共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Callus was obtained from hypocotyls of Mesembryanthemum crystallinum seedlings cultured on two types of medium—germination medium (GM) and callus induction medium (CIM). Following subculture on shoot induction medium SIM1, the callus formed on CIM medium regenerated roots or somatic embryos, while that obtained on GM medium was non-regenerative. The activities of CuZn-superoxidase dismutase (SOD) were comparable in all calli, but the activities of FeSOD and MnSOD varied according to the activity of photosystem II and the regenerative potential of the tissues. Catalase (CAT) activity was related to H2O2 concentration and affected by both the culture conditions and the morphogenic potential of the calli. The possible role of CAT, SODs and H2O2 in the regeneration of M. crystallinum from callus is discussed.This work is dedicated to Prof. Dr. Hubert Ziegler on his 80th birthday. 相似文献
3.
The possible involvement of superoxide and hydrogen peroxide in the oxidative gelling of phloem exudate from Cucurbita pepo. was investigated. Neither superoxide dismutase (EC 1.15.1.1) nor catalase (EC 1.11.1.6) inhibited the reaction. Although catalase could not be detected in exudate, both peroxidase (EC. 1.11.1.7) and superoxide dismutase were present in reasonable amounts. Polyacrylamide gel electrophoresis revealed one major and one minor isozyme of superoxide dismutase, both of which were adjudged to contain copper and zinc as their prosthetic metals, on the basis of cyanide inhibition and molecular weight.Abbreviations SOD superoxide dismutase 相似文献
4.
Superoxide dismutase activity was demonstrated for 6 strains of 3 propionibacteria species. Rather high level of superoxide dismutase activity found in propionibacteria was in accordance with high level of catalase activity reported for propionibacteria previously. Both these activities were shown to have cytozolic localization. For the first time peroxidase activity was detected in gel-fractionated crude cell extracts of propionibacteria. The ability to produce superoxide radicals in NADH-dependent oxidation system was revealed for three strains of the bacteria. The level of superoxide production by the membrane particles of the propionic acid bacteria correlated with the levels of superoxide dismutase and catalase activities and was the lowest for Propionibacterium shermanii. The ability to perform monovalent oxygen reduction during succinate oxidation was not revealed. The intact cells of P. globosum, P. vannielii, P. shermanii apparently did not excrete superoxide radicals into culture fluid during respiration. 相似文献
5.
O. Cantoni G. Brandi G.F. Schiavano A. Albano F. Cattabeni 《Chemico-biological interactions》1989,70(3-4)
The toxicity of H2O2 in Escherichia coli wild type and superoxide dismutase mutants was investigated under different experimental conditions. Cells were either grown aerobically, and then treated in M9 salts or K medium, or grown anoxically, and then treated in K medium. Results have demonstrated that the wild type and superoxide dismutase mutants display a markedly different sensitivity to both modes of lethality produced by H2O2 (i.e. mode one killing, which is produced by concentrations of H2O2 lower than 5 mM, and mode two killing which results from the insult generated by concentrations of H2O2 higher than 10 mM). Although the data obtained do not clarify the molecular basis of H2O2 toxicity and/or do not explain the specific function of superoxide ions in H2O2-induced bacterial inactivation, they certainly demonstrate that the latter species plays a key role in both modes of H2O2 lethality. A mechanism of H2O2 toxicity in E. coli is proposed, involving the action of a hypothetical enzyme which should work as an O2-• generating system. This enzyme should be active at low concentrations of H2O2 (<5 mM) and high concentrations of the oxidant (>5 mM) should inactivate the same enzyme. Superoxide ions would then be produced and result in mode one lethality. The resistance at intermediate H2O2 concentrations may be dependent on the inactivation of such enzyme with no superoxide ions being produced at levels of H2O2 in the range 5–10 mM. Mode two killing could be produced by the hydroxyl radical in concert with superoxide ions, chemically produced via the reaction of high concentrations of H2O2 (>10 mM) with hydroxyl radicals. The rate of hydroxyl radical production may be increased by the higher availability of Fe2+ since superoxide ions may also reduce trivalent iron to the divalent form. 相似文献
6.
Oxidative events during in vitro regeneration of sunflower 总被引:1,自引:0,他引:1
Robert Konieczny Marta Libik Monika Tuleja Ewa Niewiadomska Zbigniew Miszalski 《Acta Physiologiae Plantarum》2008,30(1):71-79
The changes in the activity of some antioxidant enzymes and endogenous H2O2 level in zygotic sunflower embryos during organogenesis and somatic embryogenesis were monitored. Pathways of regeneration
were induced on media differing with sucrose concentration 87 mmol dm−3 for shoot [shoot induction medium (SIM) medium] and 350 mmol dm−3 [embryo induction medium (EIM) medium] for somatic embryo induction. Water potential of the explants cultured on SIM increased,
while the embryos maintained on EIM showed middle water deficit stress. The pattern of superoxide dismutase (SOD) isoforms
was similar in organogenic and embryogenic culture; however, the intensity of MnSOD bands was higher on SIM than on EIM. Differences
in catalase activity were observed: high activity on SIM predominated, whereas on EIM it was reduced. The activity of guaiacol
peroxidase in the explants producing shoots and somatic embryos differed at the beginning of culture, but became comparable
at the time of shoot and somatic embryo formation (day 5). H2O2 content was unchanged in organogenic culture, but on EIM it increased on day 1 followed by significant decrease. The results
indicate that sugar concentration per se, or via induction of different developmental pathways influences the activity of
antioxidant enzymes and also H2O2 level in cultured sunflower embryos. 相似文献
7.
The ability of the histidine-rich peptides, histatin-5 (Hst-5) and histatin-8 (Hst-8), to support the generation of reactive oxygen species during the Cu-catalyzed oxidation of ascorbate and cysteine has been evaluated. High levels of hydrogen peroxide (70–580 mol/mol Cu/h) are produced by aqueous solutions containing Cu(II), Hst-8 or Hst-5, and a reductant, either ascorbate or cysteine, as determined by the postreaction Amplex Red assay. When the reactions are conducted in the presence of superoxide dismutase, the total hydrogen peroxide produced is decreased, more so in the presence of the peptides (up to 50%), suggesting the intermediacy of superoxide in these reactions. On the other hand, the presence of sodium azide or sodium formate, traps for hydroxyl radicals, has no appreciable effect on the total hydrogen peroxide production for the Cu–Hst systems. EPR spin-trapping studies using 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO) in the cysteine–Cu(II) reactions reveal the formation of the CYPMPO–hydroperoxyl and CYPMPO–hydroxyl radical adducts in the presence of Hst-8, whereas only the latter was observed with Cu alone. 相似文献
8.
Linchuan Zhao Liangen Shi 《Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology》2009,152(4):339-345
Recent work has demonstrated that hydrogen peroxide functions as a signaling molecule controlling different essential processes in plants and mammals, which can be produced by superoxide dismutase (SOD) and xanthine oxidase (XO) and decomposed by catalase (CAT), respectively. Progeny diapause of the silkworm, Bombyx mori, is induced by diapause hormone (DH) and the expression of DH gene in the maternal generation has been determined. In order to investigate the relationship between the metabolism of H2O2 and the expression of DH gene, level of H2O2 and activities of SOD, XO and CAT between univoltine and polyvoltine strains, which can produce diapause and non-diapause eggs, respectively, at embryonic and pupal stages were measured. Our results showed that there were significant differences in the metabolism of hydrogen peroxide between two strains and between embryonic and pupal stages. Compared to polyvoltine strain, level of hydrogen peroxide in univoltine strain was significantly higher from stage 19 to stage 21 but lower from stage 24 to stage 29 and the whole pupal stage (Fig. 1). Variations of hydrogen peroxide indicated that hydrogen peroxide may be involved in the active release of DH and the progeny diapause decision by DH rather than the expression of DH gene. 相似文献
9.
Harinderjeet Kaur Anil Kumar Gupta Narinder Kaur Jeet Singh Sandhu 《Plant Growth Regulation》2009,57(2):109-114
Two chickpea cultivars PBG-1 and PDG-3 along with a wild species Cicer judaicum were investigated to compare the activities of their antioxidant enzymes in mature seeds and roots, as well as shoots and
cotyledons of seedlings germinated under dark and continuous illumination of 40 μmol m−2 s−1 photosynthetically active radiation (PAR). Seedling biomass of C. judaicum was lower as compared to cultivars of PBG-1 and PDG-3 both under dark and light conditions. Light reduced the biomass of
seedlings. Activities of glutathione reductase (GR) and ascorbate peroxidase (APX) were higher in shoots and roots of C. judaicum compared to the cultivars PBG-1 and PDG-3. In mature seeds, the activities of GR and APX were higher in the cultivated genotypes
whereas catalase (CAT) and peroxidase were higher in C. judaicum. Under illumination, a general upregulation of CAT in both shoots and cotyledons and of GR in shoots was observed in all
the three genotypes. However, superoxide dismutase (SOD) increased in C. judaicum and APX in PBG-1 and PDG-3. The differences in antioxidant enzyme system between wild and cultivated genotypes possibly contribute
to better tolerance of wild Cicer species against abiotic and biotic stresses. 相似文献
10.
The changes in lipid peroxidation, antioxidative and lignifying enzyme activities were studied in leaves and stems of Cu-stressed sunflower seedlings. In both organs, membrane lipid peroxidation was enhanced by copper treatment. Additionally, catalase (EC 1.11.1.6) and superoxide dismutase (EC 1.15.1.1) activities were modulated: The activity of superoxide dismutase was enhanced in both plant organs. Differently, catalase activity was not affected in leaves but significantly reduced in stems. Peroxidase (EC 1.11.1.7) activities were also changed. Guaiacol peroxidase activity was increased in leaves and stems. In the same way, electrophoretic analysis of the anionic isoperoxidases involved in lignification (syringaldazine peroxidase) revealed qualitative and quantitative changes on the isoenzyme patterns. These modifications were accompanied by the increase of the NADH-oxidase activity in ionically cell wall bound fraction. It appeared that the growth delay caused by copper excess could be related to the activation of lignifying peroxidases. 相似文献
11.
Summary Two strains ofSaccharomyces cerevisiae were used to study the synthesis of superoxide dismutase. One strain (cytochromec-deficient) contained 5–10% of the normal amounts of total cytochromec, while the other strain was a wild type. The cytochromec-deficient mutant had lower specific growth rate, growth yield, and oxygen uptake than the wild type. The superoxide dismutase and catalase activities, in both strains, were significantly lower under anaerobic than under aerobic conditions. Furthermore, under aerobic conditions the mutant contained higher levels of superoxide dismutase than the wild type which may be attributed to the higher intracellular flux of superoxide radicals caused by the cytochromec deficiency. The mutant also showed a lower level of catalase which was due to glucose repression.Paper Number 10007 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695, U.S.A. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of the products named, nor criticism of similar ones not mentioned. 相似文献
12.
Effects of brassinosteroids on barley root growth,antioxidant system and cell division 总被引:1,自引:0,他引:1
Gonul Kartal Aslihan Temel Ercan Arican Nermin Gozukirmizi 《Plant Growth Regulation》2009,58(3):261-267
Homobrassinolide (HBR), which is one of the most biologically active forms of Brassinosteroids (BRs), was used to examine
the potential effects of hormone on root germination, antioxidant system enzymes and cell division of barley (Hordeum vulgare L.). Seeds were germinated between filter papers in 0.1, 0.5 and 1.0 μM HBR-supplemented distilled water for 48 h at dark
with their controls. HBR application increased especially the primary root growth significantly with increasing concentrations
when compared with the control materials and reached two fold increase in 1.0 μM HBR treated material. Treated and untreated
control group roots were fixed in 1:3 aceto-alcohol and aceto-orcein preparations were made. Roots treated with HBR showed
more mitotic activity, mitotic abnormalities and significant enlargements at the root tips when compared with control material.
HBR application decreased total soluble protein content, superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6) and peroxidase
(EC 1.11.1.11) activities significantly at 1.0 μM HBR concentration. Data presented here is one of the first detailed analyses
of HBR effect on barley root development. 相似文献
13.
Early production of activated oxygen species in root apoplast of wheat following copper excess 总被引:3,自引:0,他引:3
Wheat seedlings (Triticum durum Desf.) were incubated in a solution containing 100 microM CuSO(4) for increasing time ranging from 1 min to 6h. Copper rapidly accumulated into the roots, and its amount increased significantly until 360 min. During the experiment, copper did not cause any lipid peroxidation and K(+) leakage. Up to 60 min of copper treatment the superoxide (O2(*-)) production in root apoplast decreased concomitantly with increase in superoxide dismutase (SOD) activity. In contrast, after 60 min of incubation, SOD decreased and this facilitated an increase in O2(*-) production. In the presence of the SOD inhibitor diethyldithiocarbamic acid, O2(*-) production was more than two times higher and showed a biphasic increase. Very high SOD activity in the apoplast, due to the presence of three different isozymes, one Mn-SOD and two CuZn-SODs, dismutated the radical giving rise, at least in part, to an increase in hydrogen peroxide. The highest value of H(2)O(2) was detected at 15 min, when peroxidase (POD) activity reached the lowest value. Root apoplast showed the presence of at least five different isoforms of PODs, whose pattern did not change during the entire treatment. 相似文献
14.
In this study, we examined the modulation of Cu toxicity-induced oxidative stress by excess supply of iron in Zea mays L. plants. Plants receiving excess of Cu (100 μM) showed decreased water potential and simultaneously showed wilting in the leaves. Later, the young leaves exhibited chlorosis and necrotic scorching of lamina. Excess of Cu suppressed growth, decreased concentration of chloroplastic pigments and fresh and dry weight of plants. The activities of peroxidase (EC 1.11.1.7; POD), ascorbate peroxidase (EC 1.11.1.11; APX) and superoxide dismutase (EC 1.15.1.1; SOD) were increased in plants supplied excess of Cu. However, activity of catalase (EC 1.11.1.6; CAT), was depressed in these plants. In gel activities of isoforms of POD, APX and SOD also revealed upregulation of these enzymes. Excess (500 μM)-Fe-supplemented Cu-stressed plants, however, looked better in their phenotypic appearance, had increased concentration of chloroplastic pigments, dry weight, and improved leaf tissue water status in comparison to the plants supplied excess of Cu. Moreover, activities of antioxidant enzymes including CAT were further enhanced and thiobarbituric acid reactive substance (TBARS) and H2O2 concentrations decreased in excess-Fe-supplemented Cu-stressed plants. In situ accumulation of H2O2, contrary to that of O2 ·− radical, increased in both leaf and roots of excess-Cu-stressed plants, but Cu-excess plants supplied with excess-Fe showed reduced accumulation H2O2 and little higher of O2 ·− in comparison to excess-Cu plants. It is, therefore, concluded that excess-Cu (100 μM) induces oxidative stress by increasing production of H2O2 despite of increased antioxidant protection and that the excess-Cu-induced oxidative damage is minimized by excess supply of Fe. 相似文献
15.
Cadmium accumulation and oxidative burst in garlic (Allium sativum) 总被引:13,自引:0,他引:13
To investigate the temporal sequence of physiological reactions of garlic (Allium sativum) to cadmium (Cd) treatment, seedlings developed from cloves were grown in increasing concentrations of CdCl2, ranging from 1-10 mM, for up to 8 days in sand. Analysis of Cd uptake indicated that most Cd accumulated in roots, but some was also translocated and accumulated in leaves at longer exposure time (after 12h) and higher concentrations (5 and 10mM) of CdCl2. Changes in activities of antioxidative enzymes, including superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT), were characterized in leaves of garlic seedlings. Cd (5 and 10 mM) initially inhibited the activities of SOD and CAT but thereafter recovered or even increased compared with control plants. POD activities at 5 and 10 mM of Cd increased more than 3-4 times over control plants within 12 h and then dropped, but were still higher than controls at the end of the experiment. Otherwise lipid peroxidation enhanced with the increasing of incubation time and concentrations of external Cd. Leaves exposed to 1 mM CdCl2 showed a less pronounced response and only a small reduction in shoot growth. These results suggested that in leaves of garlic seedlings challenged by CdCl2 at higher concentrations, induction of these various enzymes is part of a general defense strategy to cope with overproduction of reactive oxygen. The possible mechanism of antioxidative enzymes changing before Cd accumulation in leaves of garlic seedlings is discussed. 相似文献
16.
Nitrate reductase of spinach (Spinacea oleracea L.) leaves which had been inactivated in vitro by treatment with NADH and cyanide, was reactivated by incubation with oxidant systems and measured as FMNH2-dependent activity. Ferricyanide, a purely chemical oxidant, produced rapid maximal reactivation (100%) which was 90% complete in less than 3 min. Reactivation occurred slowly and less completely (30–75% in 30 or 60 min) when the enzyme was incubated with pure horseradish peroxidase alone, depending on using one or 20 units and time. Addition of glucose and glucose oxidase to generate hydrogen peroxide increased reactivation slightly (10–15%) with 20 units of peroxidase but more (30–50%) with one unit and to 75–90% of ferricyanide values. Adding catalase decreased reactivation by more than half either with or without glucose oxidase. Glucose and glucose oxidase alone did not cause reactivation. Addition of superoxide dismutase increased reactivation from 50–75% of ferricyanide values with one unit of peroxidase alone but had no effect on greater reactivation obtained in the presence of glucose oxidase. The addition of p-cresol and manganese together increased reactivation with one unit of peroxidase and in the presence of glucose oxidase by about double, but omission of manganese had no effect. However, as shown previously, although trivalent manganese was formed, the residual presence of manganous ions inhibited reactivation. Nevertheless, peroxidase systems either alone or with additionally generated hydrogen peroxide can induce substantial reactivation of nitrate reductase in physiologically relevant conditions.Abbreviations EDTA
ethylenediaminetetraacetic acid
- FMN
flavine mononucleotide 相似文献
17.
In the present investigation, the interspecific somatic hybridization between tuber mustard and red cabbage was established in order to introduce valuable genes from red cabbage (Brassica oleracea) into Brassica juncea. Prior to fusion treatment, protoplasts of red cabbage were inactivated with 2 mM iodoacetamide to inhibit cell division. Micro-calluses were obtained at a frequency of 10.3% after approximately 5 weeks culture following protoplast fusion. Some of the fusion-derived calluses possessed red pigmented cells after being transferred to proliferation medium, and they were presumably considered to be somatic hybrid cell lines. Plantlets were regenerated from 12 cell lines, of which nine plantlets exhibited characteristics intermediate of both parents in terms of plant morphology. With the exception of common protein bands featured by two parents, there were unique banding patterns produced in the hybrids by using SDS-PAGE analysis. By chromosome countings, it was showed that they ranged approximately from 2n=30 to 42 in chromosome numbers. Their hybridity were further confirmed by RAPD analysis revealing that genes of both parents were partially incorporated into the hybrids. Positively, all these hybrids were capable of seed-setting. The pod-setting was 4.2 in somatic hybrid H7 when backcrossed with tuber mustard. 相似文献
18.
Putrescine Effect on Nitrate Reductase Activity, Organic Nitrogen, Protein, and Growth in Heavy Metal and Salinity Stressed Mustard Seedlings 总被引:3,自引:0,他引:3
Putrescine effect on nitrate reductase activity, organic nitrogen and protein contents, and plant growth under Cd or Pb (0.1 – 2 mM) and salinity (5 and 100 mM NaCl) stresses was examined in Indian mustard (Brassica juncea L. cv. RH-30) seedlings. Cd or Pb and salinity inhibited nitrate reductase activity and decreased organic nitrogen and protein contents in leaf tissue. The increased nitrate reductase activity induced by putrescine was correlated with increased organic nitrogen and protein contents and growth of plants. 相似文献
19.
This paper presents the studies of nitrogen and phosphorus (N/P) concentrations influence on the antioxidantivity of Gracilaria lemaneiformis and the physio-chemical features in an indoor seawater culture system. The results showed that the specific growth rate, the chemical composition (concentrations of chlorophyll a, phycoerythrin and soluble protein), nitrate reductase activity, antioxidantive defense system (the activities of superoxide dismutase, peroxidase, catalase) and propyldialdehyde content of G. lemaneiformis were affected by changes in concentrations of N and P, and in seaweed culture time. G. lemaneiformis showed increased growth rate when the N/P concentrations increased from 50/3.13 µmol/L to 400/25 µmol/L. But when the N/P concentrations exceeded 400/25 µmol/L, the growth rate dropped significantly. The trend became more obvious once the N/P concentrations reached 600 / 37.5 µmol/L. At these concentrations, the chloroplasts in G. lemaneiformis were damaged as evidences that 1) the number of thylakoids was increased, some of them were swollen up, irregularly aligned, ruptured and partly dissolved; 2) the chloroplast volume was increased; and 3) starch grains in chloroplasts accumulated significantly. On the basis of these results, a remediation critical point for the growth of G. lemaneiformis under high N/P concentrations was proposed. 相似文献
20.
Morphological and enzymatic responses of a recombinant Aspergillus niger to oxidative stressors in chemostat cultures 总被引:2,自引:0,他引:2
Continuous chemostat cultures of a recombinant strain of Aspergillus niger (B1-D), engineered to produce the marker protein hen egg white lysozyme, were investigated with regard to their susceptibility to oxidative stress. The culture response to oxidative stress, produced either by addition of exogenous hydrogen peroxide (H2O2) or by high dissolved oxygen tension (DOT), was characterised in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). Since the morphology is so critical in submerged fungal bioprocesses, the key morphological indices were analysed using a semi-automated image analysis system. Both oxidant stressors, H2O2 and elevated DOT, increased both enzyme activities, however, the extent was different: exogenous H2O2 led mainly to increased CAT activity, whereas gassing with O2 enriched air, which resulted in a DOT of 165% of air saturation, increased both enzyme activities more than 2-fold compared with the control steady state culture. Addition of exogenous H2O2 resulted in shorter hyphae compared with control steady state cultures. These findings indicate that it is unsound to use exogenous H2O2 to simulate oxidative stress induced by elevated dissolved oxygen levels since the response to each might be quite different, both in terms of enzymatic (defensive) responses and in terms of culture morphology. 相似文献