首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Germinal center kinases (GCKs) compose a subgroup of the Ste20 family of kinases. Here we describe the cloning and characterization of a novel GCK family kinase, Traf2- and Nck-interacting kinase (TNIK) that interacts with both Traf2 and Nck. TNIK encodes a polypeptide of 1360 amino acids with eight spliced isoforms. It has 90% amino acid identity to the Nck-interacting kinase in both the N-terminal kinase domain and the C-terminal germinal center kinase homology region. The homology drops to 53% in the intermediate region. TNIK specifically activates the c-Jun N-terminal kinase pathway when transfected into Phoenix-A cells (derivatives of 293 cells), similar to many GCKs. However, in contrast to other GCKs, this activation is mediated solely by the GCK homology region of TNIK. In addition, in Phoenix-A, NIH-3T3, and Hela cells, overexpression of wild type TNIK, but not the kinase mutant form of TNIK, results in the disruption of F-actin structure and the inhibition of cell spreading. Furthermore, TNIK can phosphorylate Gelsolin in vitro. This is the first time that a GCK family kinase is shown to be potentially involved in the regulation of cytoskeleton.  相似文献   

2.
3.
We have cloned a novel human GCK family kinase that has been designated as MASK (Mst3 and SOK1-related kinase). MASK is widely expressed and encodes a protein of 416 amino acid residues, with an N-terminal kinase domain and a unique C-terminal region. Like other GCK-III subfamily kinases, MASK does not activate any mitogen-activated protein kinase pathways. Wild type MASK, but not a form lacking the C terminus, exhibits homophilic binding in the yeast two-hybrid system and in coimmunoprecipitation experiments. Additionally, deletion of this C-terminal region of MASK leads to an increased kinase activity toward itself as well as toward an exogenous substrate, myelin basic protein. A potential caspase 3 cleavage site (DESDS) is present in the C-terminal region of MASK, and we show that MASK is cleaved in vitro by caspase 3. Finally, wild type and C-terminally truncated forms of MASK can both induce apoptosis upon overexpression in mammalian cells that is abrogated by CrmA, suggesting involvement of MASK in the apoptotic machinery in mammalian cells.  相似文献   

4.
Germinal center kinase (GCK), a member of the Ste20 family, selectively activates the Jun N-terminal kinase (JNK) group of mitogen-activated protein kinases. Here, we show that endogenous GCK is activated by polyinosine-polycytidine [poly(IC)] and lipopolysaccharides (LPS), lipid A, interleukin-1 (IL-1), and engagement of CD40, all agonists that require TRAF6 for JNK activation. RNA interference experiments indicate that GCK is required for the maximal activation of JNK by LPS, lipid A, poly(IC), and, to a lesser extent, IL-1 and engagement of CD40. GCK is ubiquitinated in situ and stabilized by inhibitors of the proteasome, indicating that GCK is subject to proteasomal turnover. GCK is constitutively active, and the kinase activity of GCK is required for GCK ubiquitination. Agonist activation of GCK involves the TRAF6-dependent transient stabilization of the GCK polypeptide rather than an increase in intrinsic kinase activity. Our results identify a physiologic function and unexpected mode of regulation for GCK.  相似文献   

5.
The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kinome. Two known Ras-regulated kinases were identified, phosphoinositide 3-kinase p110alpha and ribosomal protein S6 kinase p70(S6K1), plus the MAP kinase kinase kinase kinase MINK, which had not previously been implicated in Ras signaling. MINK is activated after Ras induction via a mechanism involving reactive oxygen species and mediates stimulation of the stress-activated protein kinase p38 MAPK downstream of the Raf/ERK pathway. p38 MAPK activation is essential for Ras-induced p21(WAF1/CIP1) upregulation and cell cycle arrest. MINK is thus a distal target of Ras signaling in the induction of a growth-arrested, senescent-like phenotype that may act to oppose oncogenic transformation in HOSE cells.  相似文献   

6.
7.
Nck-interacting kinase-like embryo-specific kinase (NESK) is a protein kinase that is predominantly expressed in skeletal muscle during the late stages of mouse embryogenesis. NESK belongs to the germinal center kinase (GCK) family and selectively activates the c-Jun N-terminal kinase (JNK) pathway when overexpressed in cultured cells. Some members of the GCK family have been shown to be proteolytically cleaved and activated during apoptosis. Here, we report that NESK is also proteolytically cleaved during apoptosis. Treatment of NESK-transfected HeLa cells with TNF-alpha in the presence of cycloheximide or with staurosporine induced proteolytic cleavage of NESK. The cleavage of NESK occurred at two sites, generating three fragments: an N-terminal fragment containing a kinase domain, an intermediate fragment and a C-terminal fragment containing a regulatory CNH domain. These two cleavages occurred in a stepwise manner and were dependent on a caspase activity. The cleavage sites were identified as aspartic acid residues at 868 and 1091. The N-terminal fragment had less kinase activity than the full-length NESK and did not activate the JNK pathway. In contrast, the C-terminal fragment activated the JNK pathway more strongly than the full-length NESK and promoted TNF-alpha-induced apoptotic cell death. These results implicate NESK in the JNK pathway-mediated promotion of apoptosis through its C-terminal regulatory domain generated by proteolytic cleavage during apoptosis, in a unique manner different from other GCK family kinases.  相似文献   

8.
The endophilin family of proteins function in clathrin-mediated endocytosis. Here, we have identified and cloned the rat germinal center kinase-like kinase (rGLK), a member of the GCK (germinal center kinase) family of c-Jun N-terminal kinase (JNK) activating enzymes, as a novel endophilin I-binding partner. The interaction occurs both in vitro and in cells and is mediated by the Src homology 3 domain of endophilin I and a region of rGLK containing the endophilin consensus-binding sequence PPRPPPPR. Overlay analysis of rat brain extracts demonstrates that endophilin I is a major Src homology 3 domain-binding partner for rGLK. Overexpression of full-length endophilin I activates rGLK-mediated JNK activation, whereas N- and C-terminal fragments of endophilin I block JNK activation. Thus, endophilin I appears to have a novel function in JNK activation.  相似文献   

9.
10.
The putative new interleukin (IL)-1 family member IL-1F8 (IL-1eta, IL-1H2) has been shown recently to activate mitogen activated protein kinases (MAPKs), extracellular signal-regulated protein kinase (ERK1/2) and c-Jun N-terminal kinase (JNK), and nuclear factor-kappa B (NFkappa B) via a mechanism that requires IL-1Rrp2 expression in cell lines. The aim of this study was to test the hypothesis that IL-1F8 contributes to brain inflammation and injury, by studying its expression and actions in the different cell types of the mouse brain in culture. Messenger RNA for IL-1F8 was detected in neurons and glia (microglial cells, oligodendrocytes progenitor cells and to a lesser extent astrocytes) by RT-PCR. Bacterial lipopolysaccharide (LPS) had no effect on IL-1F8 mRNA levels in mixed glial cultures. Recombinant mouse IL-1beta induced strong activation of ERK1/2, p38, JNK and NFkappa B, and significant release of IL-6 and PGE2, which was blocked by IL-1ra. In contrast, recombinant mouse IL-1F8 did not influence any of these parameters. These results demonstrate that CNS cells may be a source of IL-1F8, but the failure of LPS to modulate IL-1F8 mRNA expression, and of recombinant IL-1F8 to induce any of the classical IL-1 responses, suggest that this cytokine has restricted activities in the brain, or that it may act via alternative pathway(s).  相似文献   

11.
Cytokinesis is initiated by constriction of the cleavage furrow and terminated by abscission of the intercellular bridge that connects two separating daughter cells. The complicated processes of cytokinesis are coordinated by phosphorylation and dephosphorylation mediated by protein kinases and phosphatases. Mammalian Misshapen-like kinase 1 (MINK1) is a member of the germinal center kinases and is known to regulate cytoskeletal organization and oncogene-induced cell senescence. To search for novel regulators of cytokinesis, we performed a screen using a library of siRNAs and found that MINK1 was essential for cytokinesis. Time-lapse analysis revealed that MINK1-depleted cells were able to initiate furrowing but that abscission was disrupted. STRN4 (Zinedin) is a regulatory subunit of protein phosphatase 2A (PP2A) and was recently shown to be a component of a novel protein complex called striatin-interacting phosphatase and kinase (STRIPAK). Mass spectrometry analysis showed that MINK1 was a component of STRIPAK and that MINK1 directly interacted with STRN4. Similar to MINK1 depletion, STRN4-knockdown induced multinucleated cells and inhibited the completion of abscission. In addition, STRN4 reduced MINK1 activity in the presence of catalytic and structural subunits of PP2A. Our study identifies a novel regulatory network of protein kinases and phosphatases that regulate the completion of abscission.  相似文献   

12.
Y C Su  J Han  S Xu  M Cobb    E Y Skolnik 《The EMBO journal》1997,16(6):1279-1290
Nck, an adaptor protein composed of one SH2 and three SH3 domains, is a common target for a variety of cell surface receptors. We have identified a novel mammalian serine/threonine kinase that interacts with the SH3 domains of Nck, termed Nck Interacting Kinase (NIK). This kinase is most homologous to the Sterile 20 (Ste20) family of protein kinases. Of the members of this family, GCK and MSST1 are most similar to NIK in that they bind neither Cdc42 nor Rac and contain an N-terminal kinase domain with a putative C-terminal regulatory domain. Transient overexpression of NIK specifically activates the stress-activated protein kinase (SAPK) pathway. Both the kinase domain and C-terminal regulatory region of NIK are required for full activation of SAPK. NIK likely functions upstream of MEKK1 to activate this pathway; a dominant-negative MEK kinase 1 (MEKK1) blocks activation of SAPK by NIK. MEKK1 and NIK also associate in cells and this interaction is mediated by regulatory domains on both proteins. Two other members of this kinase family, GCK and HPK1, contain C-terminal regulatory domains with homology to that of NIK. These findings indicate that the C-terminal domain of these proteins encodes a new protein domain family and suggests that this domain couples these kinases to the SAPK pathway, possibly by interacting with MEKK1 or related kinases.  相似文献   

13.
Luan Z  Zhang Y  Liu A  Man Y  Cheng L  Hu G 《FEBS letters》2002,530(1-3):233-238
A novel human guanylate-binding protein (GBP) hGBP3 was identified and characterized. Similar as the two human guanylate-binding proteins hGBP1 and hGBP2, hGBP3 has the first two motifs of the three classical guanylate-binding motifs, GXXXXGKS (T) and DXXG, but lacks the N (T) KXD motif. Escherichia coli-expressed hGBP3 protein specifically binds to guanosine triphosphate (GTP). Using a yeast two-hybrid system, it was revealed that the N-terminal region of hGBP3 binds to the C-terminal regulatory domain of NIK/HGK, a member of the group I GCK (germinal center kinase) family. This interaction was confirmed by in vitro glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays.  相似文献   

14.
15.
DNA methyltransferase 1 (Dnmt1) is an enzyme that recognizes and methylates hemimethylated CpG after DNA replication to maintain methylation patterns. Although the N-terminal region of Dnmt1 is known to interact with various proteins, such as methyl-CpG-binding protein 2 (MeCP2), the associations of protein kinases with this region have not been reported. In the present study, we found that a 110-kDa protein kinase in mouse brain could bind to the N-terminal domain of Dnmt1. This 110-kDa kinase was identified as cyclin-dependent kinase-like 5 (CDKL5) by LC-MS/MS analysis. CDKL5 and Dnmt1 were found to colocalize in nuclei and appeared to interact with each other. Catalytically active CDKL5, CDKL5(1-352), phosphorylated the N-terminal region of Dnmt1 in the presence of DNA. Considering that defects in the MeCP2 or CDKL5 genes cause Rett syndrome, we propose that the interaction between Dnmt1 and CDKL5 may contribute to the pathogenic processes of Rett syndrome.  相似文献   

16.
17.
18.
Mitogen-activated protein kinase (MAPK) pathways coordinate critical cellular responses to mitogens, stresses, and developmental cues. The coupling of MAPK kinase kinase (MAP3K) --> MAPK kinase (MEK) --> MAPK core pathways to cell surface receptors remains poorly understood. Recombinant forms of MAP3K MEK kinase 1 (MEKK1) interact in vivo and in vitro with the STE20 protein homologue germinal center kinase (GCK), and both GCK and MEKK1 associate in vivo with the adapter protein tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2). These interactions may couple TNF receptors to the SAPK/JNK family of MAPKs; however, a molecular mechanism by which these proteins might collaborate to recruit the SAPKs/JNKs has remained elusive. Here we show that endogenous GCK and MEKK1 associate in vivo. In addition, we have developed an in vitro assay system with which we demonstrate that purified, active GCK and TRAF2 activate MEKK1. The RING domain of TRAF2 is necessary for optimal in vitro activation of MEKK1, but the kinase domain of GCK is not. Autophosphorylation within the MEKK1 kinase domain activation loop is required for activation. Forced oligomerization also activates MEKK1, and GCK elicits enhanced oligomerization of coexpressed MEKK1 in vivo. These results represent the first activation of MEKK1 in vitro using purified proteins and suggest a mechanism for MEKK1 activation involving induced oligomerization and consequent autophosphorylation mediated by upstream proteins.  相似文献   

19.
C-Jun N-terminal kinase (JNK) is implicated in regulating the various cellular events during neural development that include differentiation, apoptosis and migration. MUK/DLK/ZPK is a MAP kinase kinase kinase (MAPKKK) enzyme that activates JNK via MAP kinase kinases (MAPKK) such as MKK7. We show here that the expression of MUK/DLK/ZPK protein in the developing mouse embryo is almost totally specific for the neural tissues, including central, peripheral, and autonomic nervous systems. The only obvious exception is the liver, in which the protein is temporally expressed at around E11. The expression becomes obvious in the neurons of the brain and neural crest tissues at embryonic day 10 (E10) after neuron production is initiated. By E14, MUK/DLK/ZPK proteins are found in various neural tissues including the brain, spinal cord, sensory ganglia (such as trigeminal and dorsal root ganglia), and the sympathetic and visceral nerves. The localization of MUK/DLK/ZPK protein in neural cells almost consistently overlapped that of betaIII-tubulin, a neuron specific tubulin isoform, and both proteins were more concentrated in axons than in cell bodies and dendrites. The intensely overlapping localization of betaIII-tubulin and MUK/DLK/ZPK indicated that this protein kinase is tightly associated with the microtubules of neurons.  相似文献   

20.
The intestinal epithelium has a high rate of cell turn over and is an excellent system to study stem cell-mediated tissue homeostasis. The Misshapen subfamily of the Ste20 kinases in mammals consists of misshapen like kinase 1 (MINK1), mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), and TRAF2 and NCK interacting kinase (TNIK). Recent reports suggest that this subfamily has a novel function equal to the Hippo/MST subfamily as upstream kinases for Warts/Large tumor suppressor kinase (LATS) to suppress tissue growth. To study the in vivo functions of Mink1, Map4k4, and Tnik, we generated a compound knockout of these three genes in the mouse intestinal epithelium. The intestinal epithelia of the mutant animals were phenotypically normal up to approximately 12 months. The older animals then exhibited mildly increased proliferation throughout the lower GI tract. We also observed that the normally spatially organized Paneth cells in the crypt base became dispersed. The expression of one of the YAP pathway target genes Sox9 was increased while other target genes including CTGF did not show a significant change. Therefore, the Misshapen and Hippo subfamilies may have highly redundant functions to regulate growth in the intestinal epithelium, as illustrated in recent tissue culture models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号