共查询到20条相似文献,搜索用时 0 毫秒
1.
Toshiaki Hiramatsu Kazuyo Kodama Teruo Kuroda Tohru Mizushima Tomofusa Tsuchiya 《Journal of bacteriology》1998,180(24):6642-6648
We cloned several genes encoding an Na+/H+ antiporter of Staphylococcus aureus from chromosomal DNA by using an Escherichia coli mutant, lacking all of the major Na+/H+ antiporters, as the host. E. coli cells harboring plasmids for the cloned genes were able to grow in medium containing 0.2 M NaCl (or 10 mM LiCl). Host cells without the plasmids were unable to grow under the same conditions. Na+/H+ antiport activity was detected in membrane vesicles prepared from transformants. We determined the nucleotide sequence of the cloned 7-kbp region. We found that seven open reading frames (ORFs) were necessary for antiporter function. A promoter-like sequence was found in the upstream region from the first ORF. One inverted repeat followed by a T-cluster, which may function as a terminator, was found in the downstream region from the seventh ORF. Neither terminator-like nor promoter-like sequences were found between the ORFs. Thus, it seems that the seven ORFs comprise an operon and that the Na+/H+ antiporter consists of seven kinds of subunits, suggesting that this is a novel type of multisubunit Na+/H+ antiporter. Hydropathy analysis of the deduced amino acid sequences of the seven ORFs suggested that all of the proteins are hydrophobic. As a result of a homology search, we found that components of the respiratory chain showed sequence similarity with putative subunits of the Na+/H+ antiporter. We observed a large Na+ extrusion activity, driven by respiration in E. coli cells harboring the plasmid carrying the genes. The Na+ extrusion was sensitive to an H+ conductor, supporting the idea that the system is not a respiratory Na+ pump but an Na+/H+ antiporter. Introduction of the plasmid into E. coli mutant cells, which were unable to grow under alkaline conditions, enabled the cells to grow under such conditions. 相似文献
2.
Differential Stimulation of the Na+/H+ Exchanger Determines Chloroquine Uptake in Plasmodium falciparum 下载免费PDF全文
Stefan Wünsch Cecilia P. Sanchez Michael Gekle Lars Große-Wortmann Jochen Wiesner Michael Lanzer 《The Journal of cell biology》1998,140(2):335-345
Here we describe the identification and characterization of a physiological marker that is associated with the chloroquine-resistant (CQR) phenotype in the human malarial parasite Plasmodium falciparum. Single cell in vivo pH measurements revealed that CQR parasites consistently have an elevated cytoplasmic pH compared to that of chloroquine-sensitive (CQS) parasites because of a constitutively activated Na+/H+ exchanger (NHE). Together, biochemical and physiological data suggest that chloroquine activates the plasmodial NHE of CQS parasites, resulting in a transitory phase of rapid sodium/hydrogen ion exchange during which chloroquine is taken up by this protein. The constitutively stimulated NHE of CQR parasites are capable of little or no further activation by chloroquine. We propose that the inability of chloroquine to stimulate its own uptake through the constitutively activated NHE of resistant parasites constitutes a minimal and necessary event in the generation of the chloroquine-resistant phenotype. 相似文献
3.
Altered Na+ and Li+ Homeostasis in Saccharomyces cerevisiae Cells Expressing the Bacterial Cation Antiporter NhaA 下载免费PDF全文
Roc Ros Consuelo Montesinos Abraham Rimon Etana Padan Ramn Serrano 《Journal of bacteriology》1998,180(12):3131-3136
The bacterial Na+(Li+)/H+ antiporter NhaA has been expressed in the yeast Saccharomyces cerevisiae. NhaA was present in both the plasma membrane and internal membranes, and it conferred lithium but not sodium tolerance. In cells containing the yeast Ena1-4 (Na+, Li+) extrusion ATPase, the extra lithium tolerance conferred by NhaA was dependent on a functional vacuolar H+ ATPase and correlated with an increase of lithium in an intracellular pool which exhibited slow efflux of cations. In yeast mutants without (Na+, Li+) ATPase, lithium tolerance conferred by NhaA was not dependent on a functional vacuolar H+ ATPase and correlated with a decrease of intracellular lithium. NhaA was able to confer sodium tolerance and to decrease intracellular sodium accumulation in a double mutant devoid of both plasma membrane (Na+, Li+) ATPase and vacuolar H+ ATPase. These results indicate that the bacterial antiporter NhaA expressed in yeast is functional at both the plasma membrane and the vacuolar membrane. The phenotypes conferred by its expression depend on the functionality of plasma membrane (Na+, Li+) ATPase and vacuolar H+ ATPase. 相似文献
4.
Tomohiro Yorimitsu Ken Sato Yukako Asai Ikuro Kawagishi Michio Homma 《Journal of bacteriology》1999,181(16):5103-5106
Four proteins, PomA, PomB, MotX, and MotY, appear to be involved in force generation of the sodium-driven polar flagella of Vibrio alginolyticus. Among these, PomA and PomB seem to be associated and to form a sodium channel. By using antipeptide antibodies against PomA or PomB, we carried out immunoprecipitation to verify whether these proteins form a complex and examined the in vivo stabilities of PomA and PomB. As a result, we could demonstrate that PomA and PomB functionally interact with each other. 相似文献
5.
Screening of Environmental DNA Libraries for the Presence of Genes Conferring Na+(Li+)/H+ Antiporter Activity on Escherichia coli: Characterization of the Recovered Genes and the Corresponding Gene Products 总被引:1,自引:0,他引:1 下载免费PDF全文
Environmental DNA libraries prepared from three different soils were screened for genes conferring Na(+)(Li(+))/H(+) antiporter activity on the antiporter-deficient Escherichia coli strain KNabc. The presence of those genes was verified on selective LK agar containing 7.5 mM LiCl. Two positive E. coli clones were obtained during the initial screening of 1,480,000 recombinant E. coli strains. Both clones harbored a plasmid (pAM1 and pAM3) that conferred a stable Li(+)-resistant phenotype. The insert of pAM2 (1,886 bp) derived from pAM1 contained a gene (1,185 bp) which encodes a novel Na(+)/H(+) antiporter belonging to the NhaA family. The insert of pAM3 harbored the DNA region of E. coli K-12 containing nhaA, nhaR, and gef. This region is flanked by highly conserved insertion elements. The sequence identity with E. coli decreased significantly outside of the insertion sequence elements, indicating that the unknown organism from which the insert of pAM3 was cloned is different from E. coli. The products of the antiporter genes located on pAM2 and pAM3 revealed functional homology to NhaA of E. coli and enabled the antiporter-deficient E. coli mutant to grow on solid media in the presence of up to 450 mM NaCl or 250 mM LiCl at pH 8.0. The Na(+)/H(+) antiporter activity in everted membrane vesicles that were derived from the E. coli strains KNabc/pAM2 and KNabc/pAM3 showed a substantial increase between pHs 7 and 8.5. The maximal activity was observed at pHs 8.3 and 8.6, respectively. The K(m) values of both antiporters for Na(+) were approximately 10-fold higher than the values for Li(+). 相似文献
6.
Tatsunosuke Nakamura Rieko Yuda Tsutomu Unemoto Evert P. Bakker 《Journal of bacteriology》1998,180(13):3491-3494
Vibrio alginolyticus contained two adjacent genes, ktrA and ktrB, which encode a new type of bacterial K+-uptake system. KtrA and KtrB are peripheral and integral membrane proteins, respectively. Six of the nine sequenced bacterial genomes contain homologs to both ktrA and ktrB, suggesting that KtrAB is widespread. 相似文献
7.
Regulation of Ca(2+) transport determines the duration of a Ca(2+) signal, and hence, the nature of the biological response. Ca(2+)/H+ antiporters such as CAX1 (cation exchanger 1), play a key role in determining cytosolic Ca(2+) levels. Analysis of a full-length CAX1 clone suggested that the CAX1 open reading frame contains an additional 36 amino acids at the N terminus that were not found in the original clone identified by suppression of yeast (Saccharomyces cerevisiae) vacuolar Ca(2+) transport mutants. The long CAX1 (lCAX1) could not suppress the yeast Ca(2+) transport defects despite localization to the yeast vacuole. Calmodulin could not stimulate lCAX1 Ca(2+)/H+ transport in yeast; however, minor alterations in the 36-amino acid region restored Ca(2+)/H+ transport. Sequence analysis suggests that a 36-amino acid N-terminal regulatory domain may be present in all Arabidopsis CAX-like genes. Together, these results suggest a structural feature involved in regulation of Ca(2+)/H+ antiport. 相似文献
8.
VmrA, a Member of a Novel Class of Na+-Coupled Multidrug Efflux Pumps from Vibrio parahaemolyticus 总被引:1,自引:0,他引:1 下载免费PDF全文
Jing Chen Yuji Morita M. Nazmul Huda Teruo Kuroda Tohru Mizushima Tomofusa Tsuchiya 《Journal of bacteriology》2002,184(2):572-576
Gene vmrA, cloned from Vibrio parahaemolyticus, made Escherichia coli resistant to 4',6-diamino-2-phenylindol, tetraphenylphosphonium chloride, acriflavine, and ethidium bromide. VmrA belongs to the DinF branch of MATE family efflux transporters. VmrA catalyzed acriflavine efflux and showed Na(+)/drug transporter activity because the addition of tetraphenylphosphonium to Na(+)-loaded cells caused Na(+) efflux. 相似文献
9.
Insulin-induced Stimulation of Na+,K+-ATPase Activity in Kidney Proximal Tubule Cells Depends on Phosphorylation of the α-Subunit at Tyr-10 下载免费PDF全文
Eric Fraille Maria Luisa Carranza Sandrine Gonin Pascal Bguin Carlos Pedemonte Martine Rousselot Joseph Caverzasio Kthi Geering Pierre-Yves Martin Herv Favre 《Molecular biology of the cell》1999,10(9):2847-2859
Phosphorylation of the α-subunit of Na+,K+-ATPase plays an important role in the regulation of this pump. Recent studies suggest that insulin, known to increase solute and fluid reabsorption in mammalian proximal convoluted tubule (PCT), is stimulating Na+,K+-ATPase activity through the tyrosine phosphorylation process. This study was therefore undertaken to evaluate the role of tyrosine phosphorylation of the Na+,K+-ATPase α-subunit in the action of insulin. In rat PCT, insulin and orthovanadate (a tyrosine phosphatase inhibitor) increased tyrosine phosphorylation level of the α-subunit more than twofold. Their effects were not additive, suggesting a common mechanism of action. Insulin-induced tyrosine phosphorylation was prevented by genistein, a tyrosine kinase inhibitor. The site of tyrosine phosphorylation was identified on Tyr-10 by controlled trypsinolysis in rat PCTs and by site-directed mutagenesis in opossum kidney cells transfected with rat α-subunit. The functional relevance of Tyr-10 phosphorylation was assessed by 1) the abolition of insulin-induced stimulation of the ouabain-sensitive 86Rb uptake in opossum kidney cells expressing mutant rat α1-subunits wherein tyrosine was replaced by alanine or glutamine; and 2) the similarity of the time course and dose dependency of the insulin-induced increase in ouabain-sensitive 86Rb uptake and tyrosine phosphorylation. These findings indicate that phosphorylation of the Na+,K+-ATPase α-subunit at Tyr-10 likely participates in the physiological control of sodium reabsorption in PCT. 相似文献
10.
Abscisic Acid Induction of Vacuolar H+-ATPase Activity in Mesembryanthemum crystallinum Is Developmentally Regulated 下载免费PDF全文
Bronwyn J. Barkla Rosario Vera-Estrella Minerva Maldonado-Gama Omar Pantoja 《Plant physiology》1999,120(3):811-820
Abscisic acid (ABA) has been implicated as a key component in water-deficit-induced responses, including those triggered by drought, NaCl, and low- temperature stress. In this study a role for ABA in mediating the NaCl-stress-induced increases in tonoplast H+-translocating ATPase (V-ATPase) and Na+/H+ antiport activity in Mesembryanthemum crystallinum, leading to vacuolar Na+ sequestration, were investigated. NaCl or ABA treatment of adult M. crystallinum plants induced V-ATPase H+ transport activity, and when applied in combination, an additive effect on V-ATPase stimulation was observed. In contrast, treatment of juvenile plants with ABA did not induce V-ATPase activity, whereas NaCl treatment resulted in a similar response to that observed in adult plants. Na+/H+ antiport activity was induced in both juvenile and adult plants by NaCl, but ABA had no effect at either developmental stage. Results indicate that ABA-induced changes in V-ATPase activity are dependent on the plant reaching its adult phase, whereas NaCl-induced increases in V-ATPase and Na+/H+ antiport activity are independent of plant age. This suggests that ABA-induced V-ATPase activity may be linked to the stress-induced, developmentally programmed switch from C3 metabolism to Crassulacean acid metabolism in adult plants, whereas, vacuolar Na+ sequestration, mediated by the V-ATPase and Na+/H+ antiport, is regulated through ABA-independent pathways. 相似文献
11.
12.
Anna Shestakova Matt Curtiss Brian A. Davies David J. Katzmann Markus Babst 《The Journal of biological chemistry》2013,288(37):26810-26819
The AAA-type ATPase Vps4 functions with components of the ESCRT (endosomal sorting complex required for transport) machinery in membrane fission events that are essential for endosomal maturation, cytokinesis, and the formation of retroviruses. A key step in these events is the assembly of monomeric Vps4 into the active ATPase complex, which is aided in part by binding of Vps4 via its N-terminal MIT (microtubule interacting and trafficking) domain to its substrate ESCRT-III. We found that the 40-amino acid linker region between the MIT and the ATPase domain of Vps4 is not required for proper function but plays a role in regulating Vps4 assembly and ATPase activity. Deletion of the linker is expected to bring the MIT domains into close proximity to the central pore of the Vps4 complex. We propose that this localization of the MIT domain in linker-deleted Vps4 mimics a repositioning of the MIT domain normally caused by binding of Vps4 to ESCRT-III. This structure would allow the Vps4 complex to engage ESCRT-III subunits with both the pore and the MIT domain simultaneously, which might be essential for the ATP-driven disassembly of ESCRT-III. 相似文献
13.
Cloning and Expression of the Gene for the Na+-Coupled Serine Transporter from Escherichia coli and Characteristics of the Transporter 下载免费PDF全文
Wakano Ogawa Young-Mog Kim Tohru Mizushima Tomofusa Tsuchiya 《Journal of bacteriology》1998,180(24):6749-6752
We cloned a gene (sstT) for the Na+/serine symporter from the chromosome of Escherichia coli by using a low-copy-number vector and sequenced it. According to the deduced amino acid sequence, the transporter (SstT) consists of 414 amino acid residues. Hydropathy analysis suggested that the SstT protein possesses 9, instead of 12, hydrophobic domains. 相似文献
14.
Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC) of aminoglycosides (AGs) induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER) pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC. 相似文献
15.
Yulan Xiong Candice E. Coombes Austin Kilaru Xiaojie Li Aaron D. Gitler William J. Bowers Valina L. Dawson Ted M. Dawson Darren J. Moore 《PLoS genetics》2010,6(4)
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson''s disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism. The expression of human LRRK2 variants in cultured primary neurons induces toxicity that is dependent on intact GTP binding or kinase activities. However, the mechanism(s) underlying LRRK2-induced neuronal toxicity is poorly understood, and the contribution of GTPase and/or kinase activity to LRRK2 pathobiology is not well defined. To explore the pathobiology of LRRK2, we have developed a model of LRRK2 cytotoxicity in the baker''s yeast Saccharomyces cerevisiae. Protein domain analysis in this model reveals that expression of GTPase domain-containing fragments of human LRRK2 are toxic. LRRK2 toxicity in yeast can be modulated by altering GTPase activity and is closely associated with defects in endocytic vesicular trafficking and autophagy. These truncated LRRK2 variants induce similar toxicity in both yeast and primary neuronal models and cause similar vesicular defects in yeast as full-length LRRK2 causes in primary neurons. The toxicity induced by truncated LRRK2 variants in yeast acts through a mechanism distinct from toxicity induced by human α-synuclein. A genome-wide genetic screen identified modifiers of LRRK2-induced toxicity in yeast including components of vesicular trafficking pathways, which can also modulate the trafficking defects caused by expression of truncated LRRK2 variants. Our results provide insight into the basic pathobiology of LRRK2 and suggest that the GTPase domain may contribute to the toxicity of LRRK2. These findings may guide future therapeutic strategies aimed at attenuating LRRK2-mediated neurodegeneration. 相似文献
16.
Alexander Mironov Antonino Colanzi Maria Giuseppina Silletta Giusy Fiucci Silvio Flati Aurora Fusella Roman Polishchuk Alexander Mironov Jr. Giuseppe Di Tullio Roberto Weigert Vivek Malhotra Daniela Corda Maria Antonietta De Matteis Alberto Luini 《The Journal of cell biology》1997,139(5):1109-1118
We have investigated the role of the ADP- ribosylation induced by brefeldin A (BFA) in the mechanisms controlling the architecture of the Golgi complex. BFA causes the rapid disassembly of this organelle into a network of tubules, prevents the association of coatomer and other proteins to Golgi membranes, and stimulates the ADP-ribosylation of two cytosolic proteins of 38 and 50 kD (GAPDH and BARS-50; De Matteis, M.A., M. DiGirolamo, A. Colanzi, M. Pallas, G. Di Tullio, L.J. McDonald, J. Moss, G. Santini, S. Bannykh, D. Corda, and A. Luini. 1994. Proc. Natl. Acad. Sci. USA. 91:1114–1118; Di Girolamo, M., M.G. Silletta, M.A. De Matteis, A. Braca, A. Colanzi, D. Pawlak, M.M. Rasenick, A. Luini, and D. Corda. 1995. Proc. Natl. Acad. Sci. USA. 92:7065–7069). To study the role of ADP-ribosylation, this reaction was inhibited by depletion of NAD+ (the ADP-ribose donor) or by using selective pharmacological blockers in permeabilized cells. In NAD+-depleted cells and in the presence of dialized cytosol, BFA detached coat proteins from Golgi membranes with normal potency but failed to alter the organelle's structure. Readdition of NAD+ triggered Golgi disassembly by BFA. This effect of NAD+ was mimicked by the use of pre–ADP- ribosylated cytosol. The further addition of extracts enriched in native BARS-50 abolished the ability of ADP-ribosylated cytosol to support the effect of BFA. Pharmacological blockers of the BFA-dependent ADP-ribosylation (Weigert, R., A. Colanzi, A. Mironov, R. Buccione, C. Cericola, M.G. Sciulli, G. Santini, S. Flati, A. Fusella, J. Donaldson, M. DiGirolamo, D. Corda, M.A. De Matteis, and A. Luini. 1997. J. Biol. Chem. 272:14200–14207) prevented Golgi disassembly by BFA in permeabilized cells. These inhibitors became inactive in the presence of pre–ADP-ribosylated cytosol, and their activity was rescued by supplementing the cytosol with a native BARS-50–enriched fraction. These results indicate that ADP-ribosylation plays a role in the Golgi disassembling activity of BFA, and suggest that the ADP-ribosylated substrates are components of the machinery controlling the structure of the Golgi apparatus. 相似文献
17.
A Fission Yeast Gene, him1+/dfp1+, Encoding a Regulatory Subunit for Hsk1 Kinase, Plays Essential Roles in S-Phase Initiation as Well as in S-Phase Checkpoint Control and Recovery from DNA Damage 下载免费PDF全文
Tadayuki Takeda Keiko Ogino Etsuko Matsui Min Kwan Cho Hiroyuki Kumagai Tsuyoshi Miyake Ken-ichi Arai Hisao Masai 《Molecular and cellular biology》1999,19(8):5535-5547
18.
Kinetic Analysis of Bifidobacterial Metabolism Reveals a Minor Role for Succinic Acid in the Regeneration of NAD+ through Its Growth-Associated Production 下载免费PDF全文
Roel Van der Meulen Tom Adriany Kristof Verbrugghe Luc De Vuyst 《Applied microbiology》2006,72(8):5204-5210
Several strains belonging to the genus Bifidobacterium were tested to determine their abilities to produce succinic acid. Bifidobacterium longum strain BB536 and Bifidobacterium animalis subsp. lactis strain Bb 12 were kinetically analyzed in detail using in vitro fermentations to obtain more insight into the metabolism and production of succinic acid by bifidobacteria. Changes in end product formation in strains of Bifidobacterium could be related to the specific rate of sugar consumption. When the specific sugar consumption rate increased, relatively more lactic acid and less acetic acid, formic acid, and ethanol were produced, and vice versa. All Bifidobacterium strains tested produced small amounts of succinic acid; the concentrations were not more than a few millimolar. Succinic acid production was found to be associated with growth and stopped when the energy source was depleted. The production of succinic acid contributed to regeneration of a small part of the NAD+, in addition to the regeneration through the production of lactic acid and ethanol. 相似文献
19.
Suppressor Scanning at Positions 177 and 236 in the Escherichia coli Lactose/H+ Cotransporter and Stereotypical Effects of Acidic Substituents That Suggest a Favored Orientation of Transmembrane Segments Relative to the Lipid Bilayer 下载免费PDF全文
Acidic substituents for Ala-177 (helix 6) or Tyr-236 (helix 7) in LacY cause effects on sugar recognition and cosubstrate coupling that are stereotypical of neutral substituents. Thus, helices 6 and 7 are probably oriented to produce little side-chain contact with the low dielectric lipid bilayer at positions 177 and 236. 相似文献
20.