首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytochrome c oxidase biogenesis: new levels of regulation   总被引:1,自引:0,他引:1  
Eukaryotic cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is a multimeric enzyme of dual genetic origin, whose assembly is a complicated and highly regulated process. COX displays a concerted accumulation of its constitutive subunits. Data obtained from studies performed with yeast mutants indicate that most catalytic core unassembled subunits are posttranslationally degraded. Recent data obtained in the yeast Saccharomyces cerevisiae have revealed another contribution to the stoichiometric accumulation of subunits during COX biogenesis targeting subunit 1 or Cox1p. Cox1p is a mitochondrially encoded catalytic subunit of COX which acts as a seed around which the full complex is assembled. A regulatory mechanism exists by which Cox1p synthesis is controlled by the availability of its assembly partners. The unique properties of this regulatory mechanism offer a means to catalyze multiple-subunit assembly. New levels of COX biogenesis regulation have been recently proposed. For example, COX assembly and stability of the fully assembled enzyme depend on the presence in the mitochondrial compartments of two partners of the oxidative phosphorylation system, the mobile electron carrier cytochrome c and the mitochondrial ATPase. The different mechanisms of regulation of COX assembly are reviewed and discussed.  相似文献   

2.
Eukaryotic cytochrome c oxidase (COX) is the terminal enzyme of the mitochondrial respiratory chain. COX is a multimeric enzyme formed by subunits of dual genetic origin which assembly is intricate and highly regulated. The COX catalytic core is formed by three mitochondrial DNA encoded subunits, Cox1, Cox2 and Cox3, conserved in the bacterial enzyme. Their biogenesis requires the action of messenger-specific and subunit-specific factors which facilitate the synthesis, membrane insertion, maturation or assembly of the core subunits. The study of yeast strains and human cell lines from patients carrying mutations in structural subunits and COX assembly factors has been invaluable to identify these ancillary factors. Here we review the current state of knowledge of the biogenesis and assembly of the eukaryotic COX catalytic core and discuss the degree of conservation of the players and mechanisms operating from yeast to human. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

3.
Expression of yeast mitochondrial genes depends on specific translational activators acting on the 5'-untranslated region of their target mRNAs. Mss51p is a translational factor for cytochrome c oxidase subunit 1 (COX1) mRNA and a key player in down-regulating Cox1p expression when subunits with which it normally interacts are not available. Mss51p probably acts on the 5'-untranslated region of COX1 mRNA to initiate translation and on the coding sequence itself to facilitate elongation. Mss51p binds newly synthesized Cox1p, an interaction that could be necessary for translation. To gain insight into the different roles of Mss51p on Cox1p biogenesis, we have analyzed the properties of a new mitochondrial protein, mp15, which is synthesized in mss51 mutants and in cytochrome oxidase mutants in which Cox1p translation is suppressed. The mp15 polypeptide is not detected in cox14 mutants that express Cox1p normally. We show that mp15 is a truncated translation product of COX1 mRNA whose synthesis requires the COX1 mRNA-specific translational activator Pet309p. These results support a key role for Mss51p in translationally regulating Cox1p synthesis by the status of cytochrome oxidase assembly.  相似文献   

4.
Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.  相似文献   

5.
Cytochrome c oxidase from Saccharomyces cerevisiae is composed of nine subunits. Subunits I, II and III are products of mitochondrial genes, while subunits IV, V, VI, VII, VIIa and VIII are products of nuclear genes. To investigate the role of cytochrome c oxidase subunit VII in biogenesis or functioning of the active enzyme complex, a null mutation in the COX7 gene, which encodes subunit VII, was generated, and the resulting cox7 mutant strain was characterized. The strain lacked cytochrome c oxidase activity and haem a/a3 spectra. The strain also lacked subunit VII, which should not be synthesized owing to the nature of the cox7 mutation generated in this strain. The amounts of remaining cytochrome c oxidase subunits in the cox7 mutant were examined. Accumulation of subunit I, which is the product of the mitochondrial COX1 gene, was found to be decreased relative to other mitochondrial translation products. Results of pulse-chase analysis of mitochondrial translation products are consistent with either a decreased rate of translation of COX1 mRNA or a very rapid rate of degradation of nascent subunit I. The synthesis, stability or mitochondrial localization of the remaining nuclear-encoded cytochrome c oxidase subunits were not substantially affected by the absence of subunit VII. To investigate whether assembly of any of the remaining cytochrome c oxidase subunits is impaired in the mutant strain, the association of the mitochondrial-encoded subunits I, II and III with the nuclear-encoded subunit IV was investigated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
In the yeast Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) biogenesis is translationally regulated. Mss51, a specific COX1 mRNA translational activator and Cox1 chaperone, drives the regulatory mechanism. During translation and post-translationally, newly synthesized Cox1 physically interacts with a complex of proteins involving Ssc1, Mss51, and Cox14, which eventually hand over Cox1 to the assembly pathway. This step is probably catalyzed by assembly chaperones such as Shy1 in a process coupled to the release of Ssc1-Mss51 from the complex. Impaired COX assembly results in the trapping of Mss51 in the complex, thus limiting its availability for COX1 mRNA translation. An exception is a null mutation in COX14 that does not affect Cox1 synthesis because the Mss51 trapping complexes become unstable, and Mss51 is readily available for translation. Here we present evidence showing that Cox25 is a new essential COX assembly factor that plays some roles similar to Cox14. A null mutation in COX25 by itself or in combination with other COX mutations does not affect Cox1 synthesis. Cox25 is an inner mitochondrial membrane intrinsic protein with a hydrophilic C terminus protruding into the matrix. Cox25 is an essential component of the complexes containing newly synthesized Cox1, Ssc1, Mss51, and Cox14. In addition, Cox25 is also found to interact with Shy1 and Cox5 in a complex that does not contain Mss51. These results suggest that once Ssc1-Mss51 are released from the Cox1 stabilization complex, Cox25 continues to interact with Cox14 and Cox1 to facilitate the formation of multisubunit COX assembly intermediates.  相似文献   

7.
The biogenesis of the inner mitochondrial membrane enzyme cytochrome c oxidase (COX) is a complex process that requires the actions of ancillary proteins, collectively called assembly factors. Studies with the yeast Saccharomyces cerevisiae have provided considerable insight into the COX assembly pathway and have proven to be a fruitful model for understanding the molecular bases for inherited COX deficiencies in humans. In this review, we focus on critical steps in the COX assembly pathway. These processes are conserved from yeast to humans and are known to be involved in the etiology of human COX deficiencies. The contributions from our studies in yeast suggest that this organism remains an excellent model system for delineating the molecular mechanisms underlying COX assembly defects in humans. Current progress suggests that a complete picture of COX assembly will be achieved in the near future.  相似文献   

8.
Stribinskis V  Gao GJ  Ellis SR  Martin NC 《Genetics》2001,158(2):573-585
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.  相似文献   

9.
Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.  相似文献   

10.
Biogenesis of the mitochondrial cytochrome c oxidase (COX) is a highly complex process involving subunits encoded both in the nuclear and the organellar genome; in addition, a large number of assembly factors participate in this process. The soil bacterium Paracoccus denitrificans is an interesting alternative model for the study of COX biogenesis events because the number of chaperones involved is restricted to an essential set acting in the metal centre formation of oxidase, and the high degree of sequence homology suggests the same basic mechanisms during early COX assembly. Over the last years, studies on the P. denitrificans Surf1 protein shed some light on this important assembly factor as a heme a binding protein associated with Leigh syndrome in humans. Here, we summarise our current knowledge about Surf1 and its role in heme a incorporation events during bacterial COX biogenesis. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.  相似文献   

11.
Qi Z  He J  Su Y  He Q  Liu J  Yu L  Al-Attas O  Hussain T  Ding S  Ji L  Qian M 《PloS one》2011,6(7):e21140
The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX) biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-μ (PFTμ), sacrificed and studied at different ages; ICR/CD-1 mice at younger or older ages were randomized to endurance treadmill running and sedentary conditions. The results showed that mRNA expression of p53 and its protein levels in mitochondria increased with age in cardiac muscle, accompanied by increased mitochondrial oxidative stress, reduced expression of COX subunits and assembly proteins, and decreased expression of most markers in mitochondrial biogenesis. Most of these age-related changes including p53 activity targeting cytochrome oxidase deficient homolog 2 (SCO2), p53 translocation to mitochondria and COX biogenesis were attenuated by exercise in older mice. PFTμ, an inhibitor blocking p53 translocation to mitochondria, increased COX biogenesis in older mice, but not in young mice. Our data suggest that physical exercise attenuates age-related changes in mitochondrial COX biogenesis and p53 activity targeting SCO2 and mitochondria, and thereby induces antisenescent and protective effects in cardiac muscle.  相似文献   

12.
13.
The intricate biogenesis of multimeric organellar enzymes of dual genetic origin entails several levels of regulation. In Saccharomyces cerevisiae, mitochondrial cytochrome c oxidase (COX) assembly is regulated translationally. Synthesis of subunit 1 (Cox1) is contingent on the availability of its assembly partners, thereby acting as a negative feedback loop that coordinates COX1 mRNA translation with Cox1 utilization during COX assembly. The COX1 mRNA-specific translational activator Mss51 plays a fundamental role in this process. Here, we report that Mss51 successively interacts with the COX1 mRNA translational apparatus, newly synthesized Cox1, and other COX assembly factors during Cox1 maturation/assembly. Notably, the mitochondrial Hsp70 chaperone Ssc1 is shown to be an Mss51 partner throughout its metabolic cycle. We conclude that Ssc1, by interacting with Mss51 and Mss51-containing complexes, plays a critical role in Cox1 biogenesis, COX assembly, and the translational regulation of these processes.Translational regulation is a fundamental mechanism used to control the accumulation of key proteins in a large variety of biogenetic and physiological processes in both prokaryotic and eukaryotic cells (20, 23). Translational autoregulation is a particular form of regulation exerted by the protein being translated. It is a well-established control mechanism for bacteriophage and prokaryotic systems (15), and it has also been reported in eukaryotes (4). Usually, the newly synthesized protein binds to its own mRNA to repress translation (20). However, repression can also be exerted by nascent chains interacting with the ribosome (49).Translational autoregulation also occurs in semiautonomous eukaryotic organelles of ancestral bacterial origin, namely, mitochondria and chloroplasts. During evolution, these organelles have retained a few genes in their own genomes, which are transcribed within the organelle, and the mRNAs are translated on organellar ribosomes. Most proteins synthesized within the organelles are part of large multimeric enzyme complexes devoted to energy production. These complexes are formed by subunits of dual genetic origin, nuclear and organellar, and assemble in the organellar membranes. Interestingly, intraorganellar translation of certain subunits has been proposed to be regulated by the availability of their assembly partners (1, 39, 54, 55). A distinctive characteristic of these systems is the involvement of ternary factors, mRNA-specific translational activators whose availability would be regulated by the specific gene products. The players and mechanisms involved remain largely unknown.We have focused on the characterization, in the yeast Saccharomyces cerevisiae, of an assembly-controlled translational regulatory system that operates during the biogenesis of cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain. The three subunits forming the COX catalytic core (1, 2, and 3) are encoded in the mitochondrial DNA (mtDNA), and the remaining eight subunits are encoded in the nuclear DNA. Subunits 1 and 2 coordinate the heme A and copper prosthetic groups of the enzyme. COX biogenesis requires the assistance of a large number of ancillary factors acting at all the levels of the process (11). COX assembly is thought to be linear, consisting of the sequential addition of subunits to an initial seed formed by the mtDNA-encoded subunit 1 (Cox1) in both mammalian and yeast cells (11).The concerted accumulation of COX subunits is regulated by posttranslational degradation of most unassembled Cox1 and the other highly hydrophobic core subunits (27). Recently, we along with others have proposed an additional level of regulation, namely, an assembly-controlled synthesis of Cox1 (1, 2, 39, 56). In S. cerevisiae, COX1 mRNA translation is under the control of Mss51 and Pet309 (8, 30). Mss51 is a key element of the regulatory system. Mss51 acts on the 5′ untranslated region (UTR) of COX1 mRNA to promote translation initiation (39, 56) and additionally acts on a target in the protein coding sequence of COX1 mRNA, perhaps to promote elongation (39). Mss51 and newly synthesized Cox1 form a transient complex (2, 39) that is stabilized by Cox14 (2). We have postulated that these interactions downregulate Cox1 synthesis when COX assembly is impaired by trapping Mss51 and limiting its availability for COX1 mRNA translation (2). According to this model, the release of Mss51 from the ternary complex and its availability for Cox1 synthesis probably occur when Cox1 acquires its prosthetic groups or interacts with other COX subunits, a step possibly catalyzed by Shy1, a protein involved in maturation and/or assembly of Cox1 (2, 10, 34). Coa1 could also participate in Cox1 maturation and stabilize the ternary Cox1/Mss51/Cox14 complex until it interacts with Shy1 (34, 40). Further studies are required to understand how Mss51 is recycled from its posttranslational function to become available for COX1 mRNA translation and to fully clarify how this regulatory mechanism operates.In this study, we have analyzed protein-interacting partners of Mss51 in the wild type and a collection of COX assembly mutants. We found that the native molecular weight (MW) of Mss51 is dependent on both the status of COX assembly and the synthesis of Cox1. The mitochondrial Hsp70 (mtHsp70) chaperone Ssc1 interacts with Mss51 and with several high-molecular weight Mss51-containing complexes involving the COX1 mRNA translational apparatus, Cox1, and several Cox1 assembly factors. Mutants defective in Cox1 maturation or in other aspects of COX biogenesis accumulate distinct ratios of these complexes. In this way, Cox1 regulates its own translation through the action of Mss51 and Ssc1.  相似文献   

14.
Cytochrome c-oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, plays a key role in the regulation of aerobic production of energy. Biogenesis of eukaryotic COX involves the coordinated action of two genomes. Three mitochondrial DNA-encoded subunits form the catalytic core of the enzyme, which contains metal prosthetic groups. Another 10 subunits encoded in the nuclear DNA act as a protective shield surrounding the core. COX biogenesis requires the assistance of >20 additional nuclear-encoded factors acting at all levels of the process. Expression of the mitochondrial-encoded subunits, expression and import of the nuclear-encoded subunits, insertion of the structural subunits into the mitochondrial inner membrane, addition of prosthetic groups, assembly of the holoenzyme, further maturation to form a dimer, and additional assembly into supercomplexes are all tightly regulated processes in a nuclear-mitochondrial-coordinated fashion. Such regulation ensures the building of a highly efficient machine able to catalyze the safe transfer of electrons from cytochrome c to molecular oxygen and ultimately facilitate the aerobic production of ATP. In this review, we will focus on describing and analyzing the present knowledge about the different regulatory checkpoints in COX assembly and the dynamic relationships between the different factors involved in the process. We have used information mostly obtained from the suitable yeast model, but also from bacterial and animal systems, by means of large-scale genetic, molecular biology, and physiological approaches and by integrating information concerning individual elements into a cellular system network.  相似文献   

15.
The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no l-NAME ingestion and acute exercise, rest plus l-NAME, and rest without l-NAME. The exercised rats ran on a treadmill for 53 +/- 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-gamma coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-gamma coactivator 1alpha (PGC-1alpha) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.  相似文献   

16.
17.
Respiratory-defective mutants of Saccharomyces cerevisiae assigned to pet complementation group G19 lack cytochrome oxidase activity and cytochromes a and a3. The enzyme deficiency is caused by recessive mutations in the nuclear gene COX10. Analyses of cytochrome oxidase subunits suggest that the product of COX10 provides an essential function at a posttranslational stage of enzyme assembly. The wild type COX10 gene has been cloned by transformation of a mutant from complementation group G19 with a yeast genomic library. Based on the nucleotide sequence of COX10, the primary translation product has an Mr of 52,000. The amino-terminal 190 residues constitute a hydrophilic domain while the carboxyl-terminal region is hydrophobic and has nine potential membrane-spanning segments. The sequence of the carboxyl-terminal hydrophobic region is homologous to an unidentified protein encoded by a reading frame (ORF1) located in one of the cytochrome oxidase operons of Paracoccus denitrificans. The two proteins share 24% identical residues and exhibit very similar hydrophobicity profiles. The bacterial homolog, however, lacks the hydrophilic amino-terminal region of the yeast protein.  相似文献   

18.
19.
Differentiation and biogenesis of mitochondria in brown adipose tissue (BAT) was studied in situ and in cell culture by Western blotting, enzyme activity measurements, [35S]methionine incorporation and immunofluorescence microscopy. In different rodent species the perinatal development of BAT thermogenic function resulted from the formation of thermogenic mitochondria which replaced the preexisting nonthermogenic mitochondria. Their biogenesis was characterized by the sudden appearance and rapid increase of the uncoupling protein (UCP), increase of cytochrome oxidase (COX) and decrease of H(+)-ATPase. In primary cell culture, differentiation of precursor cells from mouse BAT to typical multilocular adipocytes was accompanied by increasing content of COX and H(+)-ATPase. A selective synthesis of UCP was induced by activation of beta-adrenergic receptors or by elevated levels of cellular cAMP. UCP was quantitatively incorporated into mitochondria and within 24 h after stimulation reached near physiological concentration. Both in situ and in cell culture, the conditions enabling the expression of UCP gene were accompanied by activation of intracellular thyroxine 5'-deiodinase.  相似文献   

20.
The ABC ATPase RNase-L inhibitor (RLI) emerges as a key enzyme in ribosome biogenesis, formation of translation preinitiation complexes, and assembly of HIV capsids. To help reveal the structural mechanism of RLI, we determined the Mg2+-ADP bound crystal structure of the twin cassette ATPase of P. furiosus RLI at 1.9 A resolution and analyzed functional motifs in yeast in vivo. RLI shows similarities but also differences to known ABC enzyme structures. Twin nucleotide binding domains (NBD1 and NBD2) are arranged to form two composite active sites in their interface cleft, indicating they undergo the ATP-driven clamp-like motion of the NBDs of ABC transporters. An unusual "hinge" domain along the NBD1:NBD2 interface provides a frame for association and possibly ATP-driven conformational changes of the NBDs. Our results establish a first structural basis for ABC domain heterodimers and suggest that RLI may act as mechanochemical enzyme in ribosome and HIV capsid biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号