首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Maintenance of wakefulness is established to accomplish muscarinic (M-) cholinergic receptor activation in the ventrolateral preoptic area of the hypothalamus. The "muscarinic" wakefulness is characterized by enhancement of electroencephalogram (EEG) power spectra in the 0.75-12 Hz band and by increase in brain temperature. Activation of nicotinic (N-) cholinergic receptors of the area produces an increase in the duration of slow wave sleep, EEG power spectra reduction in the 0.75-7 Hz band, a decrease in brain temperature. And its hyperactivation leads to wakefulness, during its episodes the brain temperature decreases. During M- and N-cholinergic receptor blockade, the sleep-wakefulness and thermoregulation changes opposite to their activation were found. It is suggested that M- and N-cholinergic receptors of the ventrolateral preoptic area in pigeons participate in the sleep-wakefulness regulation and this effect is related to influence of this area on GABA-ergic system.  相似文献   

2.
By using electrophysiological methods, it has been established that muscarinic (M-) cholinergic mechanisms of the ventrolateral preoptic area (VLPA) of pigeon hypothalamus participate in maintenance of wakefulness, whereas nicotinic (N-) mechanisms--in maintenance of the slow-wave sleep. Activation of the VLPA M-cholinergic receptors has been found to be accompanied by an elevation of the brain temperature, by development of peripheral vasoconstriction, and by an increase in the muscle contractive activity. Activation of N-cholinoreceptors leads to a decrease in the brain temperature and development of peripheral vasoconstriction. It is suggested that the VLPA M- and N-cholinergic receptors are involved in different mechanisms of regulation of wakefulness and sleep states and brain temperature in pigeons.  相似文献   

3.
By using electrophysiological methods, it has been established that muscarinic (M-) cholinergic mechanisms of the ventrolateral preoptic area (VLPA) of pigeon hypothalamus participate in maintenance of wakefulness, whereas nicotinic (N-) mechanisms—in maintenance of the nonrapid-eye movement sleep (slow sleep). Activation of the VLPA M-cholinergic receptors has been found to be accompanied by an elevation of the brain temperature, by development of peripheral vasoconstriction, and by an increase in the muscle contractive activity. Activation of N-cholinoreceptors leads to a decrease in the brain temperature and development of peripheral vasoconstriction. It is suggested that the VLPA M-and N-cholinergic receptors are involved in different mechanisms of regulation of wakefulness and sleep states and brain temperature in pigeons.  相似文献   

4.
Recently it was indicated that microinjections of heat shock proteins 70 kDa (Hsp70) into the third ventricle of brain in pigeons results in an increase in the duration of slow wave sleep and a decrease in somato-visceral indices. It is suggested that Hsp70 effect may be related to GABA(A) receptors activation in the preoptic area of the hypothalamus. However, what transmitter mechanisms of activation are related to the removal effect (in 2-3 hrs) of rapid eye movement sleep inhibition still remains poorly understood. To solve this problem in the present study, microinjections of Hsp70 into the Nucleus reticularis pontis oralis (NRPO) were done. It is well known that cholinergic neurons of the NRPO are crucial for rapid eye movement sleep generation. The data show that Hsp70 produces more early (for first two hrs) a decrease in number of episodes and total time of rapid eye movement sleep, a diminution of electroencephalogram (EEG) power spectra in the 9-14 Hz band, a decrease in contractile muscle activity and brain temperature. It is suggested that Hsp70 effects are realized due to activation of GABA(A) receptors in the NRPO and induced inhibition of cholinergic mechanisms of rapid eye movement sleep triggering. The microinjections of Hsp70 into the NRPO increase the slow wave sleep total time with long latency (for 8-12 hrs). This effect may be related to influence of Hsp70 on neurons population, which are responsible for slow wave sleep maintenance outside the NRPO.  相似文献   

5.
Neurons of the medial preoptic area were studied in the brain of the female rat by means of ultrastructural immunocytochemistry using a monoclonal antibody generated against purified estrogen receptor (ER), in order to delineate the morphological correlates of estrogen feedback mechanisms. In addition to the preoptic area, the bed nucleus of the stria terminalis, the arcuate and ventromedial nuclei of the hypothalamus exhibited an intense labelling for estrogen receptor. At the light microscopic level, the cell nuclei were immunoreactive. No major alterations were detected in the ER expression of medial preoptic neurons sampled during the estrous cycle, but proestrous rats did exhibit a slightly increased intensity of staining. At the ultrastructural level, the ER immunoreactivity was primarily confined to the nuclei and associated with the chromatin. Long term steroid deprivation elicited by either ovariectomy or ovariectomy plus adrenalectomy resulted in a marked intensity of nuclear labelling. This pattern was not influenced by acute estradiol replacement. These morphological data indicate that neurons of the medial preoptic area have the capacity to detect estrogens via receptor mechanisms and that changes in the level of the circulating ligand are manifested in an alteration in the staining for the estrogen receptor. The study also supports the revised concept of estrogen receptor action by demonstrating the presence of receptors in the nuclei of the cells, whether or not they are occupied by their ligand.  相似文献   

6.
Sexual behavior in female rats was facilitated by infusion of a cholinergic agent into specific brain regions. Carbachol, a cholinergic receptor agonist, increased the incidence of lordosis in estrogen-primed female rats following bilateral infusion (0.5 μg/cannula) into either the medial preoptic area or the ventromedial hypothalamus. The behavioral response was highest 15 min after carbachol infusion and returned to control levels within 90 min after infusion. Carbachol failed to activate lordosis following infusion into the mesencephalic reticular formation or frontal cortex. These results indicate that the potential of a brain area to respond to cholinergic stimulation may be related to the ability of that area to concentrate estrogen.  相似文献   

7.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either beta-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17 beta to induce high levels of progestin receptors, and injected intracerebroventricularly with colchicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by beta-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many beta-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by beta-endorphin and/or enkephalin.  相似文献   

8.
Summary Neurons of the medial preoptic area were studied in the brain of the female rat by means of ultrastructural immunocytochemistry using a monoclonal antibody generated against purified estrogen receptor (ER), in order to delineate the morphological correlates of estrogen feedback mechanisms. In addition to the preoptic area, the bed nucleus of the stria terminalis, the arcuate and ventromedial nuclei of the hypothalamus exhibited an intense labelling for estrogen receptor. At the light microscopic level, the cell nuclei were immunoreactive. No major alterations were detected in the ER expression of medial preoptic neurons sampled during the estrous cycle, but proestrous rats did exhibit a slightly increased intensity of staining. At the ultrastructural level, the ER immunoreactivity was primarily confined to the nuclei and associated with the chromatin. Long term steroid deprivation elicited by either ovariectomy or ovariectomy plus adrenalectomy resulted in a marked intensity of nuclear labelling. This pattern was not influenced by acute estradiol replacement.These morphological data indicate that neurons of the medial preoptic area have the capacity to detect estrogens via receptor mechanisms and that changes in the level of the circulating ligand are manifested in an alteration in the staining for the estrogen receptor. The study also supports the revised concept of estrogen receptor action by demonstrating the presence of receptors in the nuclei of the cells, whether or not they are occupied by their ligand.Supported by grants from the IBRO/MacArthur Foundation Network Grant, the National Science Foundation (NSF INT 8703030), the Hungarian Academy of Sciences (OTKA 104), the National Institutes of Health (NS 19266), the National Foundation of Technical Development (OKKFT Tt 286/1986) and the Well-come Trust (14685/1.5)  相似文献   

9.
We have demonstrated a high density of both radiolabeled progesterone and estradiol conjugated to bovine serum albumin binding sites in the medial preoptic area and hypothalamus. Infusions of sex hormone binding globulin into the medial preoptic area of rats increased their female sexual receptivity similarly to the effect of estradiol conjugated to bovine serum albumin, suggesting sex hormone binding globulin acts at binding sites for estradiol conjugated to bovine serum albumin. In this study sex hormone binding globulin was used to displace radiolabeled progesterone conjugated to bovine serum albumin from plasma membrane fractions from the medial preoptic area-anterior hypothalamus and medial basal hypothalamus of ovariectomized rats injected with either 5 microg estradiol benzoate or sesame oil vehicle. We found that sex hormone binding displaced radiolabeled progesterone conjugated to bovine serum albumin in both areas and that in vivo estradiol treatment greatly increased the relative displacement by sex hormone binding globulin in the medial preoptic area-anterior hypothalamus. We interpret these data as indicating the presence of sex hormone binding globulin receptors in brain plasma membranes and further suggest that endogenous steroid conditions may alter these receptors.  相似文献   

10.
11.
Central neural circuits orchestrate the homeostatic repertoire to maintain body temperature during environmental temperature challenges and to alter body temperature during the inflammatory response. This review summarizes the research leading to a model representing our current understanding of the neural pathways through which cutaneous thermal receptors alter thermoregulatory effectors: the cutaneous circulation for control of heat loss, and brown adipose tissue, skeletal muscle, and the heart for thermogenesis. The activation of these effectors is regulated by parallel but distinct, effector-specific core efferent pathways within the central nervous system (CNS) that share a common peripheral thermal sensory input. The thermal afferent circuit from cutaneous thermal receptors includes neurons in the spinal dorsal horn projecting to lateral parabrachial nucleus neurons that project to the medial aspect of the preoptic area. Within the preoptic area, warm-sensitive, inhibitory output neurons control heat production by reducing the discharge of thermogenesis-promoting neurons in the dorsomedial hypothalamus. The rostral ventromedial medulla, including the raphe pallidus, receives projections form the dorsomedial hypothalamus and contains spinally projecting premotor neurons that provide the excitatory drive to spinal circuits controlling the activity of thermogenic effectors. A distinct population of warm-sensitive preoptic neurons controls heat loss through an inhibitory input to raphe pallidus sympathetic premotor neurons controlling cutaneous vasoconstriction. The model proposed for central thermoregulatory control provides a platform for further understanding of the functional organization of central thermoregulation.  相似文献   

12.
Mu-opioid receptor (MOR) and opioid receptor-like receptor (ORL-1) circuits in the limbic hypothalamic system are important for the regulation of sexual receptivity in the female rat. Sexual receptivity is tightly regulated by the sequential release of estrogen and progesterone from the ovary suggesting ovarian steroids regulate the activity of these neuropeptide systems. Both MOR and ORL-1 distributions overlap with the distribution of estrogen and progesterone receptors in the hypothalamus and limbic system providing a morphological substrate for interaction between steroids and the opioid circuits in the brain. Both MOR and ORL-1 are receptors that respond to activation by endogenous ligands with internalization into early endosomes. This internalization is part of the mechanism of receptor desensitization or down regulation. Although receptor activation and internalization are separate events, internalization can be used as a temporal measure of circuit activation by endogenous ligands. This review focuses on the estrogen and progesterone regulation of MOR and ORL-1 circuits in the medial preoptic nucleus and ventromedial nucleus of the hypothalamus that are central to modulating sexual receptivity.  相似文献   

13.
Several studies have shown the importance of the medial preoptic area in the regulation of sleep-wakefulness and of body temperature. The medial preoptic area has a rich noradrenergic innervation, coming mostly from the lateral tegmental noradrenergic system. The accumulating evidences show that the noradrenergic afferents to the medial preoptic area are involved in the induction of sleep. This hypnogenic mechanism operates through the postsynaptic alpha1 and alpha2-adrenergic receptors. Noradrenergic afferents are also involved in the thermoregulatory mechanisms, and the activation of these fibers brings about a fall in body temperature. Though the body temperature changes are brought about by the same receptor subtypes as those involved in hypnogenesis, observations suggest the possibility of separate sets of noradrenergic afferents in the medial preoptic area for sleep regulation and thermoregulation. In this review, we present the compelling evidences, which showed that the noradrenergic afferents of the medial preoptic area bring about a fall in body temperature and other thermoregulatory behavioral alterations associated with sleep.  相似文献   

14.
Estrogen receptor alpha (ERalpha) participates in the neuroendocrine regulation of male sexual behavior, primarily in brain areas located in the limbic system. Males of many species present a long-term inhibition of sexual behavior after several ejaculations, known as sexual satiety. It has been shown that androgen receptor density is reduced 24 h after a single ejaculation or mating to satiety, in the medial preoptic area, nucleus accumbens and ventromedial hypothalamus. The aim of this study was to analyze if the density of ERalpha was also modified 24 h after a single ejaculation or mating to satiety. Sexual satiety was associated with an increased ERalpha density in the anteromedial bed nucleus of the stria terminalis (BSTMA), ventrolateral septum (LSV), posterodorsal medial amygdala (MePD), medial preoptic area (MPA) and nucleus accumbens core (NAc). A single ejaculation was related to an increase in ERalpha density in the BSTMA and MePD. ERalpha density in the arcuate (Arc) and ventromedial hypothalamic nuclei (VMN), and serum estradiol levels remained unchanged 24 h after one ejaculation or mating to satiety. These data suggest a relationship between sexual activity and an increase in the expression of ERalpha in specific brain areas, independently of estradiol levels in systemic circulation.  相似文献   

15.
In Syrian hamsters (Mesocricetus auratus), oxytocin (OXT) activity within the medial preoptic-anterior hypothalamus (MPOA-AH) and the ventromedial hypothalamus (VMH) plays an important role in the expression of sexual receptivity. Immunocytochemical analysis with OXT-specific antibodies was used to identify the distribution of OXT-containing cell bodies and fibers in female hamster brain and to determine the possible sources of OXT important for sexual receptivity. Oxytocin-immunoreactive cell bodies and fibers were found in several regions of the preoptic area, including the medial preoptic area, the medial preoptic nucleus, and the bed nucleus of the stria terminalis. Large numbers of cell bodies and fibers were localized within the paraventricular and supraoptic nuclei, and in anterior hypothalamus. OXT-immunoreactive fibers were observed in the VMH and the ventral tegmental area. The anatomical data from the present study support the hypothesis that OXT activity in the MPOA-AH and the VMH plays an important role in the regulation of sexual receptivity in hamsters.  相似文献   

16.
The relative distributions of aromatase and of estrogen receptors were studied in the brain of the Japanese quail by a double-label immunocytochemical technique. Aromatase immunoreactive cells (ARO-ir) were found in the medial preoptic nucleus, in the septal region, and in a large cell cluster extending from the dorso-lateral aspect of the ventromedial nucleus of the hypothalamus to the tuber at the level of the nucleus inferioris hypothalami. Immunoreactive estrogen receptors (ER) were also found in each of these brain areas but their distribution was much broader and included larger parts of the preoptic, septal, and tuberal regions. In the ventromedial and tuberal hypothalamus, the majority of the ARO-ir cells (over 75%) also contained immunoreactive ER. By contrast, very few of the ARO-ir cells were double-labeled in the preoptic area and in the septum. More than 80% of the aromatase-containing cells contained no ER in these regions. This suggests that the estrogens, which are formed centrally by aromatization of testosterone, might not exert their biological effects through binding with the classical nuclear ER. The fact that significant amounts of aromatase activity are found in synaptosomes purified by differential centrifugation and that aromatase immunoreactivity is observed at the electron microscope level in synaptic boutons suggests that aromatase might produce estrogens that act at the synaptic level as neurohormones or neuromodulators.  相似文献   

17.
Double-label immunocytochemistry was used to determine whether estradiol-induced progestin receptors and either β-endorphin or leucine-enkephalin are colocalized in female guinea pig brain. Ovariectomized, adult guinea pigs were implanted with capsules containing estradiol-17β to induce high levels of progestin receptors, and injected intracerebroventricularly with co chicine to improve visualization of the opiate peptides. Sections through the hypothalamus and preoptic area were processed for progestin receptor, followed by β-endorphin or leucine-enkephalin immunocytochemistry. As reported previously, high concentrations of progestin receptor-immunoreactive (PR-IR) cells were found in the preoptic area (medial and periventricular portions, medial preoptic nucleus) and hypothalamus (anterior hypothalamic and arcuate nuclei, ventrolateral area). Many β-endorphin-IR cells contained PR-IR in the arcuate nucleus and its surroundings (33%) and in the dorsomedial area of the hypothalamus (64%). Scattered enkephalin-IR cells were found in the septal nucleus, medial and lateral preoptic area, bed nucleus of the stria terminalis, and the arcuate nucleus. The ventromedial nucleus of the hypothalamus and dorsolateral magnocellular nucleus, respectively, contained moderate and heavy concentrations of enkephalin-IR cells. Although some of these areas also contained PR-IR, enkephalin-IR was colocalized consistently with PR-IR only in a small number of cells in the arcuate nucleus and ventromedial/ventrolateral area of the hypothalamus. These data, taken together with earlier observations that virtually all cells containing estradiol-induced PR-IR also contain estrogen receptor-IR, provide neuroanatomical evidence that hypothalamic actions of progesterone and estradiol may be mediated by β-endorphin and/or enkephalin.  相似文献   

18.
Despite the great interest in studying the medial septal area, the interactions of its neurochemical systems are not yet clearly understood. The aim of this study was to elucidate the role of nicotinic receptors in the interaction of glutamatergic and cholinergic systems of the medial septal area. The effect of L-glutamate (1 microM) on septal neurons was studied under the application of hexamethonium, nicotinic cholinoreceptor blocker by using the method of extracellular recording of neuronal activity in brain slices of ground squirrels. The response of septal neurons to glutamate depended on the type of their initial activity and on the presence of pacemaker properties. For the first time, the ability of septal neurons to respond to glutamate with an increase in burst frequency was shown. The influence of hexamethonium on the neuronal activity was similar to that of glutamate. After a preliminary application of hexamethonium, the reactions of neurons to glutamate changed. The excitatory reactions were masked, while the inhibitory reactions became stronger. It was found that nicotinic cholinergic receptors modulated the reactions of MS-DB cells to glutamate and the expression of the oscillatory properties of the septal neuronal network.  相似文献   

19.
Intact male rats were tested on two successive weekly tests with females to determine their level of sexual activity. Nuclear estrogen receptor content was measured in specific brain regions of individual sexually responsive and sexually nonresponsive males. Sexually nonresponsive male rats had significantly reduced nuclear estrogen receptor levels in the preoptic area compared to sexually responsive males. Sexually active males did not differ from inactive males in nuclear estrogen receptors in the medialbasal hypothalamus.  相似文献   

20.
Amylin, or islet amyloid polypeptide, is known as a satiating signal expressed in pancreatic β‐cells but not in the brain. In this study, regulations of postpartum mRNA expressions were investigated in the preoptic area of the hypothalamus. mRNA levels of lactating dams and mothers whose pups were removed immediately after delivery were compared in microarray experiments. There were 20 genes identified with significantly increased and 14 with decreased expression 9 days postpartum. Amylin mRNA level demonstrated the largest change, a 25.7 times increase. Quantitative RT‐PCR measurements validated the increase in the mRNA level of amylin in the preoptic area of lactating dams while the expression level of other members of the calcitonin gene‐related peptide family did not change. In situ hybridization histochemistry for amylin further verified its induction in lactating mothers and demonstrated the distribution of amylin mRNA in the medial preoptic nucleus, parts of the medial preoptic area, and the ventral part of the bed nucleus of the stria terminalis but nowhere else in the rat brain. Immunolabeling verified the postpartum induction of amylin in the preoptic area at the peptide level, as well. The results suggest that amylin may play a part in maternal regulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号