首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
WUSCHEL相关-同源盒(WUSCHEL related-homeobox, WOX)基因家族是一类植物特有的转录因子基因家族,在植物的生长发育过程中发挥重要作用。本研究利用芥菜(Brassica juncea)基因组数据,通过HUMMER、Smart等软件进行检索筛选,共鉴定出51个WOX基因家族成员。利用Expasy在线软件对这些家族成员的蛋白质分子量、氨基酸序列长度、等电点等进行分析,并利用生物信息学软件对芥菜WOX基因家族进化关系、保守区域、基因结构等进行系统性分析,将芥菜WOX基因家族分为古老支、中间支和WUS支/现代支3个亚家族。结构分析表明,同一亚家族内的WOX转录因子家族成员的保守结构域的种类、组织形式以及基因结构具有高度的一致性,而不同亚家族之间呈现一定的多样性。51个WOX基因不均匀分布于芥菜18条染色体上,这些基因的启动子大多含有响应光、激素和非生物逆境胁迫相关的顺式作用元件。利用转录组数据和实时荧光定量PCR (real-time fluorescence quantitative PCR, qRT-PCR)分析发现,芥菜WOX基因的表达具有时空特异性,其中B...  相似文献   

2.
刘璐  黄镇  卢虹  郎丽娜  赵娜  徐爱遐 《西北植物学报》2015,35(11):2191-2196
该研究在前期对‘吴旗黄芥’黄籽性状遗传图谱研究的基础上,利用白菜及拟南芥基因组信息,在芸薹属白菜A基因组BAC克隆KBrH105I15上设计了5对SCAR引物,在拟南芥第3染色体黄籽基因的同源区域At3g14120与At3g29615附近设计了6对IP引物,11对引物分别扩增F2群体(‘吴旗黄芥’ב武功褐芥’)的1 212个单株,开发与‘吴旗黄芥’黄籽基因更近的分子标记。结果表明:来自于白菜A基因组BAC克隆KBrH105I15上的Y12(Y12为共显性标记),以及来自于拟南芥第3染色体同源区域At3g24180的IP-6表现与‘吴旗黄芥’黄籽基因紧密连锁,其遗传距离分别为0.2和0.1cM,较之前最近的标记距离分别缩短0.3和0.2cM。这2个标记的开发对开展‘吴旗黄芥’黄籽基因的克隆奠定了基础。  相似文献   

3.
铯对印度芥菜幼苗生长的影响及其亚细胞分布和化学形态   总被引:1,自引:0,他引:1  
以印度芥菜为材料,用含铯(Cs+)[8.24(CK),25,50,100,200mg·L~(-1)]的Hoagland营养液培养印度芥菜种子和幼苗,采用IMAGE-J软件测定根、茎长度,通过差速离心法、化学试剂提取法分别提取幼苗根、茎、叶各亚细胞组分及不同化学形态的Cs+,并用火焰原子分光光度计测定Cs+含量,分析Cs+对幼苗生长的影响及其亚细胞分布和化学形态,进而探讨Cs+对植物的伤害机理。结果显示:(1)Cs+对印度芥菜幼苗生长具有明显的抑制作用,根、茎的EC50(相对抑制率达到50%的Cs+浓度)分别为112.09和118.42mg·L~(-1);(2)各器官中Cs+的积累量总体表现为叶根茎;Cs+在印度芥菜中的亚细胞分布呈现为可溶性组分细胞壁组分细胞器组分,三者所占比例分别为52.86%~79.19%、20.81%~45.05%和1.43%~9.00%;(3)Cs+在印度芥菜各器官中主要以无机盐和水溶态赋存,两种形态根、茎、叶占比分别达到88.02%~92.20%、97.33%~100%和95.06%~100%。研究表明:印度芥菜积累过量的Cs+可抑制其根、茎生长,导致叶片枯萎,主要是因为Cs+在印度芥菜体内大部分以无机盐态和水溶态形式存在,使Cs+在植物体内具有较强迁移能力和毒理生物有效性,更易分布到重金属的毒性敏感区(如细胞器),导致细胞器受到功能性损伤,从而使植物表现出明显中毒症状。  相似文献   

4.
Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday.  相似文献   

5.
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form.  相似文献   

6.
芥菜(Brassica juncea)是十字花科芸薹属一年或二年生蔬菜,其产品器官的产量和品质会受到开花时间的影响。WRKY家族成员具有响应生物和非生物胁迫、发育调控和信号转导等作用。WRKY75是WRKY家族中能够调节开花的重要成员,但在芥菜中的开花调控机制还未见报道。本研究克隆了芥菜BjuWRKY75基因,发现其编码蛋白具有高度保守的WRKY结构域,属于Ⅱ类WRKY蛋白,与黑芥BniWRKY75同源性最高。BjuWRKY75在花中表达丰度显著高于叶和茎,并且在叶中表达较为稳定。BjuWRKY75定位于细胞核,能够与含有W-box应答元件的开花整合子BjuFT的启动子相互作用,且能转录激活下游基因表达。BjuWRKY75转入拟南芥可显著提早开花。综上说明,BjuWRKY75能够直接靶向BjuFT从而促进开花。这为深入研究BjuWRKY75开花分子调控奠定了基础。  相似文献   

7.
田恩堂  李鲁峰  贾世燕  林树春 《广西植物》2016,36(12):1445-1452
芥菜型油菜是我国芸苔属的三大油料作物之一,具有耐旱、抗病虫等优良特性;而我国是芥菜型油菜的重要起源中心,具有丰富的种质资源.该研究从全国各地搜集了34份芥菜型油菜,在贵阳环境条件下种植,其脂肪酸含量(芥酸、油酸、硬脂酸、亚麻酸和亚油酸)表现出丰富的变异,并呈正态分布.结果表明:这些芥菜型油菜种质资源的不同脂肪酸含量间的相关性发现,芥酸和油酸间呈极显著负相关,亚麻酸和硬脂酸呈极显著的正相关,亚麻酸和亚油酸呈现负相关.利用这些材料的脂肪酸含量进行主成分分析,发现绝大部分材料(30份,占88.2%)集中在二维图的特定区域,只有少数其它材料散落在图中其它区域,他们分别是SL63、棱角油菜、T6342和长阳黄芥,这些变异较大的材料在芥菜型油菜的育种中可以发挥特殊作用.此外,运用来自甘蓝型油菜和甘蓝的芥酸调控基因FAE1的已知序列,并设计了FAE1特异引物,而引物在全部34份芥菜型油菜种质资源中均表现出了较好的扩增效果.因此证实芥菜型油菜中至少含有一个FAE1拷贝.该研究结果对于芥菜型油菜育种在我国的开展及其未来的分子育种具有重要的指导意义.  相似文献   

8.
In land plants plastocyanin is indispensable and therefore copper (Cu) availability is a prerequisite for growth. When Cu supply is limited, higher plants prioritize the Cu delivery to plastocyanin by down-regulation of other Cu proteins. Arabidopsis has two plastocyanin genes (PETE1 and PETE2). PETE2 is the predominant isoform in soil-grown plants and in hydroponic cultures it is accumulated in response to Cu addition. It functions as a Cu sink when more Cu is available, in addition to its role as an electron carrier. PETE1 is not affected by Cu feeding and it is the isoform that drives electron transport under Cu-deficiency. Cu feeding rescued the defect in photosystem II electron flux (ΦPSII) in the pete1 mutant whereas ΦPSII was not changed in the pete2 mutant as Cu was added. Plants with mutations in the plastocyanin genes had altered Cu homeostasis. The pete2 mutant accumulated more Cu/Zn superoxide dismutase (CSD2 and CSD1) and Cu chaperone (CCS) whereas the pete1 mutant accumulated less. On the other hand, less iron superoxide dismutase (FeSOD) and microRNA398b were observed in the pete2 mutant, whereas more were accumulated in the pete1 mutant. Our data suggest that plastocyanin isoforms are different in their response to Cu and the absence of either one changes the Cu homeostasis. Also a small amount of plastocyanin is enough to support efficient electron transport and more PETE2 is accumulated as more Cu is added, presumably, to buffer the excess Cu. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
根据美国NCBI数据库中快速碱化因子(RALF)类基因序列的已知信息,克隆了油菜的快速碱化因子基因RALFbn,对其核酸序列及预测蛋白进行了生物信息学分析,并在油菜多种组织内观测其表达情况.结果表明:(1)经克隆获得油菜RALFbn基因的cDNA序列全长为510 bp,无内含子,编码79个氨基酸.(2)生物信息学分析发现,油菜RALFbn蛋白具有RALF类蛋白保守的“YIXY”区和4个保守的半胱氨酸残基,并且含有N豆蔻酰化位点、酪氨酸激酶Ⅱ磷酸化位点、蛋白激酶C磷酸化位点、和酪氨酸激酶磷酸化位点等多个生物活性位点,说明该蛋白在油菜中潜在的生理调节能力较为活跃.(3) RT-PCR检测RALFbn基因在油菜生殖器官中的表达结果发现,RALFbn主要在油菜雄蕊中表达,而在雌蕊、花瓣和萼片中没有表达.提示RALFbn基因极可能与油菜雄蕊中花粉的发育相关.  相似文献   

10.
In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 μM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 μM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H2O2 concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H2O2, contrary to that of O2 ·− radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H2O2 and little higher of O2 ·− in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 μM) induces oxidative stress by increasing production of H2O2 despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe.  相似文献   

11.
Recent work has demonstrated that hydrogen peroxide functions as a signaling molecule controlling different essential processes in plants and mammals, which can be produced by superoxide dismutase (SOD) and xanthine oxidase (XO) and decomposed by catalase (CAT), respectively. Progeny diapause of the silkworm, Bombyx mori, is induced by diapause hormone (DH) and the expression of DH gene in the maternal generation has been determined. In order to investigate the relationship between the metabolism of H2O2 and the expression of DH gene, level of H2O2 and activities of SOD, XO and CAT between univoltine and polyvoltine strains, which can produce diapause and non-diapause eggs, respectively, at embryonic and pupal stages were measured. Our results showed that there were significant differences in the metabolism of hydrogen peroxide between two strains and between embryonic and pupal stages. Compared to polyvoltine strain, level of hydrogen peroxide in univoltine strain was significantly higher from stage 19 to stage 21 but lower from stage 24 to stage 29 and the whole pupal stage (Fig. 1). Variations of hydrogen peroxide indicated that hydrogen peroxide may be involved in the active release of DH and the progeny diapause decision by DH rather than the expression of DH gene.  相似文献   

12.
贺维  陈刚  陈洪  胡庭兴  王彬  胡义  杜朝云 《生态学报》2015,35(7):2067-2075
采用盆栽试验,研究了美洲黑杨(Populus deltoides)凋落叶分解初期对受体植物小白菜(Brassica chinensis)生长和生理的影响。试验设置0、30、60和90 g/盆4个凋落叶施用水平(分别记作CK、L30、L60和L90)。同时,为检验凋落叶施入是否对土壤通气透水性产生明显影响进而影响受体植物的生长,用蒸煮后的凋落叶设置平行空白试验,即30、60、90 g/盆3个蒸著后的凋落叶处理(分别记作Z30、Z60和Z90)。将各处理的凋落叶分别与7 kg土壤混合,播种小白菜。在播种后50、80 d测定小白菜株高和生理指标。结果表明:1)高量(L90)凋落叶下小白菜的高生长和鲜重于50 d时被显著抑制,80 d时长势恢复正常;2)80 d时各处理净光合速率(Pn)与CK水平相当,色素含量略低于CK;3)50、80 d时,低(L30)、中(L60)量处理的超氧化物歧化酶(SOD)活性无明显变化,高量处理下SOD活性升高;4)各处理丙二醛(MDA)含量在50、80 d时与CK均无显著差异。总的来看,杨树各凋落叶量处理对小白菜的影响表现为:低、中量促进,高量抑制,而经蒸煮后的凋落叶处理间差异不显著。表明,低、中量杨树凋落叶在土壤中分解对小白菜生长及生理代谢的影响主要表现为促进作用,而施入高量凋落叶的初期,化感抑制作用明显。  相似文献   

13.
The changes in lipid peroxidation, antioxidative and lignifying enzyme activities were studied in leaves and stems of Cu-stressed sunflower seedlings. In both organs, membrane lipid peroxidation was enhanced by copper treatment. Additionally, catalase (EC 1.11.1.6) and superoxide dismutase (EC 1.15.1.1) activities were modulated: The activity of superoxide dismutase was enhanced in both plant organs. Differently, catalase activity was not affected in leaves but significantly reduced in stems. Peroxidase (EC 1.11.1.7) activities were also changed. Guaiacol peroxidase activity was increased in leaves and stems. In the same way, electrophoretic analysis of the anionic isoperoxidases involved in lignification (syringaldazine peroxidase) revealed qualitative and quantitative changes on the isoenzyme patterns. These modifications were accompanied by the increase of the NADH-oxidase activity in ionically cell wall bound fraction. It appeared that the growth delay caused by copper excess could be related to the activation of lignifying peroxidases.  相似文献   

14.
该研究以甘蓝型油菜组培苗为材料,使用硝酸钠来提供唯一氮源和盐胁迫条件,测定甘蓝型油菜组培苗的生物量、叶绿素含量和叶片稳定碳同位素值,通过稳定碳同位素值评估甘蓝型油菜组培苗的自养能力,并基于自养能力研究甘蓝型油菜组培苗的无机氮供应与盐耐受能力的关系。结果表明:(1)供应40 mmol·L-1硝态氮能消除轻度盐胁迫的不利影响,供应80 mmol·L-1硝态氮能有效缓减中度盐胁迫的不利影响,但在重度盐胁迫条件下,即使供应过量的无机氮,甘蓝型油菜组培苗的生长仍然受到显著的抑制。(2)甘蓝型油菜组培苗的叶绿素含量随盐胁迫程度的增加而逐渐降低。(3)甘蓝型油菜组培苗的自养能力在轻度盐胁迫时达到最大,但盐胁迫程度的加剧会显著降低甘蓝型油菜组培苗的自养能力。由此可知,当植物的无机氮需求得到满足后,自养能力的强弱将决定植物的盐耐受能力,而过量的无机氮供应不能提高重度盐胁迫条件下植物的自养能力。  相似文献   

15.
Maize plants (Zea mays L.) were subjected to soil flooding for 72, 96, and 120 h. A noticeable decrease in the rate of net photosynthesis (PN) and the activity of ribulose-1,5-bisphosphate carboxylase (RuBPC, EC 4.1.1.39) were observed. The values of intercellular CO2 concentrations (ci) increased in all flooded plants without significant changes in stomatal conductance (gs). The activity of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) increased twofold 120 h after soil flooding. Flooding of maize plants led to a decrease in chlorophyll and protein levels and to slight increase of proline content. Flooded plants exhibited a large accumulation of leaf acidity. An increase in the values of some important parameters associated with oxidative stress, namely peroxides production, lipid peroxidation, and electrolyte leakage, confirmed the suggestion that root oxygen deficiency caused photooxidative damage in maize leaves.  相似文献   

16.
The aim of the present study was to assess the tolerance of Hevea brasiliensis to chilling temperatures since rubber production has been extended to sub-optimal environments. PB260 clone was used to analyze the responses of leaves chilled at 10°C during 96 h, as well as their recovery at 28°C. Some key parameters were used to evaluate photosynthetic apparatus functioning, membrane damage (electrolyte leakage) and oxidative stress. A short-term response versus a long-term one have been recorded, the time point of 24 h, when stomata closure was effective, being the border between the two responses. P n decreased dramatically at 1 h, and Fv/Fm was slightly affected. NPQ reached its maximal level between 4 and 7 h. Lipid peroxidation and membrane lysis were observed between 48 and 96 h. Activities of antioxidant enzymes increased, along with the induction of antioxidant gene expression. Finally, the plants were capable to recover (net photosynthetic rate, photochemical efficiency, antioxidant enzymes activities) when placed back to 28°C showing that PB260 can withstand long-term chilling.  相似文献   

17.
为研究甘蓝型油菜磷酸甘油酸激酶(PGK)基因表达特性,在对拟南芥PGK基因家族生物信息学分析的基础上,通过电子克隆方法获得3个甘蓝型油菜PGK基因(BnPGK1、BnPGK2、BnPGK3)。分别设计特异引物,以甘蓝型油菜雄性不育系09A和保持系09B的cDNA为模板克隆BnPGK基因全长序列。根据获得的cDNA序列设计实时荧光定量特异引物,采用实时荧光定量PCR技术,研究油菜雄性不育系与保持系PGK基因表达差异。结果显示:BnPGK基因在甘蓝型油菜雄性不育系09A和保持系09B的根、茎、叶、花蕾中均有表达,属组成性表达。除茎中的BnPGK3外,BnPGK其它基因在根、茎、叶中的表达均表现为09A高于09B,而在花蕾中均为09B高于09A,BnPGK1和BnPGK3在09B中的表达量是09A中的2倍以上。  相似文献   

18.
外来入侵植物小子虉草(Phalaris minor Retz.)是世界公认的冬季农田恶性杂草,掌握农作物对其替代控制作用具有重要的研究价值。前期研究表明,油菜是替代控制小子虉草的优良农作物,然而,目前尚不清楚油菜类型与品种对其控制能力的影响。为此选取与小子虉草同域发生的不同类型(白菜型油菜、芥菜型油菜和甘蓝型油菜)油菜品种各3种,通过田间小区实验和室内化感作用测定,对比研究其对小子虉草的生长、繁殖、表型以及化感作用的影响。田间实验显示:竞争方式(种内或种间竞争)和油菜类型对小子虉草的地上生物量、种子数、株高、分枝数、叶面积和比叶面积存在极显著(P=0.0001)影响;而油菜品种对小子虉草的地上生物量(P=0.6064)、种子数(P=0.3577)、株高(P=0.4279)、分枝数(P=0.6357)、叶面积(P=0.8839)和比叶面积(P=0.3424)均无显著影响。3种类型油菜对小子虉草生长、繁殖以及表型的影响存在明显差异,其中芥菜型油菜对小子虉草的上述指标的影响最强,而白菜型油菜的影响最弱。室内生物测定显示,油菜对小子虉草具有化感抑制作用,当供试油菜叶片水提液浓度为0.1 g/mL时,小子虉草种子的萌发和幼苗的株高、根长、生物量均被显著抑制;研究也表明不同类型油菜对小子虉草的化感作用显著不同,同等条件下,芥菜型油菜对小子虉草的化感抑制作用最强。综上所述,油菜类型对外来入侵小子虉草的控制作用存在显著差异,其中芥菜型油菜对植物小子虉草的替代控制作用明显优于白菜型油菜和甘蓝型油菜,而其强的化感抑草特性或许是其强控草能力的原因之一。另外,本研究也为进一步利用油菜替代控制入侵植物小子虉草提供了参考。  相似文献   

19.
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material. HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase (EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses of HBR effect on barley root development.  相似文献   

20.
为探讨青花菜在模拟酸雨胁迫下谷胱甘肽-S-转移酶的表达变化,克隆了青花菜谷胱甘肽-S-转移酶基因(glutathione-S-transferase,GST)的cDNA序列全长,并进行了生物信息学和表达分析。结果表明:青花菜GST基因cDNA全长为915bp,开放阅读框为642bp,编码213个氨基酸,推测分子式为C1091H1719N289O306S5,分子量为23 940.7,没有跨膜螺旋区域和信号肽。系统进化树分析表明,该青花菜基因GST与芥菜的GST聚类关系最近。实时荧光定量PCR结果显示,在模拟酸雨胁迫下,GST基因的表达量在胁迫初期显著增大,随时间延长开始下降,表明其参与了青花菜抗酸雨的应答反应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号