II loops. Fluorescence studies using a Cdc42 mutant in which a tryptophan residue was introduced at position 32 of Switch I also showed that there was little difference in the Switch I conformation between the GDP- and GMP-PCP-bound states (i.e. <10%), which again differed from Ras where much larger changes in Trp-32 fluorescence were observed when comparing these two nucleotide-bound states (>30%). However, the binding of an effector protein induced significant changes in the Trp-32 emission specifically from GMP-PCP-bound Cdc42, as well as in the phosphate resonances for GTP bound to this G-protein as indicated in NMR studies. An examination of the available structures for Cdc42 complexed to different effector proteins, versus the x-ray crystal structure for GMP-PCP-bound Cdc42, provides a possible explanation for how effectors can distinguish between the GTP- and GDP-bound forms of this G-protein and ensure that the necessary conformational changes for signal propagation occur.  相似文献   

3.
Seth A  Otomo T  Yin HL  Rosen MK 《Biochemistry》2003,42(14):3997-4008
The temporal and spatial control of Rho GTPase signaling pathways is a central issue in understanding the molecular mechanisms that generate complex cellular movements. The Rho protein Cdc42 induces a significant conformational change in its downstream effector, the Wiskott-Aldrich syndrome protein (WASP). On the basis of this conformational change, we have created a series of single-molecule sensors for both active Cdc42 and Cdc42 guanine nucleotide exchange factors (GEFs) that utilize fluorescence resonance energy transfer (FRET) between cyan and yellow fluorescent proteins. In vitro, the Cdc42 sensors produce up to 3.2-fold FRET emission ratio changes upon binding active Cdc42. The GEF sensors yield up to 1.7-fold changes in FRET upon exchange of GDP for GTP. The GEF-catalyzed rate of nucleotide exchange for the GEF sensor is indistinguishable from that of wild-type Cdc42, but GAP-catalyzed nucleotide hydrolysis is slowed approximately 16-fold. In vivo, both sensors faithfully report on Cdc42 and/or Cdc42-GEF activity. These results establish the successful creation of rationally designed and genetically encoded tools that can be used to image the activity of biologically and medically important molecules in living systems.  相似文献   

4.
Owen D  Mott HR  Laue ED  Lowe PN 《Biochemistry》2000,39(6):1243-1250
Cdc42 is a member of the Rho family of small G proteins. Signal transduction events emanating from Cdc42 lead to cytoskeletal rearrangements, cell proliferation, and cell differentiation. Many effector proteins have been identified for Cdc42; however, it is not clear how certain effectors specifically recognize and bind to Cdc42, as opposed to Rac or Rho, or in many cases, which effector controls what cellular events. Mutations were introduced into Cdc42 at residues: Met1, Val8, Phe28, Tyr32, Val33, Thr35, Val36, Phe37, Asp38, Tyr40, Val42, Met45, Ile46, Glu127, Ala130, Asn132, Gln134, Lys135, and Leu174. Measurements were made of their equilibrium binding constants to the Cdc42 binding domains of the CRIB effectors ACK, PAK, and WASP and to the GTPase-activating protein Rho GAP. Generally, mutations in the effector loop have an equally deleterious effect on binding to all CRIB proteins tested, though the F37A mutation resulted in significant selectivity. Residues outside the effector loop were found to be important for binding of Cdc42 to CRIB containing proteins and also to contribute to selectivity. Mutations such as V42A and L174A resulted in large, selective changes in binding to specific CRIB effectors. Neither mutation resulted in alteration in PAK binding, whereas both severely disrupt binding to ACK and only L174A disrupted binding to WASP. These mutations are interpreted using the structures of the Cdc42/ACK and Cdc42/WASP complexes to give insight into how effectors can specifically recognize Cdc42. Those mutations in Cdc42 that inhibit certain interactions, while retaining others, should aid investigations of the role of specific effectors in Cdc42 signaling in vivo.  相似文献   

5.
Human cell division cycle protein 42 (Cdc42Hs) is a small, Rho-type guanosine triphosphatase involved in multiple cellular processes through its interactions with downstream effectors. The binding domain of one such effector, the actin cytoskeleton-regulating p21-activated kinase 3, is known as PBD46. Nitrogen-15 backbone and carbon-13 methyl NMR relaxation was measured to investigate the dynamical changes in activated GMPPCP·Cdc42Hs upon PBD46 binding. Changes in internal motion of the Cdc42Hs, as revealed by methyl axis order parameters, were observed not only near the Cdc42Hs–PBD46 interface but also in remote sites on the Cdc42Hs molecule. The binding-induced changes in side-chain dynamics propagate along the long axis of Cdc42Hs away from the site of PBD46 binding with sharp distance dependence. Overall, the binding of the PBD46 effector domain on the dynamics of methyl-bearing side chains of Cdc42Hs results in a modest rigidification, which is estimated to correspond to an unfavorable change in conformational entropy of approximately − 10 kcal mol− 1 at 298 K. A cluster of methyl probes closest to the nucleotide-binding pocket of Cdc42Hs becomes more rigid upon binding of PBD46 and is proposed to slow the catalytic hydrolysis of the γ phosphate moiety. An additional cluster of methyl probes surrounding the guanine ring becomes more flexible on binding of PBD46, presumably facilitating nucleotide exchange mediated by a guanosine exchange factor. In addition, the Rho insert helix, which is located at a site remote from the PBD46 binding interface, shows a significant dynamic response to PBD46 binding.  相似文献   

6.
A switch I mutant of Cdc42 exhibits less conformational freedom   总被引:1,自引:0,他引:1  
Cdc42 is a Ras-related small G-protein and functions as a molecular switch in signal transduction pathways linked with cell growth and differentiation. It is controlled by cycling between GTP-bound (active) and GDP-bound (inactive) forms. Nucleotide binding and hydrolysis are modulated by interactions with effectors and/or regulatory proteins. These interactions are centralized in two relatively flexible "Switch" regions as characterized by internal dynamics on multiple time scales [Loh, A. P., et al. (2001) Biochemistry 40, 4590-4600], and this flexibility may be essential for protein interactions. In the Switch I region, Thr(35) seems to be critical for function, as it is completely invariant in Ras-related proteins. To investigate the importance of conformational flexibility in Switch I of Cdc42, we mutated threonine to alanine, determined the solution structure, and characterized the backbone dynamics of the single-point mutant protein, Cdc42(T35A). Backbone dynamics data suggest that the mutation changes the time scale of the internal motions of several residues, with several resonances not being discernible in wild-type Cdc42 [Adams, P. D., and Oswald, R. E. (2007) Biomol. NMR Assignments 1, 225-227]. The mutation does not appear to affect the thermal stability of Cdc42, and chymotrypsin digestion data further suggest that changes in the conformational flexibility of Switch I slow proteolytic cleavage relative to that of the wild type. In vitro binding assays show less binding of Cdc42(T35A), relative to that of wild type, to a GTPase binding protein that inhibits GTP hydrolysis in Cdc42. These results suggest that the mutation of T(35) leads to the loss of conformational freedom in Switch I that could affect effector-regulatory protein interactions.  相似文献   

7.
Burbelo PD  Kisailus AE  Peck JW 《BioTechniques》2002,33(5):1044-8, 1050
We have developed a novel system designated the luciferase assay for protein detection (LAPD) to study protein-protein interactions. This method involves two protein fusions, a soluble reporter fusion and a fusion for immobilizing the target protein. The soluble reporter is an N-terminal Renilla luciferase fusion protein that exhibits high Renilla luciferase activity. Crude cleared lysates from transfected Cos1 cells that express the Renilla luciferase fusion protein can be used in binding assays with immobilized target proteins. Following incubation and washing, target-bound Renilla luciferase fusion proteins produce light from the coelenterazine substrate, indicating an interaction between the two proteins of interest. As proof of the principle, we reproduced known, transient protein-protein interactions between the Cdc42 GTPase and its effector proteins. GTPase Renilla fusion proteins produced in Cos1 cells were tested with immobilized recombinant GST-N-WASP and CEP5 effector proteins. Using this assay, we could detect specific interactions of Cdc42 with these effector proteins in approximately 50 min. The specificity of these interactions was demonstrated by showing that they were GTPase-specific and GTP-dependent and not seen with other unrelated target proteins. These results suggest that the LAPD method, which is both rapid and sensitive, may have research and practical applications.  相似文献   

8.
Activated Cdc42-associated kinase (ACK) has been shown to be an important effector molecule for the small GTPase Cdc42. We have shown previously an essential role for Cdc42 in the transduction of Ras signals for the transformation of mammalian cells. In this report, we show that the ACK-1 isoform of ACK plays a critical role in transducing Ras-Cdc42 signals in the NIH 3T3 cells. Overexpression of a dominant-negative (K214R) mutant of ACK-1 inhibits Ras-induced up-regulation of c-fos and inhibits the growth of v-Ras-transformed NIH 3T3 cells. Using small interfering RNA, we knocked down the expression of ACK-1 in both v-Ha-Ras-transformed and parental NIH 3T3 cells and found that down-regulation of ACK-1 inhibited cell growth by inducing apoptosis only in v-Ha-Ras-transformed but not parental NIH 3T3 cells. In addition, we studied the effect of several tyrosine kinase inhibitors and found that PD158780 inhibits the kinase activity of ACK-1 in vitro. We also found that PD158780 inhibits the growth of v-Ha-Ras-transformed NIH 3T3 cells. Taken together, our results suggest that ACK-1 kinase plays an important role in the survival of v-Ha-Ras-transformed cells, suggesting that ACK-1 is a novel target for therapies directed at Ras-induced cancer.  相似文献   

9.
Elliot-Smith AE  Owen D  Mott HR  Lowe PN 《Biochemistry》2007,46(49):14087-14099
Protein-protein interactions such as those between small G proteins and their effector proteins control most cell signaling pathways and thereby govern many cellular processes in both normal and disease states. Each small G protein interacts with several effectors, some shared between similar G proteins and others unique to a single GTPase. Although there is knowledge of the structural basis of these interactions, there is limited understanding of their thermodynamic basis. This is particularly significant because of the intrinsic conformational flexibility of the interacting partners. Here we have conducted a double mutant thermodynamic cycle for two key hydrophobic interactions in the Cdc42-ACK interface: Val42Cdc42-Ile463ACK and Leu174Cdc42-Leu449ACK. Val42 and Leu174 are known to be energetically important in this complex from previous thermodynamic studies, and their respective partners were predicted from the structure of the complex. Such a study has not been hitherto performed on any hydrophobic protein-protein interaction. The results confirm that a significant proportion of the overall interaction is dependent upon these residues, but in neither case is the direct interaction between the side chains the predominant energetic force. Indeed, the interaction of the side chains of Val42 and Ile463 appears to exert an energetic penalty. Rather, the stabilization of the complex, which requires the presence of these two pairs of residues, appears to be due to conformational changes, or interactions, that are not easily visualized in the structure of the complexes. In this respect, it is noteworthy that isolated Cdc42 shows regions of disorder and isolated ACK has no stable tertiary structure, whereas the Cdc42-ACK complex has a well-defined quaternary structure. Such changes may well be critical for the known selectivity of Cdc42 and related proteins such as Rho and Rac, for their wide range of effectors.  相似文献   

10.
Enhanced blue fluorescent protein (EBFP) and enhanced green fluorescent protein (EGFP) mutants of GFP in close proximity to one another can act as a fluorescence resonance energy transfer (FRET) pair. Unstructured amino acid linkers of varying length were inserted between EBFP and EGFP, revealing that linkers even as long as 50 amino acids can be accommodated and still allow FRET to occur. This led to the development of a novel biosensor for Rac/Cdc42 binding to their effector proteins based on the insertion of amino acids 75-118 of p21-activated kinase (PAK) between the GFP mutants. We demonstrate that this protein construct allows significant FRET between EBFP and EGFP and retains the ability to bind to Rac in its GTP-bound form with a binding affinity similar to the uncomplexed PAK fragment, and furthermore, on binding to Rac or Cdc42 a marked change in FRET takes place. This forms the basis for a simple, sensitive, and rapid method to measure binding of Rac/Cdc42 to their effector proteins. Since the signal is dependent upon the interaction with active GTP-bound forms it acts as a biosensor for the activation of Rac/Cdc42. It has the potential for use in live cells and for identifying localization of Rac/Cdc42 within subcellular compartments.  相似文献   

11.
The RhoGTPase Cdc42 coordinates cell morphogenesis, cell cycle, and cell polarity decisions downstream of membrane-bound receptors through distinct effector pathways. Cdc42-effector protein interactions represent important elements of cell signaling pathways that regulate cell biology in systems as diverse as yeast and humans. To derive mechanistic insights into cell signaling pathways, it is vital that we generate quantitative data from in vivo systems. We need to be able to measure parameters such as protein concentrations, rates of diffusion, and dissociation constants (KD) of protein-protein interactions in vivo. Here we show how single wavelength fluorescence cross-correlation spectroscopy in combination with Förster resonance energy transfer analysis can be used to determine KD of Cdc42-effector interactions in live mammalian cells. Constructs encoding green fluorescent protein or monomeric red fluorescent protein fusion proteins of Cdc42, an effector domain (CRIB), and two effectors, neural Wiskott-Aldrich syndrome protein (N-WASP) and insulin receptor substrate protein (IRSp53), were expressed as pairs in Chinese hamster ovary cells, and concentrations of free protein as well as complexed protein were determined. The measured KD for Cdc42V12-N-WASP, Cdc42V12-CRIB, and Cdc42V12-IRSp53 was 27, 250, and 391 nm, respectively. The determination of KD for Cdc42-effector interactions opens the way to describe cell signaling pathways quantitatively in vivo in mammalian cells.Over the last 2 decades, we have been successful in describing a myriad of cell signaling pathways that regulate the biology of cells. These pathways are made of elements incorporating protein-protein, protein-lipid and protein-ligand interactions. With the advent of GFP2 (1, 2) and its variants (3), it is now possible to genetically encode fluorescent probes into any protein of interest. GFP fusion proteins can be used in live cells giving spatial and temporal resolution to cell signaling pathways (4). To gain mechanistic insights into cellular processes, it is crucial that we measure quantitative parameters to describe cell signaling. In this study, we present an approach based on fluorescence cross-correlation spectroscopy (FCCS) (5, 6) and Förster resonance energy transfer (FRET) to determine quantitative parameters of cell signaling pathways, including the determination of the KD for Cdc42-effector interactions in live CHO-K-1 (hereafter referred to as CHO) mammalian cells.The RhoGTPase Cdc42 (7, 8) regulates pathways that coordinate cell cycle, morphogenesis, and polarity. Cdc42 is a molecular switch that cycles between an inactive (GDP-bound) and active (GTP-bound) state. The V12 Cdc42 point mutation freezes the protein in an activated GTP-bound form, which binds effectors strongly. In contrast, Cdc42N17 is a dominant negative protein that is GDP-bound and interacts with effectors weakly if at all (9). A major Cdc42 binding site/domain in effector proteins is known as Cdc42- and Rac-interacting binding region (CRIB)3 and was originally found in activated Cdc42 kinase, p21 activated kinase (PAK), and neural Wiskott-Aldrich syndrome protein (N-WASP) (10). The inverse Bin-amphiphysins-Rvs domain adaptor protein IRSp53 is also an effector but binds Cdc42 through a partial CRIB domain (11, 12). Cdc42 interaction with its effectors has two main consequences, which are not mutually exclusive: (i) unfolding of effector to expose the active site and (ii) relocalization of effector to membrane compartments. Thus Cdc42-effector interactions serve as a good model for cell signaling as a whole.Fluorescence correlation spectroscopy and FCCS measure fluctuations in fluorescence of a small number of molecules as they pass through a defined confocal volume, respectively (13, 14, 15). Since the number of molecules in the confocal volume and the confocal volume itself can be determined, concentrations of protein can be measured by fluorescence correlation spectroscopy. Single wavelength fluorescence cross-correlation spectroscopy (SW-FCCS) is an FCCS variant in which excitation of two or more probes is achieved by single wavelength one-photon excitation. To date SW-FCCS has been used successfully to follow receptors and receptor-ligand interactions in vitro and in vivo (6, 16, 17).In the present analysis, we take a two-step approach to determining the KD of Cdc42 binding to CRIB (domain of PAK), N-WASP, and IRSp53. First, we show that the proteins under investigation are indeed interacting with each other directly in vivo by FRET analysis. Here we use acceptor photobleaching (AP)-FRET as well as changes in lifetime (through fluorescence lifetime imaging microscopy (FLIM)) as indicators of FRET. Second, we use SW-FCCS to determine the KD of Cdc42 interacting with its effectors by measuring the concentration of free protein versus complexed protein. Thus, the combined use of FRET and FCCS allows quantitative analysis of cell signaling pathways in vivo.  相似文献   

12.
The Saccharomyces cerevisiae Cdc42p GTPase interacts with multiple regulators and downstream effectors through an approximately 25-amino-acid effector domain. Four effector domain mutations, Y32K, F37A, D38E, and Y40C, were introduced into Cdc42p and characterized for their effects on these interactions. Each mutant protein showed differential interactions with a number of downstream effectors and regulators and various levels of functionality. Specifically, Cdc42(D38E)p showed reduced interactions with the Cla4p p21-activated protein kinase and the Bem3p GTPase-activating protein and cdc42(D38E) was the only mutant allele able to complement the Deltacdc42 null mutant. However, the mutant protein was only partially functional, as indicated by a temperature-dependent multibudded phenotype seen in conjunction with defects in both septin ring localization and activation of the Swe1p-dependent morphogenetic checkpoint. Further analysis of this mutant suggested that the multiple buds emerged consecutively with a premature termination of bud enlargement preceding the appearance of the next bud. Cortical actin, the septin ring, Cla4p-green fluorescent protein (GFP), and GFP-Cdc24p all predominantly localized to one bud at a time per multibudded cell. These data suggest that Cdc42(D38E)p triggers a morphogenetic defect post-bud emergence, leading to cessation of bud growth and reorganization of the budding machinery to another random budding site, indicating that Cdc42p is involved in prevention of the initiation of supernumerary buds during the cell cycle.  相似文献   

13.
The mechanisms underlying the ability of the Rho-GDP dissociation inhibitor (RhoGDI) to elicit the release of Rho-related GTP-binding proteins from membranes is currently unknown. In this report, we have set out to address this issue by using fluorescence resonance energy transfer approaches to examine the functional interactions of the RhoGDI with membrane-associated Cdc42. Two fluorescence assays were developed to monitor the interactions between these proteins in real time. The first involved measurements of resonance energy transfer between N-methylanthraniloyl GDP (MantGDP) bound to Cdc42 and fluorescein maleimide covalently attached to cysteine 79 of RhoGDI (RhoGDI-FM). This assay allowed us to directly monitor the binding of RhoGDI to membrane-associated Cdc42. The second fluorescence assay involved measurements of resonance energy transfer between membrane-associated Cdc42-MantGDP and hexadecyl(amino) fluorescein that was randomly inserted into the membrane bilayer. This assay enabled us to directly monitor the (GDI-induced) release of Cdc42 from membranes. Analyses of the rates of change in the fluorescence of Cdc42-MantGDP, which serves as a resonance energy transfer donor in both of these assays, as a function of RhoGDI concentration suggests a two-step mechanism to explain the ability of RhoGDI to stimulate the release of Cdc42 from membranes. Specifically, we propose that the GDI first binds rapidly to membrane-associated Cdc42 and then a slower isomerization occurs which represents the rate-limiting step for the dissociation of the Cdc42-RhoGDI complex from membranes. We propose that this slow step in the observed kinetics reflects the time-course of translocation of the geranyl-geranyl lipid tail of Cdc42 from the outer leaflet of the membrane to the isoprenyl binding site observed in the previously reported NMR structure of the Cdc42-RhoGDI complex [Gosser et al. (1997) Nature 387, 814].  相似文献   

14.
W K Stevens  W Vranken  N Goudreau  H Xiang  P Xu  F Ni 《Biochemistry》1999,38(19):5968-5975
Most of the putative effectors for the Rho-family small GTPases Cdc42 and Rac share a common sequence motif referred to as the Cdc42/Rac interactive binding (CRIB) motif. This sequence, with a consensus of I-S-x-P-(x)2-4-F-x-H-x-x-H-V-G [Burbelo, P. D., et al. (1995) J. Biol. Chem. 270, 29071-29074], has been shown to be essential for the functional interactions between these effector proteins and Cdc42. We have characterized the interactions of a 22-residue CRIB peptide derived from human PAK2 [PAK2(71-92)] with Cdc42 using proton and heteronuclear NMR spectroscopy. This CRIB peptide binds to GTP-gammaS-loaded Cdc42 in a saturable manner, with an apparent Kd of 0.6 microM, as determined by fluorescence titration using sNBD-labeled Cdc42. Interaction of the 22-residue peptide PAK2(71-92) with GTP-gammaS-loaded Cdc42 causes resonance perturbations in the 1H-15N HSQC spectrum of Cdc42 that are similar to those observed for a longer (46-amino acid) CRIB-containing protein fragment [Guo, W., et al. (1998) Biochemistry 37, 14030-14037]. Proton NMR studies of PAK2(71-92) demonstrate structuring of PAK2(71-92) in the presence of GTP-gammaS-loaded Cdc42, through the observation of many nonsequential transferred NOEs. Structure calculations based on the observed transferred NOEs show that the central portion of the Cdc42-bound CRIB peptide assumes a loop conformation in which the side chains of consensus residues Phe80, His82, Ile84, His85, and Val86 are brought into proximity. The CRIB motif may therefore represent a minimal interfacial region in the complexes between Cdc42 and its effector proteins.  相似文献   

15.
The Rho-type GTPase Cdc42 is a central regulator of eukaryotic cell polarity and signal transduction. In budding yeast, Cdc42 regulates polarity and mitogen-activated protein (MAP) kinase signaling in part through the PAK-family kinase Ste20. Activation of Ste20 requires a Cdc42/Rac interactive binding (CRIB) domain, which mediates its recruitment to membrane-associated Cdc42. Here, we identify a separate domain in Ste20 that interacts directly with membrane phospholipids and is critical for its function. This short region, termed the basic-rich (BR) domain, can target green fluorescent protein to the plasma membrane in vivo and binds PIP(2)-containing liposomes in vitro. Mutation of basic or hydrophobic residues in the BR domain abolishes polarized localization of Ste20 and its function in both MAP kinase-dependent and independent pathways. Thus, Cdc42 binding is required but is insufficient; instead, direct membrane binding by Ste20 is also required. Nevertheless, phospholipid specificity is not essential in vivo, because the BR domain can be replaced with several heterologous lipid-binding domains of varying lipid preferences. We also identify functionally important BR domains in two other yeast Cdc42 effectors, Gic1 and Gic2, suggesting that cooperation between protein-protein and protein-membrane interactions is a prevalent mechanism during Cdc42-regulated signaling and perhaps for other dynamic localization events at the cell cortex.  相似文献   

16.
Proliferation, differentiation, and morphology of eucaryotic cells is regulated by a large network of signaling molecules. Among the major players are members of the Ras and Rho/Rac subfamilies of small GTPases that bind to different sets of effector proteins. Recognition of multiple effectors is important for communicating signals into different pathways, leading to the question of how an individual GTPase achieves tight binding to diverse targets. To understand the observed specificity, detailed information about binding energetics is expected to complement the information gained from the three-dimensional structures of GTPase/effector protein complexes. Here, the thermodynamics of the interaction of four closely related members of the Ras subfamily with four different effectors and, additionally, the more distantly related Cdc42/WASP couple were quantified by means of isothermal titration calorimetry. The heat capacity changes upon complex formation were rationalized in light of the GTPase/effector complex structures. Changes in enthalpy, entropy, and heat capacity of association with various Ras proteins are similar for the same effector. In contrast, although the structures of the Ras-binding domains are similar, the thermodynamics of the Ras/Raf and Ras/Ral guanine nucleotide dissociation stimulator interactions are quite different. The energy profile of the Cdc42/WASP interaction is similar to Ras/Ral guanine nucleotide dissociation stimulator, despite largely different structures and interface areas of the complexes. Water molecules in the interface cannot fully account for the observed discrepancy but may explain the large range of Ras/effector binding specificity. The differences in the thermodynamic parameters, particularly the entropy changes, could help in the design of effector-specific inhibitors that selectively block a single pathway.  相似文献   

17.
Treatment of cells with epidermal growth factor (EGF) promotes the activation of the small GTP-binding protein Cdc42, as well as its phosphorylation in cells. The EGF-dependent phosphorylation of Cdc42 occurs at tyrosine 64 in the Switch II domain and appears to be mediated through the Src tyrosine kinase, because both the expression of a dominant-negative Src mutant (mouse Src(K297R)) and treatment of cells with the Src kinase inhibitor PP2 blocks the EGF-stimulated phosphorylation of Cdc42, whereas expression of an activated Src mutant (Src(Y529F)) promotes phosphorylation in the absence of EGF treatment. The EGF-stimulated phosphorylation of Cdc42 is not required for its activation, nor does it directly affect the interactions of activated Cdc42 with target/effector proteins including PAK, ACK, WASP, or IQGAP. However, the EGF-stimulated phosphorylation of Cdc42 is accompanied by an enhancement in the interaction of Cdc42 with the Rho-GDP dissociation inhibitor (RhoGDI). The EGF-stimulated activation of Cdc42 does require activated Src, as well as the Vav2 protein, a member of the Dbl family of guanine nucleotide exchange factors. Src catalyzes the tyrosine phosphorylation of Vav2, and overexpression of Vav2 together with activated Src (Src(Y529F)) can completely bypass the need for EGF to promote the activation of Cdc42. Thus, EGF signaling through Src appears to have dual regulatory effects on Cdc42: 1). it leads to the activation of Cdc42 as mediated by the Vav2 guanine nucleotide exchange factor, and 2). it results in the phosphorylation of Cdc42, which stimulates the binding of RhoGDI, perhaps to direct the movement of Cdc42 to a specific cellular site to trigger a signaling response, because Cdc42-RhoGDI interactions are essential for Cdc42-induced cellular transformation.  相似文献   

18.
The tyrosine kinase, activated Cdc42Hs-associated kinase-1 (ACK-1), is a specific effector of the Rho family GTPase Cdc42. GTP-bound Cdc42 has been shown to facilitate neurite outgrowth elicited by activation of muscarinic cholinergic receptors (mAChRs). Because tyrosine kinase activity is a requirement for neuritogenesis in several cell systems, we investigated whether endogenous mAChRs (principally of the M3 subtype) expressed in human SH-SY5Y neuroblastoma cells would signal to ACK-1. Incubation of cells with the cholinergic agonist oxotremorine-M (Oxo-M) induced an approximately 6-fold increase in the tyrosine phosphorylation of ACK-1 which was inhibited by atropine. ACK-1 phosphorylation was blocked by Clostridium difficile toxin B, an inhibitor of Rho family GTPases. In contrast, disruption of the actin cytoskeleton with cytochalasin D stimulated ACK-1 phosphorylation, and moreover, addition of Oxo-M to cells preincubated with this agent elicited a further increase in phosphorylation, indicating that an intact cytoskeleton is not required for mAChR signaling to ACK-1. Although stimulation of M3 mAChRs induces both an increase in intracellular Ca2+ and activation of protein kinase C (PKC), neither of these second messenger pathways was required for receptor-stimulated ACK-1 phosphorylation. Instead, inhibition of PKC resulted in a 2-fold increase in Oxo-M-stimulated ACK-1 phosphorylation, whereas acute activation of PKC with phorbol ester decreased ACK-1 phosphorylation. The agonist-induced tyrosine phosphorylation of ACK-1 was blocked by inhibitors of Src family kinases, and ACK-1 was coprecipitated with Fyn (but not Src) in an agonist-dependent manner. Finally, scrape loading cells with glutathione S-transferase fusion proteins of either the Fyn-SH2 or Fyn-SH3 domain significantly attenuated mAChR-stimulated ACK-1 tyrosine phosphorylation. The data are the first to show phosphorylation of ACK-1 after stimulation of a receptor coupled to neurite outgrowth and indicate that a Rho family GTPase (i.e. Cdc42) and Fyn are essential upstream elements of this signaling pathway.  相似文献   

19.
RhoGDI is required for Cdc42-mediated cellular transformation   总被引:6,自引:0,他引:6  
Lin Q  Fuji RN  Yang W  Cerione RA 《Current biology : CB》2003,13(17):1469-1479
BACKGROUND: Cdc42, a Rho-related small GTP binding protein, plays pivotal roles in actin cytoskeletal organization, Golgi vesicular trafficking, receptor endocytosis, and cell cycle progression. However, the target/effectors mediating these cellular activities and, in particular, those responsible for Cdc42-mediated cell growth regulation and transformation are still being determined. In this study, we set out to examine how the regulatory protein RhoGDI influences the cellular responses elicited by activated Cdc42. RESULTS: X-ray crystallographic analysis of the Cdc42-RhoGDI complex suggested that arginine 66 of Cdc42 is essential for its interaction with RhoGDI. Here we show that mutation of either arginine 66 or arginine 68 within the Switch II domain of Cdc42 completely abolished the binding of Cdc42 to RhoGDI without affecting the binding of other known regulators or target/effectors of this GTP binding protein. Introduction of the RhoGDI binding-defective mutation R66A within a constitutively active Cdc42(F28L) background was accompanied by changes in cell shape and an accumulation of Cdc42 in the Golgi when these cells were compared to those expressing Cdc42(F28L). However, the most striking change was that unlike Cdc42(F28L), which was able to induce the transformation of NIH 3T3 fibroblasts as assayed by their growth in low serum or their ability to form colonies in soft-agar, the Cdc42(F28L,R66A) mutant was transformation-defective. Likewise, the introduction of RhoGDI siRNA into Cdc42(F28L)-transfected cells inhibited their transformation. CONCLUSIONS: Taken together, the results reported here indicate that despite being a negative regulator of Cdc42 activation and GTP hydrolysis, RhoGDI plays an essential role in Cdc42-mediated cellular transformation.  相似文献   

20.
While a significant amount is known about the biochemical signaling pathways of the Rho family GTPase Cdc42, a better understanding of how these signaling networks are coordinated in cells is required. In particular, the predominant subcellular sites where GTP-bound Cdc42 binds to its effectors, such as p21-activated kinase 1 (PAK1) and N-WASP, a homolog of the Wiskott-Aldritch syndrome protein, are still undetermined. Recent fluorescence resonance energy transfer (FRET) imaging experiments using activity biosensors show inconsistencies between the site of local activity of PAK1 or N-WASP and the formation of specific membrane protrusion structures in the cell periphery. The data presented here demonstrate the localization of interactions by using multiphoton time-domain fluorescence lifetime imaging microscopy (FLIM). Our data here establish that activated Cdc42 interacts with PAK1 in a nucleotide-dependent manner in the cell periphery, leading to Thr-423 phosphorylation of PAK1, particularly along the lengths of cell protrusion structures. In contrast, the majority of GFP-N-WASP undergoing FRET with Cy3-Cdc42 is localized within a transferrin receptor- and Rab11-positive endosomal compartment in breast carcinoma cells. These data reveal for the first time distinct spatial association patterns between Cdc42 and its key effector proteins controlling cytoskeletal remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号