首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We investigated environmental factors influencing cold hardiness in hatchling painted turtles (Chrysemys picta) indigenous to northeastern Indiana and the Sandhills of west-central Nebraska. In both locations, hatchlings overwinter in their natal nests. Survival of hatchlings chilled to minimum temperatures between -2.5 and -6.0 degrees C inside explanted natal nests ranged from 30 to 100%. Mortality likely was caused by freezing of the turtles that was induced by contact with ice nuclei in the surrounding soil. Susceptibility to inoculative freezing was strongly influenced by moisture content (7.5-25%, w/w) of the frozen soil in which hatchlings were cooled. When chilled in soil containing 15% moisture, turtles from Indiana resisted inoculative freezing better than hatchlings from Nebraska, but this variation was due to physical characteristics of the soils indigenous to each locale rather than genetic differences between populations. Soil in which the Indiana turtles nested contained relatively higher amounts of clay and organic matter, and bound more moisture, than the loamy sand at the Nebraska site. Soil collected from both locales contained potent ice nuclei that may constrain supercooling of the hatchlings, even in the absence of soil moisture. In addition to temperature and precipitation, local and regional variation in soils is an important determinant of overwintering survival of hatchling C. picta.  相似文献   

2.
We integrated field and laboratory studies in an investigation of water balance, energy use, and mechanisms of cold-hardiness in hatchling painted turtles (Chrysemys picta) indigenous to west-central Nebraska (Chrysemys picta bellii) and northern Indiana (Chrysemys picta marginata) during the winters of 1999-2000 and 2000-2001. We examined 184 nests, 80 of which provided the hatchlings (n=580) and/or samples of soil used in laboratory analyses. Whereas winter 1999-2000 was relatively dry and mild, the following winter was wet and cold; serendipitously, the contrast illuminated a marked plasticity in physiological response to environmental stress. Physiological and cold-hardiness responses of turtles also varied between study locales, largely owing to differences in precipitation and edaphics and the lower prevailing and minimum nest temperatures (to -13.2 degrees C) encountered by Nebraska turtles. In Nebraska, winter mortality occurred within 12.5% (1999-2000) and 42.3% (2000-2001) of the sampled nests; no turtles died in the Indiana nests. Laboratory studies of the mechanisms of cold-hardiness used by hatchling C. picta showed that resistance to inoculative freezing and capacity for freeze tolerance increased as winter approached. However, the level of inoculation resistance strongly depended on the physical characteristics of nest soil, as well as its moisture content, which varied seasonally. Risk of inoculative freezing (and mortality) was greatest in midwinter when nest temperatures were lowest and soil moisture and activity of constituent organic ice nuclei were highest. Water balance in overwintering hatchlings was closely linked to dynamics of precipitation and soil moisture, whereas energy use and the size of the energy reserve available to hatchlings in spring depended on the winter thermal regime. Acute chilling resulted in hyperglycemia and hyperlactemia, which persisted throughout winter; this response may be cryoprotective. Some physiological characteristics and cold-hardiness attributes varied between years, between study sites, among nests at the same site, and among siblings sharing nests. Such variation may reflect adaptive phenotypic plasticity, maternal or paternal influence on an individual's response to environmental challenge, or a combination of these factors. Some evidence suggests that life-history traits, such as clutch size and body size, have been shaped by constraints imposed by the harsh winter environment.  相似文献   

3.
4.
We compared the physiological responses of latitudinal pairings of painted turtles submerged in normoxic and anoxic water at 3 degrees C: western painted turtles (Chrysemys picta bellii) from Wisconsin (WI) versus southern painted turtles (Chrysemys picta dorsalis) from Louisiana (LA), Arkansas (AR), and Alabama (AL), and eastern painted turtles (Chrysemys picta picta) from Connecticut (CT) versus C. p. picta from Georgia (GA). Turtles in normoxic water accumulated lactate, with C. p. bellii accumulating less than (20 mmol/L) the other groups (44-47 mmol/L), but with relatively minor acid-base and ionic disturbances. Chrysemys picta bellii had the lowest rate of lactate accumulation over the first 50 d in anoxic water (1.8 mmol/d vs. 2.1 for AR C. p. dorsalis, 2.4 mmol/d for GA C. p. picta, and 2.5 mmol/d for CT C. p. picta after 50 d and 2.6 mmol/d for AL C. p. dorsalis after 46 d). Northern turtles in both groups survive longer in anoxia than their southern counterparts. The diminished viability in C. p. dorsalis versus C. p. bellii can be partially explained by an increased rate of lactate accumulation and a decreased buffering capacity, but for the CT and GA C. p. picta comparison, only buffering capacity differences are seen to influence survivability.  相似文献   

5.
6.
Eastern painted turtles (Chrysemys picta picta) from Connecticut were submerged at 3 degrees C in normoxic and anoxic water to simulate potential respiratory environments within their hibernacula. Those in normoxic water could survive submergence for at least 150 d, while those in anoxic water could survive for a maximum of about 125 d. Turtles in normoxic water developed a slight metabolic acidosis as plasma lactate accumulated to about 50 mM in 150 d, while anoxic turtles developed a severe lactic acidosis as plasma lactate reached about 200 mM in 125 d; there was no respiratory acidosis in either group. Plasma [Na+] changed little in either group, [Cl-] fell by about one-third in both, and [K+] increased by about fourfold in anoxic turtles but only slightly in those in normoxic water. Total plasma magnesium and calcium increased profoundly in anoxic turtles but moderately in those in normoxic water. Consideration of charge balance indicates that all major ions were measured in both groups. Plasma glucose remained unchanged in anoxic turtles until after about 75 d of submergence, when it increased and continued to increase with the duration of anoxia, with much variation among individuals; glucose remained unchanged throughout in turtles in normoxic water. Hematocrit doubled in 150 d in turtles in normoxic water; in anoxic turtles, an initial increase was no longer significant by day 100. Plasma osmolality increased markedly in anoxic turtles, largely because of accumulation of lactate, but anoxic turtles only gained about half the mass of turtles in normoxic water, who showed no increase in osmolality. The higher weight gain in the latter group is attributed to selective perfusion and ventilation of extrapulmonary gas exchange surfaces, resulting in a greater osmotic influx of water. The physiologic responses to simulated hibernation of C. picta picta are intermediate between those of Chrysemys picta bellii and Chrysemys picta dorsalis, which correlates with the severity of the winter each subspecies would be expected to encounter.  相似文献   

7.
Hatchlings of the North American painted turtle (Chrysemys picta) spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where they may be exposed for extended periods to ice and cold. Hatchlings seemingly survive exposure to such conditions by becoming supercooled (i.e., by remaining unfrozen at temperatures below the equilibrium freezing point for body fluids), so we investigated the role of their integument in preventing ice from penetrating into body compartments from surrounding soil. We first showed that hatchlings whose epidermis has been damaged are more likely to be penetrated by growing crystals of ice than are turtles whose cutaneous barrier is intact. We next studied integument from a forelimb by light microscopy and discovered that the basal part of the alpha-keratin layer of the epidermis contains a dense layer of lipid. Skin from the forelimb of other neonatal turtles lacks such a layer of lipid in the epidermis, and these other turtles also are highly susceptible to inoculative freezing. Moreover, epidermis from the neck of hatchling painted turtles lacks the lipid layer, and this region of the skin is readily penetrated by growing crystals of ice. We therefore conclude that the resistance to inoculation imposed by skin on the limbs of hatchling painted turtles results from the presence of lipids in the alpha-keratin layer of the epidermis. Neonates apparently are able to avoid freezing during winter by drawing much of the body inside the shell, leaving only the ice-resistant integument of the limbs exposed to ice in the environment. The combination of behavior and skin morphology enables overwintering hatchlings to exploit an adaptive strategy based on supercooling.  相似文献   

8.
9.
10.
Hatchling painted turtles (Chrysemys picta) survived freezing at -2 degrees C for 4 d, few recovered from freezing lasting 6 d, and none survived being frozen for 8 d. Whole-body glucose and lactate were low in animals that had not been subjected to cold and ice but increased precipitously in animals that were frozen for 2 d. Both metabolites continued to increase, but at a somewhat lower rate, in animals frozen for 4, 6, or 8 d. The increase in whole-body lactate reflects a reliance by frozen hatchlings on anaerobiosis, whereas the increase in glucose presumably results from mobilization of glycogen reserves to support anaerobic metabolism. Mortality of frozen hatchlings is correlated with the increase in whole-body lactate. Factors that may contribute to the observed correlation include a compromised capacity for individual organs to cope with the lactic acidosis that accompanies anaerobic metabolism and organ-specific depletion of energy reserves. Individual organs must rely on buffering and glucose reserves available in situ because blood of frozen hatchlings does not circulate. Thus, buffer from the shell cannot be transported to other organs, lactate cannot be sequestered in the shell, and glucose mobilized from liver glycogen is not available to supplement glucose reserves of other tissues. This integrated suite of physiological disruptions may limit tolerance of freezing to conditions with little or no ecological relevance.  相似文献   

11.
Painted turtles (Chrysemys picta) typically spend their first winter of life in a shallow, subterranean hibernaculum (the natal nest) where they seemingly withstand exposure to ice and cold by resisting freezing and becoming supercooled. However, turtles ingest soil and fragments of eggshell as they are hatching from their eggs, and the ingestate usually contains efficient nucleating agents that cause water to freeze at high subzero temperatures. Consequently, neonatal painted turtles have only a modest ability to undergo supercooling in the period immediately after hatching. We studied the limit for supercooling (SCP) in hatchlings that were acclimating to different thermal regimes and then related SCPs of the turtles to the amount of particulate matter in their gastrointestinal (GI) tract. Turtles that were transferred directly from 26 degrees C (the incubation temperature) to 2 degrees C did not purge soil from their gut, and SCPs for these animals remained near -4 degrees C for the 60 days of the study. Animals that were held at 26 degrees C for the duration of the experiment usually cleared soil from their GI tract within 24 days, but SCPs for these turtles were only slightly lower after 60 days than they were at the outset of the experiment. Hatchlings that were acclimating slowly to 2 degrees C cleared soil from their gut within 24 days and realized a modest reduction in their SCP. However, the limit of supercooling in the slowly acclimating animals continued to decline even after all particulate material had been removed from their GI tract, thereby indicating that factors intrinsic to the nucleating agents themselves also may have been involved in the acclimation of hatchlings to low temperature. The lowest SCPs for turtles that were acclimating slowly to 2 degrees C were similar to SCPs recorded in an earlier study of animals taken from natural nests in late autumn, so the current findings affirm the importance of seasonally declining temperatures in preparing animals in the field to withstand conditions that they will encounter during winter.  相似文献   

12.
Hatchling painted turtles (Chrysemys picta) were placed individually into artificial nests constructed in jars of damp soil and then were cooled slowly to temperatures between-7.7 and-12.7 °C. Distinct exotherms were recorded in all jars when water in the soil began to freeze at temperatures between-0.9 and-2.4 °C. A second (animal) exotherm was subsequently detected in some of the jars when water in hatchlings also began to freeze. An animal exotherm occurred in the temperature records for all 23 hatchlings that died in tests terminating at temperatures between-7.7 and-10.8 °C, but no such exotherm was apparent in the temperature records for the 23 turtles that survived these treatments. Moreover, the 4 hatchlings that produced exotherms in tests terminating between-11.5 and-12.7 °C failed to survive, but 5 of 7 hatchlings that produced no exotherm in these tests also died. Thus, turtles that die at subzero temperatures above-11 °C apparently succumb to freezing when ice propagates across their integument from the frozen soil, but animals that die at temperatures below-11 °C generally perish from some other cause. These findings indicate that hatchling painted turtles overwintering inside their shallow, subterranean nests survive exposure to subzero temperatures by avoiding freezing instead of by tolerating freezing.  相似文献   

13.
The hemoglobins of two turtles (Testudines)--Chrysemys picta bellii (suborder Cryptodira) and Phrynops hilarii (suborder Pleurodira)--were investigated. In both specimens we found two hemoglobin components with two distinct alpha-chains. The alpha-chains of the component HbD of Chrysemys picta bellii and of the component CII of Phyrynops hilarii belong to the alpha D-type, which has so far been reported to occur only in birds. The complete amino-acid sequences of both alpha D-chains are presented. Our further investigations on hemoglobins of other reptiles (Crocodilia, Lacertilia, Serpentes) did not give any evidence for the expression of alpha D-globin genes in the species examined. These findings are discussed with especial reference to the physiology of respiration. It is supposed that alpha D-genes were of certain significance in earlier times. There are findings suggesting that alpha D-genes are embryonic genes with persistent expression in many adult birds and turtles.  相似文献   

14.
The effects of temperature on aquatic and terrestrial locomotor performance, including measures of burst speed, endurance, and righting response, the inter-individual correlation between measures of locomotor performance, and the temporal repeatability of performance were assessed in juvenile western painted turtles, Chrysemys picta bellii. Locomotor performance increased as temperature increased, with Q 10 values ranging from 1.33 to 1.98 for burst speed and 2.28 to 2.76 for endurance measures. Righting response performance also increased with temperature. Aquatic and terrestrial measures of locomotor performance were highly correlated; however, righting response was not correlated with any other measure of performance. Measures of terrestrial locomotor performance were highly repeatable over the entire 30-week study period, whereas aquatic locomotor performance was only repeatable through week 12. The righting response was repeatable over a 6-week study period. Both the interindividual variation and temperature effects on locomotor performance likely influences the survival of turtles, especially juveniles, by affecting the length of time turtles are exposed to potential predators and their ability to escape.  相似文献   

15.
Reptile freeze tolerance: metabolism and gene expression   总被引:5,自引:0,他引:5  
Storey KB 《Cryobiology》2006,52(1):1-16
Terrestrially hibernating reptiles that live in seasonally cold climates need effective strategies of cold hardiness to survive the winter. Use of thermally buffered hibernacula is very important but when exposure to temperatures below 0 degrees C cannot be avoided, either freeze avoidance (supercooling) or freeze tolerance strategies can be employed, sometimes by the same species depending on environmental conditions. Several reptile species display ecologically relevant freeze tolerance, surviving for extended times with 50% or more of their total body water frozen. The use of colligative cryoprotectants by reptiles is poorly developed but metabolic and enzymatic adaptations providing anoxia tolerance and antioxidant defense are important aids to freezing survival. New studies using DNA array screening are examining the role of freeze-responsive gene expression. Three categories of freeze responsive genes have been identified from recent screenings of liver and heart from freeze-exposed (5h post-nucleation at -2.5 degrees C) hatchling painted turtles, Chrysemys picta marginata. These genes encode (a) proteins involved in iron binding, (b) enzymes of antioxidant defense, and (c) serine protease inhibitors. The same genes were up-regulated by anoxia exposure (4 h of N2 gas exposure at 5 degrees C) of the hatchlings which suggests that these defenses for freeze tolerance are aimed at counteracting the injurious effects of the ischemia imposed by plasma freezing.  相似文献   

16.
The importance of blood hemoglobin to aquatic oxygen uptake by turtles (Chrysemys picta bellii) submerged in aerated water at 3 degrees C was tested by comparing the responses of anemic turtles (hematocrit approximately 6%) to turtles with normal hematocrits (hematocrit approximately 33%). All turtles were submerged for 42 days and blood samples were collected at 0, 7, 21, 32 and 42 days. Blood was analyzed for pH, PCO(2), PO(2), hematocrit, hemoglobin concentration ([Hb]) and plasma was analyzed for concentrations of lactate, glucose, Na(+), K(+), Ca(2+) and Mg(2+). Plasma [HCO(3)(-)] was calculated. [Hb] correlated closely with hematocrit levels. [Lactate] reached higher final values in anemic turtles (34.5+/-5.3 mmol l(-1)) than in normal turtles (14.5+/-4.6 mmol l(-1)) indicating a greater reliance of the anemic animals on anaerobic metabolism. Both groups compensated for acidosis by reduced PCO(2) and anemic turtles also had increased [Ca(2+)] and [Mg(2+)]. Blood pH fell significantly in the anemic turtles but not in the controls. Although the data indicate that the anemic turtles relied more on anaerobic metabolism than the controls, the effect was much less than expected on the basis of the reduced blood O(2) carrying capacity. Possible compensatory mechanisms utilized by the anemic turtles to minimize anaerobic metabolism are discussed.  相似文献   

17.
The effects of water availability during incubation on the water contents of neonatal snapping turtles at hatching were examined, along with the influence of hatchling water content on desiccation tolerance and terrestrial locomotor performance. The water contents of hatchlings from eggs incubated on wet substrates were both absolutely and proportionally greater than were those of hatchlings from eggs incubated on dry substrates. Hatchlings with greater water contents at hatching were able to survive longer and to lose more water before physiological performance was adversely affected by desiccation. Increased water contents in hatchlings with greater water availability during incubation may enhance survival by increasing the amount of water the animal can afford to lose before dehydration begins to adversely affect whole animal performance.  相似文献   

18.
Temperate species of turtles hatch from eggs in late summer. The hatchlings of some species leave their natal nest to hibernate elsewhere on land or under water, whereas others usually remain inside the nest until spring; thus, post-hatching behavior strongly influences the hibernation ecology and physiology of this age class. Little is known about the habitats of and environmental conditions affecting aquatic hibernators, although laboratory studies suggest that chronically hypoxic sites are inhospitable to hatchlings. Field biologists have long been intrigued by the environmental conditions survived by hatchlings using terrestrial hibernacula, especially nests that ultimately serve as winter refugia. Hatchlings are unable to feed, although as metabolism is greatly reduced in hibernation, they are not at risk of starvation. Dehydration and injury from cold are more formidable challenges. Differential tolerances to these stressors may explain variation in hatchling overwintering habits among turtle taxa. Much study has been devoted to the cold-hardiness adaptations exhibited by terrestrial hibernators. All tolerate a degree of chilling, but survival of frost exposure depends on either freeze avoidance through supercooling or freeze tolerance. Freeze avoidance is promoted by behavioral, anatomical, and physiological features that minimize risk of inoculation by ice and ice-nucleating agents. Freeze tolerance is promoted by a complex suite of molecular, biochemical, and physiological responses enabling certain organisms to survive the freezing and thawing of extracellular fluids. Some species apparently can switch between freeze avoidance or freeze tolerance, the mode utilized in a particular instance of chilling depending on prevailing physiological and environmental conditions.  相似文献   

19.
Hatchlings of the North American painted turtle (Family Emydidae: Chrysemys picta) typically spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where life-threatening conditions of ice and cold commonly occur. Although a popular opinion holds that neonates exploit a tolerance for freezing to survive the rigors of winter, hatchlings are more likely to withstand exposure to ice and cold by avoiding freezing altogether-and to do so without the benefit of an antifreeze. In the interval between hatching by turtles in late summer and the onset of wintery weather in November or December, the integument of the animals becomes highly resistant to the penetration of ice into body compartments from surrounding soil, and the turtles also purge their bodies of catalysts for the formation of ice. These two adjustments, taken together, enable the animals to supercool to temperatures below those that they routinely experience in nature. However, cardiac function in hatchlings is diminished at subzero temperatures, thereby compromising the delivery of oxygen to peripheral tissues and eliciting an increase in reliance by those tissues on anaerobic metabolism for the provision of ATP. The resulting increase in production of lactic acid may disrupt acid/base balance and lead to death even in animals that remain unfrozen. Although an ability to undergo supercooling may be key to survival by overwintering turtles in northerly populations, a similar capacity to resist inoculation and undergo supercooling characterizes animals from a population near the southern limit of distribution, where winters are relatively benign. Thus, the suite of characters enabling hatchlings to withstand exposure to ice and cold may have been acquired prior to the northward dispersal of the species at the end of the Pleistocene, and the characters may not have originated as adaptations specifically to the challenges of winter.  相似文献   

20.
We investigated physiological responses to supercooling in hatchling painted turtles (Chrysemys picta) which remain in their natal nests over winter and therefore may become exposed to subzero temperatures. These turtles are freeze tolerant but also must rely on supercooling to survive exposure to the lower temperatures occurring in nests during winter. We compared whole-body concentrations of lactate, glucose, glycerol, and ATP in turtles chilled at 0 degrees C, -4 degrees C, or -6 degrees C for 5 days, or at 6 degrees C for 19 days. In a companion experiment, we measured metabolite concentrations in turtles exposed to a hypoxic environment for 1 day, 4 days, or 8 days. Supercooling and hypoxia exposure were both associated with an increase in concentrations of lactate and glucose and a decrease in glycerol concentrations (albeit no change in the ATP pool), suggesting that supercooling induces functional hypoxia. We conclude that hypoxia tolerance may be an important pre-adaptation for surviving exposure to subzero temperatures in hatchling C. picta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号