首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malignant hypertension is a rare but serious syndrome complicating 1% of essential hypertension and causing neurological, renal and cardiac complications. Despite improved anti-hypertensive medication, the incidence of this condition fails to decline. In the first part of this review, we discuss transgenic rat models of malignant hypertension, generated by over-expressing renin, to illustrate the role of the renin–angiotensin system in the development of systemic hypertensive vascular remodelling and hypertension. In the second part, we focus on the cerebrovascular response to hypertension and discuss new data using a conditional, transgenic model of malignant hypertension, the inducible hypertensive rat (IHR). Cerebral infarction associates strongly with hypertension in man and the mechanisms by which hypertension predisposes to different types of stroke remains poorly understood. Rats have similar cerebrovascular anatomy and structure to humans and as such provide a good experimental tool. To date, such models lack controllability and blood-pressure matched controls. Using the IHR, we have manipulated dietary salt and water intake to generate a novel, controllable stroke phenotype. Hypertensive small-vessel stroke develops over a predictable time period, permitting the study of developing cerebrovascular lesions. Systemic end-organ injury and hypertension are not affected. Dissociation of the systemic and central vascular responses in this way, will allow for comparative study of animals with equivalent hypertension, genetic background and systemic features of hypertension with or without stroke.  相似文献   

2.
Essential hypertension affects 20 to 30% of the population worldwide and contributes significantly to cardiovascular mortality and morbidity. Heridability of blood pressure is around 15 to 40% but there are also substantial environmental factors affecting blood pressure variability. It is assumed that blood pressure is under the control of a large number of genes each of which has only relatively mild effects. It has therefore been difficult to discover the genes that contribute to blood pressure variation using traditional approaches including candidate gene studies and linkage studies. Animal models of hypertension, particularly in the rat, have led to the discovery of quantitative trait loci harbouring one or several hypertension related genes, but translation of these findings into human essential hypertension remains challenging. Recent development of genotyping technology made large scale genome-wide association studies possible. This approach and the study of monogenic forms of hypertension has led to the discovery of novel and robust candidate genes for human essential hypertension, many of which require functional analysis in experimental models.  相似文献   

3.
Periventricular forebrain regions participate in body fluid and cardiovascular regulatory mechanisms that are intimately related to neural participation in experimental hypertension. Ablation of preoptic-hypothalamic periventricular tissue surrounding the anteroventral third ventricle (AV3V) disrupts both angiotensin (AngII) and sodium regulatory mechanisms and prevents experimental hypertension in either renin-dependent or -independent models. When AV3V is spared, and central AngII pressor mechanisms are interrupted by subfornical organ ablation or anterior hypothalamic knife cuts, renin-dependent but not renin-independent models of hypertension are prevented. Volume-expanded models of hypertension may be mediated by a natriuretic hormone that also inhibits the sodium-potassium pump in vascular smooth muscle, resulting in increased vasoconstriction. Volume expansion-induced release of this humoral ATPase inhibitor is attenuated in rats with AV3V lesions. In the renin-independent, reduced renal mass model, development of hypertension is correlated with increased plasma levels of sodium-potassium pump inhibitor. AV3V ablation blocks both the hypertension and the increase in humoral ATPase inhibitor. Thus, Thus, central angiotensin pressor and natriuretic mechanisms overlap in AV3V, and prevention of renin-dependent and volume-dependent models of experimental hypertension by AV3V ablation appears linked to disruption of these functionally separable systems.  相似文献   

4.
5.
Background: Preeclampsia is new-onset hypertension with proteinuria during pregnancy. The initiating event in preeclampsia has been postulated to involve reduced placental perfusion, which leads to widespread dysfunction of the maternal vascular endothelium.Objective: The main objective of this brief review was to highlight some of the recent advances in our understanding of the mechanisms whereby the endothelin (ET) system, via ET type A (ETA) receptor activation, modulates blood pressure in preeclamptic women and in animal models of pregnancy-related hypertension.Methods: This review focused on the role of ET and tumor necrosis factor-α (TNF-α) in preeclampsia, with emphasis on the pathophysiology of hypertension in response to placental ischemia in animal models of pregnancy. Relevant published data were identified by searching PubMed and supplemented with contributions from our laboratory.Results: Studies in preeclamptic women indicate that their hypertension is associated with increases in ET synthesis. Recent studies in pregnant rats indicate that the ET system is activated in response to reductions in uterine perfusion pressure and to chronic elevations in serum TNF-α concentrations. In these 2 animal models, the findings also suggest that ET A receptor activation may play a role in mediating hypertension.Conclusions: Although recent studies in animal models implicate an important role for the ET system in preeclampsia, the usefulness of selective ET A receptor antagonists for the treatment of hypertension in women with preeclampsia remains unclear. This important question will not be answered until well-controlled clinical studies using specific ET A receptor antagonists are conducted for women with preeclampsia.  相似文献   

6.
Several animal models have been developed to study the pathogenesis of hypertension. Deoxycorticosterone acetate (DOCA) salt induced hypertensive rats are adrenal models used to mimic human Conn's syndrome. Because previous studies showed a beneficial effect of chronic exercise (swimming) on the development of arterial hypertension in spontaneously hypertensive rats (which appears similar to human essential hypertension), we decided to evaluate the effects of swimming on DOCA-salt induced hypertension and liver antioxidant status. Therefore, the aim of this experiment was to study whether the swim training would improve hypertension and liver antioxidant status in DOCA-salt rats. DOCA-salt rats and control Sprague-Dawley rats were trained to swim 1 h/day, 5 days/week for 6 weeks and were sacrificed 48 h after the last exercise period. Systolic blood pressure was recorded before the sacrifice, and liver antioxidant status was evaluated in hepatic homogenates after the sacrifice. Swim exercise did not decrease systolic blood pressure in control and DOCA-salt rats but induced changes in liver activities of antioxidant enzymes, showing that exercise provoked liver oxidative stress in control and DOCA-salt rats. In comparison with our previous studies using spontaneously hypertensive rats, we conclude that the beneficial effects of chronic exercise on systolic blood pressure in rats are dependent on strain and the type of experimental hypertension.  相似文献   

7.
In this review, we focus on the role of orexin signaling in blood pressure control and its potential link to hypertension by summarizing evidence from several experimental animal models of hypertension. Studies using the spontaneously hypertensive rat (SHR) animal model of human essential hypertension show that pharmacological blockade of orexin receptors reduces blood pressure in SHRs but not in Wistar–Kyoto rats. In addition, increased activity of the orexin system contributes to elevated blood pressure and sympathetic nerve activity (SNA) in dark-active period Schlager hypertensive (BPH/2J) mice, another genetic model of neurogenic hypertension. Similar to these two models, Sprague-Dawley rats with stress-induced hypertension display an overactive central orexin system. Furthermore, upregulation of the orexin receptor 1 increases firing of hypothalamic paraventricular nucleus neurons, augments SNA, and contributes to hypertension in the obese Zucker rat, an animal model of obesity-related hypertension. Finally, we propose a hypothesis for the implication of the orexin system in salt-sensitive hypertension. All of this evidence, coupled with the important role of elevated SNA in increasing blood pressure, strongly suggests that hyperactivity of the orexin system contributes to hypertension.  相似文献   

8.
本文给出了多反应变量重复测量的协方差矩阵结构,探讨了用迭代广义最小二乘法来求解其带协变量和不带协变量的混合效应模型中固定效应和随机效应系数,并对1991年四川省高血压调查资料进行实例分析,得到其结论符合实际情况.  相似文献   

9.
Structural alterations of blood vessels in hypertensive rats   总被引:2,自引:0,他引:2  
Vascular changes in the mesenteric arteries were examined in three animals models for human essential hypertension. These models are: spontaneously hypertensive rats, which develop hypertension with age; Dahl model of genetic, salt-dependent hypertensive rats; and deoxycorticosterone-salt hypertensive rats. Morphometric measurements of the arterial wall components (e.g., endothelium, media) were carried out in the elastic arteries, muscular arteries, and arteriolar vessels from the mesenteric bed. The observed changes were correlated with the stages of hypertension development and the effect of antihypertension therapy, including sympathectomy. Specific emphasis was made to determine whether the changes observed were primary in nature, and related to the causes of hypertension, or they were secondary adaptive changes. A comparison of the three models showed that common changes in the intima, media, and adventitia were present in the three models. Alterations in the endothelium (e.g., enlargement of subendothelial space, necrotic changes), adventitia (collagen increase), and hypertrophy of the smooth muscle cells are secondary adaptive changes, because these changes occur subsequent to the development of hypertension, and antihypertensive therapy also prevent these changes from taking place. In contrast, hyperplasia of the smooth muscle cells is a primary change, because it occurs prior to the onset of hypertension. Functionally, alteration in the media is probably the most important change, because it can cause hyperreactivity of the arteries in response to stimulation. Damage to the endothelial cells may play a role in the maintenance of hypertension during the later phase. Alteration in adventitia is a passive change, which does not appear to have a major role in hypertension.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Numerous epidemiological studies suggest an inverse relationship between low birth weight (LBW) and hypertension, an observation now supported by numerous animal studies. The mechanisms linking LBW and hypertension appear to be multifactorial and involve alterations in the normal regulatory systems and renal functions involved in the long-term control of arterial pressure. Recent studies using animal models of fetal programming suggest that programming during fetal life occurs in response to an adverse fetal environment and results in permanent adaptive responses that lead to structural and physiological alterations and the subsequent development of hypertension. This review summarizes the adaptive responses observed in the different models used to induce a suboptimal fetal environment and discusses insights into the mechanisms mediating the fetal programming of hypertension.  相似文献   

11.
Recent findings in chronically instrumented animals challenge the classic concept that baroreflexes do not play a role in the chronic regulation of arterial pressure. As alterations in renal excretory function are of paramount importance in the chronic regulation of arterial pressure, several of these recent studies have focused on the long-term interactions between the baroreflex and the kidneys during chronic perturbations in arterial pressure and body fluid volumes. An emerging body of evidence indicates that the baroreflex is chronically activated in several experimental models of hypertension, but in most cases, the duration of these studies has not exceeded 2 wk. Although these studies suggest that the baroreflex may play a compensatory role in attenuating the severity of the hypertension, possibly even in primary hypertension with uncertain causes of sympathetic activation, there has been only limited assessment of the quantitative importance of this interaction in the regulation of arterial pressure. In experimental models of secondary hypertension, baroreflex suppression of renal sympathetic nerve activity is sustained and chronically promotes sodium excretion. This raises the possibility that the renal nerves may be the critical efferent link for baroreceptor-induced suppression of central sympathetic output through which long-term compensatory reductions in arterial pressure are produced. This contention is supported by strong theoretical evidence but must be corroborated by experimental studies. Finally, although it is now clear that pressure-induced increases in baroreflex activity persist for longer periods of time than previously suggested, studies using new tools and novel approaches and extending beyond 2 wk of hypertension are needed to elucidate the true role of the baroreflex in the pathogenesis of clinical hypertension.  相似文献   

12.
Daily blood pressure monitoring was performed in 34 apparently healthy subjects and 72 patients with arterial hypertension (AH). We compared the efficiency of diagnosis of latent AH using models based on artificial neural networks of different architecture.  相似文献   

13.
Rat models of genetic hypertension include spontaneous hypertension and resistance or sensitivity to mineralocorticoid and salt induced hypertension. Previously, altered aldosterone binding to corticoid receptor I was found in aortic smooth muscle cells cultured from Fischer 344 rats which are extremely resistant to steroid and salt induced hypertension. The corticoid receptor I of Fisher 344 rats had a lower affinity than that of salt sensitive Wistar-Kyoto controls, as well as spontaneously hypertensive rats and Sprague-Dawley rats. In the present study, we have used DEAE-cellulose ion exchange chromatography to compare the structure (charge properties) and steroid specificity of vascular corticoid receptor I and II sites in these same rat hypertension models. No variations in ion exchange properties of type I and II receptors were found. Together with the lower aldosterone affinity of corticoid receptor I sites in Fischer 344 rats these data suggest an altered binding domain which is not seen as a difference in charge density of the receptor protein by ion exchange chromatography.  相似文献   

14.
Background: Numerous clinical and experimental studies support the hypothesis that the intrauterine environment is an important determinant of cardiovascular disease and hypertension.Objective: This review examined the mechanisms linking an adverse fetal environment and increased risk for chronic disease in adulthood with an emphasis on gender differences and the role of sex hormones in mediating sexual dimorphism in response to a suboptimal fetal environment.Methods: This review focuses on current findings from the PubMed database regarding animal models of fetal programming of hypertension, sex differences in phenotypic outcomes, and potential mechanisms in offspring of mothers exposed to an adverse insult during gestation. For the years 1988 to 2007, the database was searched using the following terms: fetal programming, intrauterine growth restriction, low birth weight, sex differences, estradiol, testosterone, high blood pressure, and hypertension.Results: The mechanisms involved in the fetal programming of adult disease are multifactorial and include alterations in the regulatory systems affecting the long-tterm control of arterial pressure. Sex differences have been observed in animal models of fetal programming, and recent studies suggest that sex hormones may modulate activity of regulatory systems, leading to a lower incidence of hypertension and vascular dysfunction in females compared with males.Conclusions: Animal models of fetal programming provide critical support for the inverse relationship between birth weight and blood pressure. Experimental models demonstrate that sex differences are observed in the pathophysiologic response to an adverse fetal environment. A role for sex hormone involvement is strongly suggested,with modulation of the renin-angiotensin system as a possible mechanism.  相似文献   

15.
Hypertension is one of the leading causes of disability or death due to stroke, heart attack and kidney failure. Because the etiology of essential hypertension is not known and may be multifactorial, the use of experimental animal models has provided valuable information regarding many aspects of the disease, which include etiology, pathophysiology, complications and treatment. The models of hypertension are various, and in this review, we provide a brief overview of the most widely used animal models, their features and their importance.  相似文献   

16.
The kidney exerts both prohypertensive and antihypertensive functions. Part of the anti-hypertensive function of the kidney is mediated by the renomedullary interstitial cells (RIC), as an endocrine-type function. Six experimental models of hypertension and their relation to the antihypertensive function of the RIC are discussed. It is proposed that the anti-hypertensive function of the RIC may be deficient by the three mechanisms: 1) absence of the cells (as in the renoprival state); 2) severe damage to the cells (as in partial nephrectomy-salt hypertension of the rat and late malignant hypertension of the rabbit); and 3) constraint of the function of these cells (as in angiotensin-salt hypertension due to a lower salt intake). The constraint may result from excessive angiotensin, either by a direct effect or via a hemodynamic mechanism. The converting enzyme inhibitors (CEI) fail to exert their antihypertensive function when the RIC are absent or damaged. Conversely, the CEI are effective in those models associated with intact RIC. CEI appear to exert their antihypertensive action partly through an effect on RIC.  相似文献   

17.
Hypertension represents a complex, multifactorial disease and contributes to the major causes of morbidity and mortality in industrialized countries: ischemic and hypertensive heart disease, stroke, peripheral atherosclerosis and renal failure. Current pharmacological therapy of essential hypertension focuses on the regulation of vascular resistance by inhibition of hormones such as catecholamines and angiotensin II, blocking them from receptor activation. Interaction of G-protein coupled receptor kinases (GRKs) and regulator of G-protein signaling (RGS) proteins with activated G-protein coupled receptors (GPCRs) effect the phosphorylation state of the receptor leading to desensitization and can profoundly impair signaling. Defects in GPCR regulation via these modulators have severe consequences affecting GPCR-stimulated biological responses in pathological situations such as hypertension, since they fine-tune and balance the major transmitters of vessel constriction versus dilatation, thus representing valuable new targets for anti-hypertensive therapeutic strategies. Elevated levels of GRKs are associated with human hypertensive disease and are relevant modulators of blood pressure in animal models of hypertension. This implies therapeutic perspective in a disease that has a prevalence of 65 million in the United States while being directly correlated with occurrence of major adverse cardiac and vascular events. Therefore, therapeutic approaches using the inhibition of GRKs to regulate GPCRs are intriguing novel targets for treatment of hypertension and heart failure.  相似文献   

18.
More than 30% of the US population has high blood pressure (BP), and less than a third of people treated for hypertension have it controlled. In addition, the etiology of most high BP is not known. Having a better understanding of the mechanisms underlying hypertension could potentially increase the effectiveness of treatment. Because G(q) signaling mediates vasoconstriction and vascular function can cause BP abnormalities, we were interested in determining the role of vascular smooth muscle (VSM) G(q) signaling in two divergent models of hypertension: a renovascular model of hypertension through renal artery stenosis and a genetic model of hypertension using mice with VSM-derived high BP. Inhibition of VSM G(q) signaling attenuated BP increases induced by renal artery stenosis to a similar extent as losartan, an ANG II receptor blocker and current antihypertensive therapy. Inhibition of G(q) signaling also attenuated high BP in our genetic VSM-derived hypertensive model. In contrast, BP remained elevated 25% following treatment with losartan, and prazosin, an alpha(1)-adrenergic receptor antagonist, only decreased BP by 35%. Inhibition of G(q) signaling attenuated VSM reactivity to ANG II and resulted in a 2.4-fold rightward shift in EC(50). We also determined that inhibition of G(q) signaling was able to reverse VSM hypertrophy in the genetic VSM-derived hypertensive model. These results suggest that G(q) signaling is an important signaling pathway in two divergent models of hypertension and, perhaps, optimization of antihypertensive therapy could occur with the identification of particular G(q)-coupled receptors involved.  相似文献   

19.
The pharmacological properties of various isolated smooth muscle preparations from the Dahl strain of hypertensive rats were studied. The Dahl salt-sensitive (DS) rat was allowed to develop hypertension by increasing the dietary sodium from 0.4 to 4.0 or 8.0%. The Dahl salt-resistant (DR) rat remained normotensive on the same diet. The preparations studied were the thoracic aorta, tail artery, portal vein, anococcygeus, and the perfused mesenteric bed. The noradrenaline mean effective doses (ED50) either in the absence or presence of cocaine, were similar for tissues obtained from hypertensive DS or normotensive DR. The reactivities of the isolated perfused mesenteric preparation to noradrenaline, serotonin, and phenylephrine were similar in DS and DR. The ED50 for the relaxing effects of papaverine in noradrenaline-precontracted aorta was similar for tissues from DS and DR and the profile for the washout of noradrenaline-precontracted aorta with Krebs (with or without papaverine) was also similar in DS and DR. The results of this study were compared with similar studies performed using other models of hypertension. It is concluded that vascular changes are unlikely to play a major role in the etiology of hypertension in the Dahl rat model of essential hypertension.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号