首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y Yogo  A Furuno  A Nozawa    S Uchida 《Journal of virology》1981,38(2):556-563
We analyzed by blot hybridization the state and structure of the viral DNA in an exceptional BK virus-induced hamster tumor (choroid plexus papilloma Vn-324) that contains about one copy of the BK virus genome per cell, but no intranuclear T antigen as assayed by indirect immunofluorescence. The BK viral DNA was found to be integrated into cellular DNA at a site in the middle of the early region of the viral genome (between 0.32 and 0.41 map units). The structure of the inserted viral DNA shows that it cannot encode a full-size large T antigen, but may encode small T antigen and an N-terminal portion of large T antigen.  相似文献   

2.
Several homologous hamster embryonic cell lines, transformed in association with simian virus (SV) 40 infection, were examined for the presence of deoxyribonucleic acid (DNA) complementary to SV40 ribonucleic acid (RNA) made in vitro. The methods employed permitted the detection of 10(-5) mug of viral DNA in 100 mug of cellular DNA, corresponding to one-fifth of an SV40 DNA molecule per cell. Those lines which contained both the SV40 surface (S) and tumor (T) antigens also contained DNA complementary to SV40 RNA synthesized in vitro. In contrast, neither of two lines which contained S, but not T, antigen contained detectable DNA complementary to SV40 RNA. These findings suggest that the production of S antigen does not depend upon the persistence of SV40 DNA in transformed cells.  相似文献   

3.
Free viral DNA in BK virus-induced hamster tumor cells   总被引:9,自引:3,他引:6       下载免费PDF全文
The biological properties of nine clonal lines of BK virus-induced hamster tumor cells were studied. All clonal lines were oncogenic and showed an enhanced ability to form colonies in semisolid medium. The cells of each clonal line contained T antigen; no virus could be rescued from any of the clonal lines. The number of viral DNA copies was determined in three of the clonal lines and varied from 10 to 20 copies per diploid amount of cell DNA. The state of the viral genome was studied in these lines, and the great majority of the viral DNA molecules appeared to be present as free (nonintegrated) molecules. At least six length classes of free defective BK virus DNA molecules, which all lacked a part of the late region of the genome, were detected in these cells. Three of the six length classes of BK virus DNA molecules acquired a TaqI recognition site, which suggested substitution of cellular DNA.  相似文献   

4.
Various polyomavirus-transformed hamster cell lines derived from tumors or from infected hamster cell cultures synthesized polyoma middle and small tumor (T)-antigens but no full-size large T-antigen. Instead, all cell lines produced the same or similar polyoma T-antigen-related proteins of ca. 61 kilodaltons (kDal). Like large T-antigen synthesized in lytically infected mouse cells, the 61-kDal proteins were phosphoproteins showing electrophoretic and charge heterogeneities. Chromatographic analysis of the methionine-containing tryptic peptides indicated that the 61-kDal proteins were truncated forms of large T-antigen comprising amino acid residues 1 to 485 (+/- 25). Analysis of viral DNA present in hamster chromosomal DNA of three independently isolated cell lines confirmed that synthesis of the 61-kDal proteins was due to a discontinuity in the large T-antigen coding sequence, most likely located between 7 and 8.9 map units on the polyoma DNA map. The three cell lines yielded essentially the same patterns of viral DNA-containing restriction enzyme fragments, suggesting that insertion of viral DNA into the hamster chromosomes took place at closely similar sites.  相似文献   

5.
Spontaneously arising morphological revertants of the adenovirus type 12 (Ad12)-transformed hamster cell line T637 had been previously isolated, and it had been demonstrated that in these revertants varying amounts of the integrated Ad12 genome were eliminated from the host genome. In this report, the patterns of persistence of the viral genome in the revertants were analyzed in detail. In some of the revertant cell lines, F10, TR3, and TR7, all copies of Ad12 DNA integrated in line T637 were lost. In lines TR1, -2, -4 to -6, -8 to -10, and -13 to -16, only the right-hand portion of one Ad12 genome was preserved; it consisted of the intact right segment of Ad12 DNA and was integrated at the same site as in line T637. In revertant lines G12, TR11, and TR12, one Ad12 DNA and varying parts of a second viral DNA molecule persisted in the host genome. These patterns of persistence of Ad12 DNA molecules in different revertants supported a model for a mode of integration of Ad12 DNA in T637 hamster cells in which multiple (20 to 22) copies of the entire Ad12 DNA were serially arranged, separated from each other by stretches of cellular DNA. The occurrence of such revertants demonstrated that foreign DNA sequences could not only be acquired but could also be lost from eucaryotic genomes. There was very little, if any, expression of Ad12-specific DNA sequences in the revertant lines TR7 and TR12. Moreover, Ad12 DNA sequences which were found to be undermethylated in line T637 were completely methylated in the revertant cell lines G12, TR11, TR12, and TR2. These findings were consistent with the absence of T antigen from the revertant lines reported earlier. Hence it was conceivable that the expression of integrated viral DNA sequences was somehow dependent on their positions in the cellular genome. In cell line TR637, the early segments of Ad12 DNA were expressed and undermethylated; conversely, in the revertant lines G12, TR11, TR12, and TR2, the same segments appeared to be expressed to a limited extent and were strongly methylated.  相似文献   

6.
Analyses of the hybridization kinetics of labeled herpes simplex virus 2 (HSV-2) DNA with DNA from five hamster cell lines transformed by UV light-irradiated HSV-2 revealed the following. (i) Viral DNA sequences were detected in all five cell lines tested. (ii) None of the cell lines contained the full complement of HSV-2 DNA. (iii) The amount of viral DNA present in the cells varied in different transformed cell lines and ranged from 8 to 32% of the HSV-2 DNA genome in 1 to 3 copies/cell. (iv) Two parallel passages of the same cell line (333-2-29) differed in the amount of viral DNA they contained. We also compared the viral DNA sequences present in (i) one transformed cell line (333-8-9) propagated serially in culture for 80 passages, (ii) a tumor produced by inoculation of a newborn hamster with the 333-8-9 cells, and (iii) a cell line derived from a hamster tumor as above and propagated in culture for 32 passages. The results show that viral DNA present in the hamster tumor and in the cells derived from the tumor had a lower sequence complexity than that present in the original serially passaged 333-8-9 cell line.  相似文献   

7.
We have recently reported that viral DNA sequences in inbred LSH hamster brain cells transformed by the GS variant of BK virus (LSH-BR-BK) are present predominantly in a free form (Beth et al., J. Virol. 40:276-284, 1981). In this report, we confirm that the presence of viral DNA sequences in these cells is not due to virus production, since viral capsid proteins were not detected by immunoprecipitation. Furthermore, we examined the status of viral DNA in 15 subclones of this cell line and detected free and integrated viral DNA sequences in only 5 of the subclones. The other 10 subclones contained exclusively integrated viral DNA sequences, as shown by the blot hybridization of high-molecular-weight cell DNA which was uncleaved or digested with HincII, for which there are no sites in viral DNA. The arrangement of viral DNA in these clones was further analyzed by cleavage of cellular DNA with HpaII and HindIII. Mitomycin (0.03 microgram/ml) treatment of subclones containing only integrated sequences resulted in the appearance of free viral DNA sequences in some of these cells. This result supports the postulation that free viral DNA in LSH-BR-BK cells is made up of excision products of observed tandemly repeated integrated sequences. In addition to the large T- and small t-antigens, LSH-BR-BK and all of its 15 subclones contained two antigen species which were larger than large T and one species which was smaller than small t. The number of tumor antigens in the LSH- BR-BK cell line and its subclones with a large copy number in a free form was not more than in the subclones with low copy number and integrated DNA. This suggests that free viral DNA is not a template for tumor antigen production in transformed cells.  相似文献   

8.
We used a murine retrovirus shuttle vector system to construct recombinants capable of constitutively expressing the simian virus 40 (SV40) large T antigen and the polyomavirus large and middle T antigens as well as resistance to G418. Subsequently, these recombinants were used to generate cell lines that produced defective helper-free retroviruses carrying each of the viral oncogenes. These recombinant retroviruses were used to analyze the role of the viral genes in transformation of rat F111 cells. Expression of the polyomavirus middle T antigen alone resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were highly tumorigenic, whereas expression of the polyomavirus large T resulted in cell lines that were unaltered by the criteria of morphology, anchorage-independent growth, and tumorigenicity. More surprisingly, SV40 large T-expressing cell lines were not tumorigenic despite the fact that they contained elevated levels of cellular p53 and had a high plating efficiency in soft agar. These results suggest that the SV40 large T antigen is not an acute transforming gene like the polyomavirus middle T antigen but is similar to the establishment genes such as myc and adenovirus EIa.  相似文献   

9.
The integration of polyoma virus DNA into the genome of transformed rat cells generally takes place in a tandem head-to-tail arrangement. A functional viral large tumor antigen (T-Ag) renders this structure unstable, as manifested by free DNA production and excision or amplification of the integrated viral DNA. All of these phenomena involve the mobilization of precise genomic “units,” suggesting that they result from intramolecular homologous recombination events occurring in the repeated viral DNA sequences within the integrated structures. We studied polyoma ts-a-transformed rat cell lines, which produced large T-Ag but contained less than a single copy of integrated viral DNA. In all of these lines, reversion to a normal phenotype (indicative of excision) was extremely low and independent of the presence of a functional large T-Ag. The revertants were either phenotypic or had undergone variable rearrangements of the integrated sequences that seemed to involve flanking host DNA. In two of these cell lines (ts-a 4A and ts-a 3B), we could not detect any evidence of amplification even after 2 months of propagation under conditions permissive for large T-Ag. An amplification event was detected in a small subpopulation of the ts-a R5-1 line after 2 months of growth at 33°C. This involved a DNA fragment of 5.1 kilobases, consisting of the left portion of the viral insertion and about 2.5 kilobases of adjacent host DNA sequences. None of these lines spontaneously produced free viral DNA, but after fusion with 3T3 mouse fibroblasts, R5-1 and 4A produced a low level of heterogeneous free DNA molecules, which contained both viral and flanking host DNA. In contrast, the ts-a 9 cell line, whose viral insertion consists of a partial tandem of ~1.2 viral genomes, underwent a high rate of excision or amplification when propagated at temperatures permissive for large T-Ag function. These results indicate that the high rate of excision and amplification of integrated viral genomes observed in polyoma-transformed rat cells requires the presence of regions of homology (i.e., repeats) in the integrated viral sequences. Therefore, these events occur via homologous intramolecular recombination, which is promoted directly or indirectly by the large viral T-Ag.  相似文献   

10.
African green monkey cells (CV-1P) were microinjected with highly purified SV40 T antigen using protein-loaded red cell ghosts and polyethylene glycol as fusagen. The microinjected cells were infected with a temperature-sensitive mutant of SV40 (tsA209) which is defective in the initiation of viral DNA synthesis. Using in situ hybridization as an assay method, we found that PEG-microinjection of both partially and highly purified T antigen resulted in an increase in the amount of viral DNA sequences in the monolayer. Moreover, 3H-thymidine-labeled and unlabeled Hirt supernatant from microinjected, tsA209-injected cells contained significantly more SV40 DNA than comparable extracts from sham-injected, tsA209-infected or uninfected cells, which were tested in parallel. Thus the introduction of highly purified, "large" SV40 T antigen led to phenotypic complementation of the tsA defect in viral DNA synthesis.  相似文献   

11.
Y Ito  N Spurr    B E Griffin 《Journal of virology》1980,35(1):219-232
A large number of polyoma virus-transformed cells of rat, mouse, and hamster origin were examined for presence of T-antigen species. The results showed that all lines of cells contained middle and small T antigens, but not all contained a full-sized large T antigen, in some cell lines large T antigen was absent, whereas in others it was present as truncated forms lacking various lengths of the carboxy-terminal part of the protein. Cells transformed by the new viable deletion mutants of polyoma virus, dl-8 and dl-23, formed larger and smaller colonies or foci, respectively, when they were suspended in semisolid medium or plated as monolayers together with untransformed cells on a plastic surface. The deletions in the DNA of these mutants resulted in the shortening of the large and middle T antigens simultaneously without affecting the size of the small T antigen. Variation of large T-related proteins in dl-8 and dl-23-transformed cells seemed to be the same as that observed in wild-type-transformed cells. Regardless of the amount and size of large T-related protein in mutant-transformed cells, the phenotype of the cells was entirely dependent on the mutant used. The results suggest that (i) persistence of large T antigen is not universally required for the maintenance of the transformation phenotype, (ii) small T antigen alone may not be sufficient for inducing the full expression of the transformation phenotype, and (iii) middle T antigen is implicated as being primarily responsible for the full expression of the phenotype of transformation. The results also provide the evidence that the carboxy-terminal region of middle T antigen and a part of large T antigen are encoded in the genome in the same DNA segment around map units 88 to 94 in different reading frames.  相似文献   

12.
Simian virus 40 (SV40) DNA molecules chromosomally integrated at different sites in three Chinese hamster lung fibroblast lines replicated during the middle portion of S phase but not precisely at the same time in all three cell lines. The time of replication was unrelated to the presence of T antigen or to its relative activity in promoting SV40 replication. SV40 sequences and chromosomal DNA sequences adjacent to the SV40 insert in one cell line expressing a temperature-sensitive T antigen showed a T-antigen-independent difference in replication timing from the homologous, allelic locus not linked to SV40. Our results indicate that the timing of replication of these integrated SV40 molecules is dependent upon the site of integration and is not determined by the level of T antigen replication-promoting activity.  相似文献   

13.
The patterns and sites of integration of adenovirus type 12 (Ad12) DNA were determined in three lines of Ad12-transformed hamster cells and in two lines of Ad12-induced hamster tumor cells. The results of a detailed analysis can be summarized as follows. (i) All cell lines investigated contained multiple copies (3 to 22 genome equivalents per cell in different lines) of the entire Ad12 genome. In addition, fragments of Ad12 DNA also persisted separately in non-stoichiometric amounts. (ii) All Ad12 DNA copies were integrated into cellular DNA. Free viral DNA molecules did not occur. The terminal regions of Ad12 DNA were linked to cellular DNA. The internal parts of the integrated viral genomes, and perhaps the entire viral genome, remained colinear with virion DNA. (iii) Except for line HA12/7, there were fewer sites of integration than Ad12 DNA molecules persisting. This finding suggested either that viral DNA was integrated at identical sites in repetitive DNA or, more likely, that one or a few viral DNA molecules were amplified upon integration together with the adjacent cellular DNA sequences, leading to a serial arrangement of viral DNA molecules separated by cellular DNA sequences. Likewise, in the Ad12-induced hamster tumor lines (CLAC1 and CLAC3), viral DNA was linked to repetitive cellular sequences. Serial arrangement of Ad12 DNA molecules in these lines was not likely. (iv) In general, true tandem integration with integrated viral DNA molecules directly abutting each other was not found. Instead, the data suggested that the integrated viral DNA molecules were separated by cellular or rearranged viral DNA sequences. (v) The results of hybridization experiments, in which a highly specific probe (143-base pair DNA fragment) derived from the termini of Ad12 DNA was used, were not consistent with models of integration involving true tandem integration of Ad12 DNA or covalent circularization of Ad12 DNA before insertion into the cellular genome. (vi) Evidence was presented that a small segment at the termini of the integrated Ad12 DNA in cell lines HA12/7, T637, and A2497-3 was repeated several times. The exact structures of these repeat units remained to be determined. The occurrence of these units might reflect the mechanism of amplification of viral and cellular sequences in transformed cell lines.  相似文献   

14.
This work presents a model describing the rate of recombination between homologous segments of DNA stably integrated into the genome of cultured cells. The model has been applied to rat cell lines carrying the polyomavirus middle T oncogene and a functional origin of viral DNA replication. Introduction of the gene coding for the polyoma large T antigen or the SV40 large T antigen into cells by DNA transfection promotes homologous recombination in the resident viral inserts with rates varying between 0.1 x 10(-3) and 3.7 x 10(-1) per cell generation.  相似文献   

15.
Tumor cell colonies, arising after the infection of hamster embryo cells with two strains of polyoma virus (PV) which differed in their capacity to induce the PV-specific transplant antigen, were isolated and studied for their transplant and tumor or "T" antigen content and growth characteristics in vitro and in vivo. Four of four tumor lines induced by the transplant immunogenic 3049 strain contained the transplant antigen, while only one of seven lines induced by the immunogenically deficient sp-D strain showed direct evidence for this antigen. T antigen was not detected by immunofluorescence in three tumor lines induced by the 3049 virus which contained the polyoma transplant antigen. No differences in growth capacity on plastic, in agar, or in the hamster subcutaneous tissue were apparent in spite of significant differences in transplant antigen content among the clones.  相似文献   

16.
The patterns of integration of the viral genome have been analyzed in four hamster cell lines transformed by adenovirus type 12 (Ad12). It has previously been shown that in each of the cell lines HA12/7, T637, A2497-2 and A2497-3, the viral genome persists in multiple copies, and that different parts of the viral DNA are represented non-stoichiometrically (Fanning and Doerfler, 1976). All four cell lines are oncogenic when injected into hamsters.The DNA from each of the cell lines was extracted and cleaved in different experiments with restriction endonucleases Bam HI, Bgl II, Eco RI, Hind III, Hpa II or Sma I. The DNA fragments were separated on 1% agarose slab gels and transferred to nitrocellulose filters by the Southern technique. Ad12 DNA sequences were detected by hybridization to Ad12 DNA, which was 32P-labeled by nick translation, and by subsequent autoradiography. In some experiments, the 32P-labeled Eco RI restriction endonuclease fragments of Ad12 DNA were used to investigate the distribution of specific segments of the viral genome in the cellular DNA.For each cell line, a distinct and specific pattern of integrated viral DNA sequences is observed for each of the restriction endonucleases used. Moreover, viral sequences complementary to the isolated Eco RI restriction endonuclease fragments are also distributed in patterns specific for each cell line. There are striking differences in integration patterns among the four different lines; there are also similarities. Because the organization of cellular genes in virus-transformed as compared to normal cells has not yet been determined, conclusions about the existence or absence of specific integration sites for adenovirus DNA appear premature. Analysis of the integration patterns of Ad12 DNA in the four hamster lines investigated reveals that some of the viral DNA molecules are fragmented prior to or during integration. Analysis with specific restriction endonuclease fragments demonstrates that the Eco RI B, D and E fragments, comprising a contiguous segment from 0.17–0.62 fractional length units of the viral DNA, remain intact during integration in a portion of the viral DNA molecules. Although each cell line carries multiple copies of Ad12 DNA, the viral DNA sequences are concentrated in a small number of distinct size classes of fragments. This finding is compatible with, but does not prove, the notion that at least a portion of the viral DNA sequences is integrated into repetitive sequences, or else that the integrated viral sequences have been amplified after integration.In the three cell lines which were tested, the integration pattern is stable over many generations, with continuous passage-twice weekly-of cells for 6–7 months. In the three cell lines which were examined, the integration pattern is identical in a number of randomly isolated clones. Hence it can be concluded that the patterns of integration are identical among all cells in a population of a given line of transformed cells.  相似文献   

17.
18.
19.
Treatment of hamster embryo cells with diverse classes of chemical carcinogens enhances transformation by a carcinogenic simian adenovirus, SA7. Virus transformed foci selected from plates pretreated with 3-methyl-cholanthrene (MCA), methyl methanesulfonate (MMS) or 7,12-dimethylbenz[a]anthracene (DMBA) and established as cell lines in culture, contained equivalent amounts of SA7 viral genome. However, hamster embryo cultures treated with MMS or nickel sulfate had increased amounts of SA7 DNA integrated into cellular DNA when examined 2--9 days after chemical treatment and viral inoculation. An increased uptake of SA7 DNA was demonstrated in hamster cells treated with MMS during DNA repair synthesis in cells retricted in scheduled DNA synthesis by amino acid deprivation; addition of virus after the repair period did not result in an increased integration of viral DNA. These data suggest that enhancement of viral oncogenesis by chemical carcinogens or mutagens may be related to the formation of additional attachment sites in cellular DNA for insertion of viral DNA, thereby increasing the probability of viral transformation.  相似文献   

20.
Cells transformed by Polyoma virus (Py) can undergo a high rate of excision or amplification of integrated viral DNA sequences, and these phenomena require the presence of homology (i.e., repeats) within the viral insertion as well as a functional viral large T antigen (T-Ag). To determine whether the main role of large T-Ag in excision and amplification was replicative or recombination-promoting, we studied transformed rat cell lines containing tandem insertions of a ts-a Py molecule (encoding a thermolabile large T-Ag) with a deletion of the origin of viral DNA replication. Culturing of these cells at the temperature permissive for large T-Ag function did not result in any detectable excision or amplification of integrated Py sequences. We then introduced into origin-defective lines a recombinant plasmid containing the viral origin of replication and the gene coding for resistance to the antibiotic G418. All G418-resistant clones analyzed readily amplified the integrated plasmid molecules when grown under conditions permissive for large T-Ag function, showing that these cells produced viral large T-Ag capable of promoting amplification in trans of DNA sequences containing the Py origin. These observations strongly suggest that Polyoma large T antigen promotes excision or amplification of viral DNA by initiating replication at the integrated origin, providing a favorable substrate for subsequent recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号