首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel plate assay method, developed for the screening of microorganisms or enzyme preparations for phenolic acid esterases, involves incorporating ethyl cinnamate into an agar medium. After inoculation and incubation, the plate is flooded with a pH-sensitive dye to reveal yellow zones around positive cultures against a blue background. A number of yeasts (Rhodotorula spp. and Candida spp.) and fungi (Penicillium sp. and Aspergillus sp.) gave positive results, while a number of commercial enzymes, particularly pectinases, also exhibited good phenolic acid esterase.J.A. Donaghy and A.M. McKay are with the Food Microbiology Research Division, Department of Agriculture for Northern Ireland, Newforge Lane, Belfast BT9 5PX, UK. A.M. McKay is also with the Department of Food Science (Microbiology), The Queen's University of Belfast, Newforge Lane, Belfast BT9 5PX, UK.  相似文献   

2.
We found that hydroxycinnamic acid (HA) glycerol esters such as 1-sinapoyl glycerol and 1-p-coumaroyl glycerol can be synthesized through a direct esterification reaction using a type A feruloyl esterase from Aspergillus niger. The water solubilities of HA glycerol esters were higher than those of the original chemicals. HA glycerol esters absorbed ultraviolet light and scavenged 1,1-diphenyl-2-picrylhydrazyl radicals.  相似文献   

3.
Wheat bran cell walls were subjected to mild acid hydrolysis and the major phenolic product was purified and identified as 5-O-(trans-feruloyl)-arabinofuranose. Sensitive continuous and stopped, microtiter plate-based spectrophotometric assays for trans-feruloyl esterase activity were developed using this compound as substrate. Procedures were also developed for the detection of trans-feruloyl esterase activities on gels following electrophoresis using this compound. These procedures are applicable to other natural feruloyl esters derived from plant cell walls by enzymatic hydrolysis. The extracellular trans-feruloyl esterases of Aspergillus niger 814 grown on 1% wheat bran were fractionated by anion-exchange chromatography and isoelectric focusing. These studies indicate that there are multiple forms of trans-feruloyl esterase but that most activity is associated with a major isozyme with a pI of 3.2.  相似文献   

4.
Extracellular esterase production by Penicillium expansum, Penicillium brevicompactum and Aspergillus niger was determined in both liquid and solid-state culture. Methyl ferulate was used as the main carbon source in liquid culture whereas wheat bran and sugar beet pulp were used in solid-state culture. Extracted enzyme for each fungus showed activity in the presence of ONP butyrate, methyl ferulate, methyl coumarate and two 'natural'feruloylated carbohydrate esters. Higher enzyme recoveries were obtained using wheat bran in solid-state culture. Higher levels of feruloyl esterase activity were recovered from P. expansum on all feruloylated substrates than from P. brevicompactum or A. niger. Using ONP butyrate as substrate the pH and temperature optima for the esterases of both Penicillium spp. were 6.0 and 25–30°C. Aspergillus niger esterase activity showed a broader temperature range with an optimum at 40°C.  相似文献   

5.
Apple pomace was used in solid-substrate fermentation with the yeastsKloeckera apiculata orCandida utilis Y15. A total crude protein content of 7.5% (w/w) was achieved after 72 h for each yeast. The concentration of essential amino acids in the modified apple pomace was more than twice that in the control, enhancing its nutritive value as a stock-feed supplement. The fermentation of pomace as described can be used to reprocess this waste material into a useful value-added product for the agricultural sector.H. Rahmat was and R.A. Hodge, G.J. Manderson and P.L. Yu are with the Biotechnology Group, Department of Process and Environmental Technology, Massey University, Palmerston North, New Zealand; H. Rahmat is now with the Department of Chemical Engineering, Queen's University of Belfast, Belfast BT9 5AG, Northern Ireland, UK.  相似文献   

6.
Feruloyl esterases act as accessory enzymes for the complete saccharification of plant cell wall hemicelluloses. Although many fungal feruloyl esterases have been purified and characterized, few bacterial phenolic acid esterases have been characterized. This study shows the extracellular production of a feruloyl esterase by the thermophilic anaerobe Clostridium stercorarium when grown on birchwood xylan. The feruloyl esterase was purified 500-fold in successive steps involving ultrafiltration, preparative isoelectric focusing and column chromatography by anion exchange, gel filtration and hydrophobic interaction. The purified enzyme released ferulic, rho-coumaric, caffeic and sinapinic acid from the respective methyl esters. The purified enzyme also released ferulic acid from a de-starched wheat bran preparation. At pH 8.0 and 65 degrees C, the Km and Vmax values for the hydrolysis of methyl ferulate were 0.04 mmol l-l and 131 micromol min-1 mg-1, respectively; the respective values for methyl coumarate were 0.86 mmol l-l and 18 micromol min-1 mg-1. The purified feruloyl esterase had an apparent mass of 33 kDa under denaturing conditions and showed optimum activity at pH 8.0 and 65 degrees C. At a concentration of 5 mmol l-l, the ions Ca2+, Cu2+, Co2+ and Mn2+ reduced the activity by 70-80%.  相似文献   

7.
Ferulic acid (FA), a component of hemicellulose in plant cell walls, is a phenolic acid with several potential applications based on its antioxidant properties. Recent studies have shown that feruloyl esterase (FAE) is a key bacterial enzyme involved in FA production from agricultural biomass. In this study, we screened a library of 43 esterases from Streptomyces species and identified two enzymes, R18 and R43, that have FAE activity toward ethyl ferulate. In addition, we characterized their enzyme properties in detail. R18 and R43 showed esterase activity toward other hydroxycinnamic acid esters as well, such as methyl p-coumarate, methyl caffeate, and methyl sinapinate. The amino acid sequences of R18 and R43 were neither similar to each other, nor to other FAEs. We found that R18 and R43 individually showed the ability to produce FA from corn bran; however, combination with other Streptomyces enzymes, namely xylanase and α-l-arabinofuranosidase, increased FA production from biomass such as corn bran, defatted rice bran, and wheat bran. These results suggest that R18 and R43 are effective FAEs for the enzymatic production of FA from biomass.  相似文献   

8.
An extracellular phenolic acid esterase produced by the fungus Penicillium expansum in solid state culture released ferulic and ρ-coumaric acid from methyl esters of theacids, and from the phenolic-carbohydrate esters O-[5-O-(trans-feruloyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose (FAXX) and O-[5-O-((E)-ρ-coumaroyl)-α- l -arabinofuranosyl]-(1 → 3)-O-β- d -xylopyranosyl-(1 → 4)- d -xylopyranose(PAXX). The esterase was purified 360-fold in successive stepsinvolving ultrafiltration and column chromatography by gel filtration, anion exchange andhydrophobic interaction. These chromatographic methods separated the phenolic acid esterasefrom α- l -arabinofuranosidase, pectate and pectin lyase, polygalacturonase,xylanase and β- d -xylosidase activities. The phenolic acid esterase had an apparentmass of 65 kDa under non-denaturing conditions and a mass of 57·5 kDa underdenaturing conditions. Optimal pH and temperature were 5·6 and 37 °C,respectively and the metal ions Cu2+ and Fe3+ atconcentrations of 5 mmol l−1 inhibited feruloyl esterase activity by 95% and44%, respectively, at the optimum pH and temperature. The apparent Km and Vmax of the purified feruloyl esterase for methyl ferulate at pH 5·6 and 37 °Cwere 2·6 mmol l−1 and 27·1 μmol min−1 mg−1. The corresponding constants of ρ-coumaroylesterase for methyl coumarate were 2·9 mmol l−1 and 18·6μmol min−1 mg−1.  相似文献   

9.
A feruloyl esterase (FAE) gene was isolated from a rumen microbial metagenome, cloned into E. coli, and expressed in active form. The enzyme (RuFae2) was identified as a type C feruloyl esterase. The RuFae2 alone released ferulic acid from rice bran, wheat bran, wheat-insoluble arabinoxylan, corn fiber, switchgrass, and corn bran in the order of decreasing activity. Using a saturating amount of RuFae2 for 100 mg substrate, a maximum of 18.7 and 80.0 μg FA was released from 100 mg corn fiber and wheat-insoluble arabinoxylan, respectively. Addition of GH10 endoxylanase (EX) synergistically increased the release of FA with the highest level of 6.7-fold for wheat bran. The synergistic effect of adding GH11 EX was significantly smaller with all the substrates tested. The difference in the effect of the two EXs was further analyzed by comparing the rate in the release of FA with increasing EX concentration using wheat-insoluble arabinoxylan as the substrate.  相似文献   

10.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

11.
The new phenolics, the trans-p-coumaroyl and the feruloyl esters of 2,3-dihydroxy-1,2-propanedicarboxylic acid and itaconic acid, were isolated from Lilium longiflorum; the cis-p-coumaroyl ester was also detected. The biological activities of the trans-p-coumaroyl ester are described.  相似文献   

12.
A feruloyl esterase catalyzes the hydrolysis of the 4-hydroxy-3-methoxycinnamoyl (feruloyl) group from esterified sugars in plant cell walls. Talaromyces cellulolyticus is a high cellulolytic-enzyme producing fungus. However, there is no report for feruloyl esterase activity of T. cellulolyticus. Analysis of the genome database of T. cellulolyticus identified a gene encoding a putative feruloyl esterase B. The recombinant enzyme was prepared using a T. cellulolyticus homologous expression system and characterized. The purified enzyme exhibited hydrolytic activity toward p-nitrophenyl acetate, p-nitrophenyl trans-ferulate, methyl ferulate, rice husk, and bagasse. HPLC assays showed that the enzyme released ferulic acid and p-coumaric acid from hydrothermal-treated rice husk and bagasse. Trichoderma sp. is well-known high cellulolytic-enzyme producing fungus useful for the lignocellulosic biomass saccharification. Interestingly, no feruloyl esterase has been reported from Trichoderma sp. The results show that this enzyme is expected to be industrially useful for biomass saccharification.  相似文献   

13.
14.
A feruloyl esterase (StFaeC) produced by Sporotrichum thermophile was purified to homogeneity. The native StFaeC was homodimer with a subunit of Mr 23,000 and pI 3.1. The enzyme activity was optimal at pH 6.0 and 55 °C. The esterase displayed remarkable stability at pH 10.0 and retained 50% of its activity after 133 and 55 min at 55 and 60 °C, respectively. Determination of kcat/Km revealed that the enzyme had a broad spectrum of activity against the (hydroxyl) cinnamate esters indicating a type C feruloyl esterase. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and hydrolysed 4-nitrophenyl-5-O-trans-feruloyl-α-l-arabinofuranoside three times more efficiently than 4-nitrophenyl-2-O-trans-feruloyl-α-l-arabinofuranoside. Ferulic acid was efficiently released from wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 41% total ferulic acid released after 1 h incubation). StFaeC by itself could release FA but at a level almost 10-fold lower than that obtained in the presence of xylanase. The potential of StFaeC for the synthesis of various phenolic acid esters was examined using as a reaction system a ternary water–organic mixture consisting of n-hexane, 1-butanol and water. Also StFaeC catalyzed the transfer of the feruloyl group to l-arabinose in a similar system using t-butanol, with about a 40% conversion of l-arabinose to feruloylated derivative was achieved. This work is the first example of enzymatic feruloylation of a carbohydrate.  相似文献   

15.
对于小花清风藤的化学成分和药理作用的研究目前较少报道,为了阐明小花清风藤的物质基础,该研究对小花清风藤(Sabia parviflora)的干燥叶,采用反复硅胶柱色谱、Sephadex LH-20柱色谱、制备薄层色谱及重结晶等手段进行分离纯化,运用化学分析和波谱学方法鉴定化合物的结构。结果表明:从小花清风藤干燥叶的甲醇超声提取物中进行分离共得到12个化合物,分别为N-反式阿魏酰酪胺(1)、N-顺式阿魏酰酪胺(2)、N-反式-对-香豆酰酪胺(3)、N-顺式-对-香豆酰酪胺(4)、N-反式-对-香豆酰章鱼胺(5)、N-顺式-对-香豆酰章鱼胺(6)、阿魏酸(7)、芹菜素(8)、木犀草素(9)、咖啡酸(10)、5-氧阿朴菲碱(11)、齐墩果酸(12)。其中,化合物2、4-9为首次从清风藤属植物中分离得到,化合物1、3、10为首次从该植物中分离得到。  相似文献   

16.
This study describes the release of antioxidant ferulic acid from wheat and triticale brans by mixtures of extracellular enzymes produced in culture by a strain FC007 of Alternaria alternata, a dark mold originally isolated from Canadian wood log. The genus of the mold was confirmed as Alternaria by 18S ribosomal DNA characterization. Enzyme activities for feruloyl esterase (FAE) and polysaccharide hydrolyzing enzymes were measured, and conditions for release of ferulic acid and reducing sugars from the mentioned brans were evaluated. The highest level of FAE activity (89 ± 7 mU ml−1 fermentation culture) was obtained on the fifth day of fermentation on wheat bran as growth substrate. Depending on biomass and processing condition, up to 91.2 or 72.3% of the ferulic acid was released from wheat bran and triticale bran, respectively, indicating the proficiency of A. alternata extracellular enzymes in plant cell wall deconstruction. The apparent high extraction of ferulic acid from wheat and triticale brans represents a potential advantage of using a whole fungal cell enzyme complement over yields reported previously through an artificial assembly of cloned FAE with a particular xylanase in a cocktail format.  相似文献   

17.
An enzyme active toward the methyl ester of ferulic acid was isolated from the fungus Aspergillus sp. and purified to homogeneity using ion-exchange and hydrophobic chromatography. The molecular weight of the enzyme is 42 kD, and its pI is 3.7. The enzyme has a pH optimum in the range 4-6 and a temperature optimum in the range 40 to 60 degrees C. Using a number of synthetic and natural substrates, the enzyme was identified as a feruloyl esterase. The feruloyl esterase did not hydrolyze wheat straw. Ferulic acid was detected as a product of hydrolysis of wheat bran and sugar-beet pulp. Other products were also detected after sugar-beet pulp hydrolysis.  相似文献   

18.
An extracellular feruloyl esterase (FAE-II) from the culture filtrates of Fusarium oxysporum F3 was purified to homogeneity by SP-Sepharose, t-butyl-HIC and Sephacryl S-200 column chromatography. The protein corresponded to molecular mass and pI values of 27 kDa and 9.9, respectively. The enzyme was optimally active at pH 7 and 45 degrees C. The purified esterase was fully stable at pH 7.0-9.0 and temperature up to 45 degrees C after 1 h incubation. Determination of k(cat)/K(m) revealed that the enzyme hydrolysed methyl sinapinate 6, 21 and 40 times more efficiently than methyl ferulate, methyl coumarate and methyl caffeate, respectively. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 but inactive to the C-2 positions of arabinofuranose such as 4-nitrophenyl 5-O-trans-feruloyl-alpha-L-arabinofuranoside and 4-nitrophenyl 2-O-trans-feruloyl-alpha-L-arabinofuranoside. In the presence of Sporotrichum thermophile xylanase, there was a significant release of ferulic acid from destarched wheat bran by FAE-II, indicating a synergistic interaction between FAE-II and S. thermophile xylanase. FAE-II by itself could release only little ferulic acid from destarched wheat bran. The potential of FAE-II for the synthesis of various phenolic acid esters was tested using as a reaction system a surfactantless microemulsion formed in ternary mixture consisting of n-hexane, 1-propanol and water.  相似文献   

19.
A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0±1.5 kDa, with a mass of 33±1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55–60 °C. The purified esterase was stable at the pH range 5.0–7.0. The enzyme retained 70% of activity after 7 h at 50 °C and lost 50% of its activity after 45 min at 55 °C and after 12 min at 60 °C. Determination of k cat/K m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and it hydrolyzed 4-nitrophenyl 5-O-trans-feruloyl--l-arabinofuranoside (NPh-5-Fe-Araf) 2-fold more efficiently than NPh-2-Fe-Araf. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system.  相似文献   

20.
Ferulic Acid Esterase Activity from Schizophyllum commune   总被引:7,自引:3,他引:4       下载免费PDF全文
Schizophyllum commune produced an esterase which released ferulic acid from starch-free wheat bran and from a soluble ferulic acid-sugar ester that was isolated from wheat bran. The preferred growth substrate for the production of ferulic acid esterase was cellulose. Growth on xylan-containing substrates (oat spelt xylan and starch-free wheat bran) resulted in activity levels that were significantly lower than those observed in cultures grown on cellulose. Similar observations were made for endoglucanase, p-nitrophenyllactopyranosidase, xylanase, and acetyl xylan esterase. Of the enzymes studied, only arabinofuranosidase was produced at maximum levels during growth on xylan-containing materials. Ferulic acid esterase that had been partially purified by DEAE chromatography released significant amounts of ferulic acid from wheat bran only in the presence of a xylanase-rich fraction, indicating that the esterase may not be able to readily attack high-molecular-weight substrates. The esterase acted efficiently, without xylanase addition, on a soluble sugar-ferulic acid substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号