首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously reported that gliotoxin (GT), the major virulence factor of the mold Aspergillus fumigatus causing invasive aspergillosis (IA) in immunocompromised patients, induces apoptosis in a Bak-dependent manner. The signaling pathway leading to Bak activation and subsequent mitochondrial outer membrane permeabilization (MOMP) is elusive. Here, we show that GT and the supernatant of A. fumigatus (but not its GT-defective mutant) activate the JNK pathway and require a co-operative JNK-mediated BimEL phosphorylation at three sites (S100, T112 and S114) to induce apoptosis in mouse fibroblasts, human bronchial and mouse alveolar epithelial cells. Cells (i) treated with the JNK inhibitor SP600125, (ii) deleted or knocked down for JNK1/2 or Bim or (iii) carrying the BimEL triple phosphomutant S100A/T112A/S114A instead of wild-type BimEL are similarly resistant to GT-induced apoptosis. Triple-phosphorylated BimEL is more stable, redistributes from a cytoskeletal to a membrane fraction, better interacts with Bcl-2 and Bcl-xL and more effectively activates Bak than the unphosphorylated mutant. These data indicate that JNK-mediated BimEL phosphorylation at S100, T112 and S114 constitutes a novel regulatory mechanism to activate Bim in response to apoptotic stimuli.  相似文献   

2.
3.
Bcl-2 family proteins are implicated as essential regulators in tumor necrosis factor-α (TNFα)-induced apoptosis. BimL, a BH3-only member of Bcl-2 family, can directly or indirectly activate the proapoptotic Bax and the subsequent mitochondrial apoptotic pathway. However, the molecular mechanism of BimL activating Bax activation during TNFα-induced apoptosis is not fully understood. In this study, the role of BimL in Bax activation during TNFα-induced apoptosis was investigated in differentiated PC12 and MCF7 cells, with real-time single-cell analysis. The experimental results show that Bax translocated to mitochondria and cytochrome c (Cyt c) released from mitochondria after TNFα treatment. Furthermore, SP600125 (specific inhibitor of JNK) could inhibit the Cyt c release from mitochondria. Co-immunoprecipitation results show that, the interaction between Bcl-xL and Bax decreased after TNFα treatment, while that between Bcl-xL and BimL increased. Bax did not co-immunoprecipitate with BimL before or after the TNFα treatment. In addition, the increased interaction between BimL and Bcl-xL was dynamically monitored by using fluorescence resonance energy transfer (FRET) technique. Most importantly, there was no evidence of BimL redistribution to mitochondria until cell apoptosis. By comprehensively analyzing these data, it is concluded that BimL displaces Bcl-xL in the mitochondria and promotes Bax translocation during TNFα-induced apoptosis.  相似文献   

4.
5.
The variant cell line U937V was originally identified by a higher sensitivity to the cytocidal action of tumor necrosis factor alpha (TNFα) than that of its reference cell line, U937. We noticed that a typical morphological feature of dying U937V cells was the lack of cellular disintegration, which contrasts to the formation of apoptotic bodies seen with dying U937 cells. We found that both TNFα, which induces the extrinsic apoptotic pathway, and etoposide (VP-16), which induces the intrinsic apoptotic pathway, stimulated U937V cell death without cell disintegration. In spite of the distinct morphological differences between the U937 and U937V cells, the basic molecular events of apoptosis, such as internucleosomal DNA degradation, phosphatidylserine exposure on the outer leaflet of the plasma membrane, caspase activation and cytochrome c release, were evident in both cell types when stimulated with both types of apoptosis inducer. In the U937V cells, we noted an accelerated release of cytochrome c, an accelerated decrease in mitochondrial membrane potential, and a more pronounced generation of reactive oxygen species compared to the reference cells. We propose that the U937 and U937V cell lines could serve as excellent comparison models for studies on the mechanisms regulating the processes of cellular disintegration during apoptosis, such as blebbing (zeiosis) and apoptotic body formation.  相似文献   

6.
Mimosine, a non-protein amino acid, is mainly known for its action as a reversible inhibitor of DNA replication and, therefore, has been widely used as a cell cycle synchronizing agent. Recently, it has been shown that mimosine also induces apoptosis, as mainly reflected in its ability to elicit characteristic nuclear changes. The present study elucidates the mechanism underlying mimosine’s apoptotic effects, using the U-937 leukemia cell line. We now demonstrate that in isolated rat liver mitochondria, mimosine induces mitochondrial swelling that can be inhibited by cyclosporine A, indicative of permeability transition (PT) mega-channel opening. Mimosine-induced apoptosis was accompanied by formation of hydrogen peroxide and a decrease in reduced glutathione levels. The apoptotic process was partially inhibited by cyclosporine A and substantially blocked by the antioxidant N-acetylcysteine, suggesting an essential role for reactive oxygen species formation during the apoptotic processes. The apoptosis induced by mimosine was also accompanied by a decrease in mitochondrial membrane potential, cytochrome c release and caspase 3 and 9 activation. Our results thus imply that mimosine activates apoptosis through mitochondrial activation and formation of H2O2, both of which play functional roles in the induction of cell death. Maher Hallak and Liat Vazana have contributed equally to the work.  相似文献   

7.
Tributyltin-chloride, a well-known organotin compound, is a widespread environmental toxicant. The immunotoxic effects of tributyltin-chloride on mammalian system and its mechanism is still unclear. This study is designed to explore the mode of action of tributyltin-induced apoptosis and other parallel apoptotic pathways in murine thymocytes. The earliest response in oxidative stress followed by mitochondrial membrane depolarization and caspase-3 activation has been observed. Pre-treatment with N-acetyl cysteine and buthionine sulfoximine effectively inhibited the tributyltin-induced apoptotic DNA and elevated the sub G1 population, respectively. Caspase inhibitors pretreatment prevent tributyltin-induced apoptosis. Western blot and flow cytometry indicate no translocation of apoptosis-inducing factor and endonuclease G in the nuclear fraction from mitochondria. Intracellular Ca2+ levels are significantly raised by tributyltin chloride. These results clearly demonstrate caspase-dependent apoptotic pathway and support the role of oxidative stress, mitochondrial membrane depolarization, caspase-3 activation, and calcium during tributyltin-chloride (TBTC)-induced thymic apoptosis.  相似文献   

8.
Bim is known to be critical in killing of melanoma cells by inhibition of the RAF/MEK/ERK pathway. However, the potential role of the most potent apoptosis-inducing isoform of Bim, BimS, remains largely unappreciated. Here, we show that inhibition of the mutant B-RAFV600E triggers preferential splicing to produce BimS, which is particularly important in induction of apoptosis in B-RAFV600E melanoma cells. Although the specific B-RAFV600E inhibitor PLX4720 upregulates all three major isoforms of Bim, BimEL, BimL, and BimS, at the protein and mRNA levels in B-RAFV600E melanoma cells, the increase in the ratios of BimS mRNA to BimEL and BimL mRNA indicates that it favours BimS splicing. Consistently, enforced expression of B-RAFV600E in wild-type B-RAF melanoma cells and melanocytes inhibits BimS expression. The splicing factor SRp55 appears necessary for the increase in BimS splicing, as SRp55 is upregulated, and its inhibition by small interfering RNA blocks induction of BimS and apoptosis induced by PLX4720. The PLX4720-induced, SRp55-mediated increase in BimS splicing is also mirrored in freshly isolated B-RAFV600E melanoma cells. These results identify a key mechanism for induction of apoptosis by PLX4720, and are instructive for sensitizing melanoma cells to B-RAFV600E inhibitors.  相似文献   

9.

Objective

To synthesize and determine the antitumor activity of 10-chlorocanthin-6-one in ovarian cancer HO8910PM cells.

Results

Among the synthesized canthin-6-one analogs, 10-chlorocanthin-6-one was the most cytotoxic (IC50 = 4.9 μM), as demonstrated by a dose-dependent cytotoxicity assay. Moreover, 10-chlorocanthin-6-one induced apoptosis through the activation of poly(ADP-ribose) polymerase and caspase-3 cleavage, upregulation of Bcl-2, and downregulation of Bim, x-linked inhibitor of apoptosis protein (XIAP), and survivin in HO8910PM cells. Furthermore, Bim RNA, upregulated in a concentration-dependent manner, and knockdown of Bim via short-hairpin RNAs attenuated the inhibitory effects of 10-chlorocanthin-6-one on HO8910PM cell growth.

Conclusions

10-Chlorocanthin-6-one inhibits cell proliferation and induces apoptosis in H08910PM cells. The underlying molecular mechanisms of 10-chlorocanthin-6-one include activation of the Bim-mediated mitochondrial apoptotic pathway via upregulation of Bim and downregulation of Bcl-2, XIAP, and survivin. These data suggest that Bim is a potential target of 10-chlorocanthin-6-one, further demonstrating its potential use in the prevention and treatment of ovarian cancer.
  相似文献   

10.
We previously found that mitochondrial aquaporin-8 (mtAQP8) channels facilitate mitochondrial H2O2 release in human hepatoma HepG2 cells and that their knockdown causes oxidant-induced mitochondrial dysfunction and loss of viability. Here, we studied whether apoptosis or necrosis is involved as the mode of cell death. We confirmed that siRNA-induced mtAQP8 knockdown significantly decreased HepG2 viability by MTT assay, LDH leakage, and trypan blue exclusion test. Analysis of mitochondrial proapoptotic Bax-to-antiapoptotic BclXL ratio, mitochondrial cytochrome c release and caspase-3 activation showed no alterations in mtAQP8-knockdown cells. This indicates a primary mechanism of cell death other than the intrinsic mitochondrial apoptotic pathway. Thus, nuclear staining with DAPI did not reveal any increase of apoptotic features, i.e. chromatin condensation or nuclear fragmentation. Flow cytometry studies after double cell staining with annexin V and propidium iodide confirmed lack of apoptosis and suggested necrosis as the primary mechanism of death in mtAQP8-knockdown HepG2 cells. Necrosis was further supported by the increased nuclear delocalization and extracellular release of the High Mobility Group Box 1 protein. The knockdown of mtAQP8 in another human hepatoma-derived cell line, i.e. HuH-7 cells, also induced necrotic but not apoptotic death. Our data suggest that mtAQP8 knockdown induces necrotic cell death in human neoplastic hepatic cells, a finding that might be relevant to therapeutic strategies against hepatoma cells.  相似文献   

11.
Aspirin and other non-steroidal anti-inflammatory drugs induce apoptosis in many cell types. Although the involvement of caspases has been demonstrated, the mechanism leading to caspase activation remains unknown. We have studied the role of the mitochondrial pathway in aspirin-induced apoptosis. The apoptotic effect of aspirin was analyzed in different cell lines (Jurkat, MOLT-4, Raji and HL-60) showing induction of mitochondrial cytochrome c release and caspases 9, 3 and 8 processing. Furthermore, early aspirin-induced cytochrome c release was not affected by the caspase inhibitor Z-VAD·fmk and preceded loss of mitochondrial membrane potential. Therefore, aspirin-induced apoptosis involves caspase activation through cytochrome c release.  相似文献   

12.
Despite the wide use of anti-CD20 antibody rituximab in the cancer treatment of B cell malignancies, the signalling pathways of CD20-induced apoptosis are still not understood. By using dominant negative (DN)-caspase-9 overexpressing follicular lymphoma cells we demonstrated that the activation of caspase-9 was essential for rituximab-mediated apoptosis. The death receptor pathway mediated by caspase-8 activation was not involved in rituximab-mediated apoptosis since overexpression of FLIPshort or FLIPlong proteins, inhibitors of caspase-8 activation, could not inhibit rituximab-induced apoptosis. However, the death receptor pathway activation by anti-Fas antibodies showed an additive effect on rituximab-induced apoptosis. The stabilisation of the mitochondrial outer membrane by Bcl-xL overexpression inhibited cell death, showing the important role of mitochondria in rituximab-induced apoptosis. Interestingly, the rituximab-induced release of cytochrome c and collapse of mitochondrial membrane potential were regulated by caspase-9. We suggest that caspase-9 and downstream caspases may feed back to mitochondria to amplify mitochondrial disruption during intrinsic apoptosis.  相似文献   

13.
The intracellular calcium concentration ([Ca]i) regulates cell viability and contractility in myocardial cells. Elevation of the [Ca]i level occurs by entry of calcium ions (Ca2+) through voltage-dependent Ca2+ channels in the plasma membrane and release of Ca2+ from the sarcoplasmic reticulum. Calmidazolium chloride (CMZ), a subgroup II calmodulin antagonist, blocks L-type calcium channels as well as voltage-dependent Na+ and K+ channel currents. This study elaborates on the events that contribute to the cytotoxic effects of CMZ on the heart. We hypothesized that apoptotic cell death occurs in the cardiac cells through calcium accumulation, production of reactive oxygen species, and the cytochrome c-mediated PARP activation pathway. CMZ significantly increased the production of superoxide (O2•–) and nitric oxide (NO) as detected by FACS and confocal microscopy. CMZ induced mitochondrial damage by increasing the levels of intracellular calcium, lowering the mitochondrial membrane potential, and thereby inducing cytochrome c release. Apoptotic cell death was observed in H9c2 cells exposed to 25 μM CMZ for 24 h. This is the first report that elaborates on the mechanism of CMZ-induced cardiotoxicity. CMZ causes apoptosis by decreasing mitochondrial activity and contractility indices and increasing oxidative and nitrosative stress, ultimately leading to cell death via an intrinsic apoptotic pathway.  相似文献   

14.
Caspase-independent apoptotic pathways in T lymphocytes: a minireview   总被引:5,自引:0,他引:5  
Cell death by apoptosis is involved in the maintenance of T cell receptor diversity, self tolerance, and T-cell number homeostasis. Until recently, apoptosis was thought to require caspase activation. Evidence is now accumulating that a caspase-independent pathway exists, shown by in vitro experiments with broad-range caspase inhibitors. Mature T lymphocytes readily undergo caspase-independent apoptosis in vitro, and recent data suggest that this type of apoptosis may be involved in the negative selection of thymocytes. Mitochondria likely release death triggers specific for both caspase-dependent and caspase-independent apoptotic pathways (cytochrome c and AIF respectively) in response to apoptotic stimuli. A caspase-independent pathway is triggered first in activated T lymphocytes subjected to apoptotic stimuli that do not rely on receptors with death domains. In this pathway, the early commitment phase to apoptosis involves cell shrinkage, peripheral DNA condensation and the translocation of mitochondrial AIF to the cytosol and nucleus. This process is reversible until mitochondrial cytochrome c is released and m dissipated. Only at this stage are caspases activated.  相似文献   

15.
Antizymes delicately regulate ornithine decarboxylase (ODC) enzyme activity and polyamine transportation. One member of the family, antizyme-1, plays vital roles in molecular and cellular functions, including developmental regulation, cell cycle, proliferation, cell death, differentiation and tumorigenesis. However, the question of how does it participate in the cell apoptotic mechanism is still unsolved. To elucidate the contribution of human antizyme-1 in haematopoietic cell death, we examine whether inducible overexpression of antizyme enhances apoptotic cell death. Antizyme reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells, acute T leukemia Jurkat cells and mouse macrophage RAW 264.7 cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψ m ), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following conditional antizyme overexpression, all protein levels of cyclin-dependent kinases (Cdks) and cyclins are not significantly reduced, except cyclin D, before their entrance into apoptotic cell death. However, introduced cyclin D1 into Jurkat T tetracycline (Tet)-On cell system still couldn’t rescue cells from apoptosis. Antizyme doesn’t influence the expression of tumor suppressor p53 and its downstream p21, but it interferes in the expressions of Bcl-2 family. Inducible antizyme largely enters mitochondria resulting in cytochrome c release from mitochondria to cytosol following Bcl-xL decrease and Bax increase. According to these data, we suggest that antizyme induces apoptosis mainly through mitochondria-mediated and cell cycle-independent pathway. Furthermore, antizyme induces apoptosis not only by Bax accumulation reducing the function of the Bcl-2 family, destroying the Δψ m , and releasing cytochrome c to cytoplasm but also by the activation of apoptosomal caspase cascade.  相似文献   

16.
Cho J  Lee DG 《Biochimie》2011,93(10):1873-1879
Pleurocidin (GWGSFFKKAAHVGKHVGKAALTHYL-NH2), found in skin mucous secretions of the winter flounder Pleuronectes americanus, is known to possess a high potency and broad-spectrum antimicrobial peptide without cytotoxicity. In this study, to investigate the impact of pleurocidin on apoptotic progress, we observed morphological and physiological changes in Candida albicans. In cells exposed to pleurocidin, intracellular reactive oxygen species (ROS) which is a major cause of apoptosis were increased, and hydroxyl radicals were especially a large part of ROS. The increase of ROS induced oxidative stress and mitochondrial membrane depolarization which causes release of pro-apoptotic factors. Using FITC-VAD-FMK staining, we confirmed activation of yeast metacaspases which lead to apoptosis and phosphatidylserine externalization at early stage apoptosis was observed using annexin V FITC. In addition, pleurocidin induced-apoptotic cells underwent apoptotic morphological changes, showing the reduced cell size (low FSC) and enhanced intracellular density (high SSC) in flow cytometry dot plots. Under the influence of oxidative stress, DNA and nuclei were fragmented and condensed in cells, and they were visualized by 4′,6-diamidino-2-phenylindole (DAPI) and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. These apoptotic phenomena represent that oxidative stress by inducing pleurocidin must be an important factor of the apoptotic process in C. albicans.  相似文献   

17.
N‐(3‐Oxododecanoyl)‐l ‐homoserine lactone (C12) is produced by Pseudomonas aeruginosa to function as a quorum‐sensing molecule for bacteria–bacteria communication. C12 is also known to influence many aspects of human host cell physiology, including induction of cell death. However, the signalling pathway(s) leading to C12‐triggered cell death is (are) still not completely known. To clarify cell death signalling induced by C12, we examined mouse embryonic fibroblasts deficient in “initiator” caspases or “effector” caspases. Our data indicate that C12 selectively induces the mitochondria‐dependent intrinsic apoptotic pathway by quickly triggering mitochondrial outer membrane permeabilisation. Importantly, the activities of C12 to permeabilise mitochondria are independent of activation of both “initiator” and “effector” caspases. Furthermore, C12 directly induces mitochondrial outer membrane permeabilisation in vitro. Overall, our study suggests a mitochondrial apoptotic signalling pathway triggered by C12, in which C12 or its metabolite(s) acts on mitochondria to permeabilise mitochondria, leading to activation of apoptosis.  相似文献   

18.
This study investigated the mechanisms underlying the cytotoxicity of the green algae Ulva fasciata Delile. U. fasciata extract (UFE) inhibited the growth of HCT 116 human colon cancer cells by 50% at a concentration of 200 μg/ml. In addition, UFE stimulated the production of intracellular reactive oxygen species, an effect that was abolished by pretreatment with N-acetyl cysteine, which also inhibited the cytotoxic effects of UFE. UFE also induced morphological changes indicative of apoptosis, such as the formation of apoptotic bodies, DNA fragmentation, an increase in the population of apoptotic sub-G1 phase cells, and mitochondrial membrane depolarization. Concomitant activation of the mitochondria-dependent apoptotic pathway occurred via modulation of Bax and Bcl-2 expression, resulting in disruption of the mitochondrial membrane potential and activation of caspase-9 and caspase-3. This is the first report to demonstrate the cytotoxic effect of U. fasciata on human colon cancer cells and to provide a possible mechanism for this activity.  相似文献   

19.
Background: Hydrogen peroxide, as other reactive oxygen species (ROS) produced during redox processes, induces lipid membrane peroxidation and protein degeneration causing cell apoptosis. ROS are recently considered as messengers in cell signalling processes, which, through reversible protein disulphide bridges formation, activate regulatory factors of cell proliferation and apoptosis. Disulphide bridges formation is catalysed by sulphydryl oxidase enzymes.

Aim: The neuroprotective effect of ALR protein (Alrp), a sulphydryl oxidase enzyme, on H2O2-induced apoptosis in SH-SY5Y cells has been evaluated.

Methods: Cell viability, flow cytometric evaluation of apoptotic cells, fluorescent changes of nuclear morphology, immunocytochemistry Alrp detection, Western blot evaluation of mitochondrial cyt c release and mitochondrial swelling were determined.

Results: Alrp prevents the H2O2-induced cell viability loss, apoptotic cell death and mitochondrial swelling in SH-SY5Y cells in culture.

Conclusions: The data demonstrate that Alrp improves SH-SY5Y cells survival in H2O2-induced apoptosis. It is speculated that this effect could be related to the Alrp enzymatic activity.  相似文献   

20.
The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号