首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Proteolytic enzyme activities were examined in the pancreas of zinc-deficient and control rats. 2. No change was detected in trypsin-plus-chymotrypsin activity. 3. Carboxypeptidase activity was appreciably lowered in zinc deficiency and returned rapidly to normal on zinc therapy. 4. In experiments in which U-14C-labelled Chlorella protein was fed no evidence was obtained which suggested that the reduction in carboxypeptidase activity had limited the rate of protein digestion or absorption. 5. The specific activity of pancreatic protein synthesized during these experiments was appreciably lower in zinc-deficient than in control rats. 6. A higher proportion of the total activity present, in each organ examined, was in the non-protein fraction in zinc-deficient rats.  相似文献   

2.
The intake of 5% gluten + casein (4:1, W:W) (PM) (E group) diet compared to 20% (16:4, W:W) (control group) caused an overall decreased synthesis. With the duration of PM, Tg2 and Chtg1 synthesis remained steady, while lipase synthesis decreased and amylase synthesis increased. At the beginning of refeeding (two days), in E group Tg2 and amylase synthesis was increased with rebound effect compared to controls, then decreased, Chtg1 synthesis was higher than control synthesis and remained constant, lipase synthesis was increased and reached the control value only after 9 days.  相似文献   

3.
Rats were fed a diet containing either 20% ("control") or 8% ("reduced-protein") protein throughout pregnancy and lactation. Their female offspring were weaned onto the same respective diets. At 63 days of age one set of control and reduced-protein rats (n = 16 per group) underwent intraperitoneal glucose tolerance tests and one week later were killed and their pancreatic hormones extracted and measured. The reduced protein rats had better glucose tolerance (p < 0.001) and lower pancreatic insulin (p < 0.01) and amylin (p < 0.01) contents. Further sets of control and reduced-protein rats were then fed either chow or a cafeteria-style diet (n = 16 in each of the four groups). These rats underwent intraperitoneal glucose tolerance tests at 133 days of age, which showed the cafeteria-fed animals to have a worse glucose tolerance than the chow-fed animals irrespective of previous diet exposure (p < 0.0001). One week later reduced-protein rats still had lower pancreatic insulin contents (p < 0.05) (and a trend for lower amylin contents), but also had increased pancreatic glucagon contents (p < 0.05). There were no detectable differences in pancreatic somatostatin-like immunoreactivity or pancreatic polypeptide contents. These results are consistent with pancreatic beta- and alpha-cells being selectively susceptible to effects associated with early dietary protein restriction.  相似文献   

4.
The aim of the study reported here was to investigate changes in the digestive enzyme content in the pancreas after food and secretagogue stimulation. Rats from which food had been withheld overnight were either fed (between 6 and 8 a.m.) or not before euthanasia and pancreatic excision (at 8 a.m.: 21 not fed and 21 fed) and at 4 (12 p.m.: six not fed and six fed) and 8 h later (4 p.m.: six not fed and six fed). Another 16 rats were anesthetized, fitted with jugular vein and pancreatic duct catheters, and infused with the secretagogues, CCK-33 and secretin, during 1.5 h of pancreatic juice collection before euthanasia and pancreatic excision. The pancreata were homogenized, and total soluble protein and individual enzyme (trypsin and amylase) tissue contents were analyzed. Results indicated lower amounts of protein and enzymes remaining in the pancreata of the fed, compared with non-fed rats. Enzyme values indicated recovery within four hours in fed rats, but non-fed rats also had increased values during daytime. High enzyme secretion during the high dose of hormonal stimulation was reflected in lower enzyme values remaining in the pancreas, compared with that in response to low-dose stimulation. Results indicated that stimulation of the pancreas, either by food ingestion or exogenous secretagogues, lowers the amounts of digestive enzymes remaining in the pancreas, and imply that stimulation and circadian rhythms influence the pancreatic enzyme content at euthanasia. This finding should be borne in mind in interpretation of data from pancreatic studies.  相似文献   

5.
This study supports the possibility for multiple subcellular forms of lipoprotein lipase. 1. The total activity of lipoprotein lipase per g of intact epididymal adipose tissue from fed rats is much higher than that from starved rats. 2. The isolated fat-cells of fed and of starved rats have lipoprotein lipase of almost the same activity per g of fat-pads. The isolated fat-cells of starved rats have a much higher proportion of total activity per g of the intact tissue than do those of fed rats. 3. Under the conditions of homogenization used, only a small proportion of the total activity per g of intact tissue from fed rats was associated with the fat layer which floated to the top of the homogenate during low-speed centrifugation. The different proportions of the specific enzyme activity found in each subcellular fraction are described. 4. Lipoprotein lipase from plasma membranes and microsomal fractions from starved and fed rats was purified by affinity chromatography. 5. The total activity of microsomal lipoprotein lipase per g of intact adipose tissue is enhanced by a normal diet. 6. In intact epididymal adipose tissue from fed rats, the activity per g of tissue of lipoprotein lipase of plasma membranes is much higher than that in the same fraction from starved rats. By contrast, the activities per g of tissue in plasma membranes obtained from starved or from fed rats by collagenase treatment were similar.  相似文献   

6.
Body composition and the levels of some plasma metabolites were measured in zinc deficient and control rats with the aim of assessing the nature of the metabolic defects resulting from zinc deficiency. Two experiments, lasting 15 and 20 d, were carried out using 52 immature rats. Zinc deficient animals were fed a diet of 1–2 mg Zn/kg. Pair fed andad libitum control rats received the same diet with 100 ppm zinc added to the drinking water. Feed intake and growth rate were measured, and the carcasses were analyzed for protein, fat, and ash. In each experiment, a group of rats were killed on d 1 to provide pretreatment values and to allow for estimates of net deposition of carcass components. Lactate, urea, and zinc were assayed in plasma, as well as zinc concentration in carcasses and liver. The main effect of zinc deficiency was to reduce feed intake and efficiency of feed conversion, resulting in a reduced proportion of carcass wat because of the reduced feed efficiency, zinc deficiencyper se resulted in an increase in the proportion of fat in the carcass. Plasma lactate concentration was unchanged, but urea concentration increased in both pair fed and zinc deficient rats relative toad libitum fed control animals. The results indicate that a defect in protein synthesis and an increase in energy expenditure, perhaps resulting from increased protein turnover, underlies the reduced growth and efficiency of feed conversion of zinc deficiency.  相似文献   

7.
Pancreatic islets from adult rats whose mothers were protein restricted during lactation undersecrete insulin. The current work analyzes whether this secretory dysfunction can be improved when the pancreatic islets are grafted into hyperglycemic diabetic rats. Two groups of rats were used: the adult offspring from dams that received a low protein diet (4%) during the initial 2/3 of lactation (LP) and, as a control, the adult offspring from dams that consumed a normal protein diet (23%) during the entire period of lactation (NP). Islets from NP- and LP-rats were transplanted into diabetic recipient rats, which were generated by streptozotocin treatment. The islets were transplanted via the portal vein under anesthesia. The fed blood glucose levels were monitored during the 4 days post-transplantation. Transplanted islets from LP-rats (T LP) decreased the fed glucose levels of diabetic rats 34% (21.37 ± 0.24 mM, p<0.05); however, the levels still remained 2-fold higher than those of the sham-operated controls (6.88 ± 0.39 mM, p<0.05). Grafts with NP-islets (T NP) produced the same effect as the LP-islets in diabetic rats. The high fasting blood glucose levels of diabetic rats were improved by the transplantations. Islet grafts from both rat groups recovered 50% of the retroperitoneal fat mass of the diabetic rats (0.55 ± 0.08 g/100 g of body weight for T NP and 0.56 ± 0.07 g/100 g of body weight for T LP, p<0.05). Because pancreatic islets from both the NP- and LP-rats were able to regulate fasting blood glucose concentrations in hyperglycemic rats, we propose that the altered function of pancreatic islets from LP-rats is not permanent.  相似文献   

8.
To determine the mechanism of meal-regulated synthesis of pancreatic digestive enzymes, we studied the effect of fasting and refeeding on pancreatic protein synthesis, relative mRNA levels of digestive enzymes, and activation of the translational machinery. With the use of the flooding dose technique with L-[3H]phenylalanine, morning protein synthesis in the pancreas of Institute for Cancer Research mice fed ad libitum was 7.9 +/- 0.3 nmol phenylalanine.10 min(-1).mg protein(-1). Prior fasting for 18 h reduced total protein synthesis to 70 +/- 1.4% of this value. Refeeding for 2 h, during which the mice consumed 29% of their daily food intake, increased protein synthesis to 117.3 +/- 4.9% of the control level. Pancreatic mRNA levels of amylase, lipases, trypsins, chymotrypsin, elastases, as well as those for several housekeeping genes tested were not significantly changed after refeeding compared with fasted mice. By contrast, the major translational control pathway involving Akt, mTOR, and S6K was strongly regulated by fasting and refeeding. Fasting for 18 h decreased phosphorylation of ribosomal protein S6 to almost undetectable levels, and refeeding highly increased it. The most highly phosphorylated form of the eIF4E binding protein (4E-BP1) made up the 14.6% of total 4E-BP1 in normally fed animals, was only 2.8% after fasting, and was increased to 21.4% after refeeding. This was correlated with an increase in the formation of the eIF4E-eIF4G complex after refeeding. By contrast, feeding did not affect eIF2B activity. Thus food intake stimulates pancreatic protein synthesis and translational effectors without increasing digestive enzyme mRNA levels.  相似文献   

9.
C Wicker  G A Scheele  A Puigserver 《Biochimie》1988,70(9):1277-1283
Lipase activity, rates of biosynthesis of lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) and amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) as well as concentrations of their corresponding mRNAs were measured in the pancreatic tissue of rats fed isocaloric and isoprotein diets with inverse changes in the amounts of lipids and carbohydrates. A control diet (3% sunflower oil--62% starch) and three lipid-rich diets (10% sunflower oil--46.2% starch, 25% sunflower oil--12.5% starch and 30% sunflower oil--1.25% starch) were fed to rats for 10 days. Ingestion of the 10% lipid diet already resulted in a 1.4-fold increase in lipase activity while a 2.4-fold increase was observed with the other 2 high-lipid low-carbohydrate diets. Similarly, 1.3- and 3.1-fold increases in the total rate of protein synthesis were measured in pancreatic lobules of rats fed 10 and 25% or 30% lipid diets, respectively, as compared with control animals. While absolute lipase synthesis showed an important increase during the dietary manipulation (1.7- and 5.9-fold, respectively), amylase synthesis was significantly lower (1.1- and 1.5-fold, respectively). The level of lipase mRNA, as measured by dot-blot hybridization with the corresponding specific cDNA, showed a 2.2-fold increase (10% lipid diet) and a 3.9-fold increase (25% lipid diet), whereas the level of amylase mRNA showed only 1.1- and 1.3-fold increases under the same experimental conditions. These data demonstrated that protein-specific synthesis rates more accurately reflected pancreatic adaptive states than tissue levels of enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A mutation in the thyroglobulin (Tg) gene is the primary cause of hereditary dwarfism and hypothyroidism in the rdw rat. Despite the Tg mutation that causes a Tg shortage, rdw rats survive. The present study examines the influences of this condition on the pancreatic proteome. Normal control (group 1; n = 19) and rdw rats that did not receive L-thyroxine (T4) (group 2; n = 27) were sacrificed from 4 to 56 weeks after birth. The rdw rats were supplemented either with daily intraperitoneal injections of T4 from 3 to 28 days after birth (group 3; n = 4) or with normal thyroid tissues grafted at 4 weeks of age (group 4; n = 3). Groups 3 and 4 were sacrificed 12 weeks after birth. Pancreatic proteomes analyzed by two-dimensional gel electrophoresis showed that levels of at least four pancreatic proteins were higher in group 2 than in group 1, and that those of four were lower. Cluster decomposition and principal component analysis of the eight protein contents showed that groups 1 and 2 were separated into two clusters and that pancreatic proteomes of group 4 were better normalized than those of group 3. Injecting T4 into group 3 was temporarily effective, whereas the thyroid graft to group 4 provided a continuous positive effect, which concurred with the increased body weight of the other two groups of rdw rats that received grafts of normal thyroids.  相似文献   

11.
Increase of phosphatidic acid (PA) accumulation in response to caerulein (Cae) and after subtotal pancreatectomy (SP) has been previously described and phospholipase D (PLD) derived PA involvement in pancreatic regeneration was suggested. We also described decrease of Cae stimulated PA accumulation after a single dose of ethanol (both in vitro and in vivo). The present study was undertaken in order to determine the influence of chronic ethanol feeding on basal and Cae stimulated PA accumulation and other parameters of pancreatic regeneration in control and ethanol feed rats. Male rats were pair fed ad libitum with an isocaloric liquid diet (Lieber De Carli) with or without ethanol. In vitro study: pair fed rats were killed after 2 or 6 weeks of feeding, pancreata were dissected out and weighted, dispersed pancreatic acini were then prepared and loaded with 3H myristic acid in order to label the phosphatidylcholine pool. Phosphatidic acid (3H PA) accumulation, in the presence of propranolol, was measured after stimulation with increasing doses of Cae. In vivo study: PA was measured 3 days after SP or sham operation in both groups of rats, and also after 1 h of Cae infusion (0.25 microg/kg/h). Pancreatic weight, amylase, protein, RNA and DNA content were established. Results: In vitro study 1) Basal PLD activity expressed as PA accumulation was significantly elevated after 6 weeks of ethanol feeding in comparison to the control values (28%). 2) Cae in doses ranging from 100 pM to 5 nM was not able to stimulate PA accumulation in isolated pancreatic acini prepared from ethanol fed rats. In vivo study: 1) Body weight and pancreatic weight were similar in, both the ethanol fed and the control groups, after 2 and 6 weeks. 2) Ethanol feeding significantly decreased total amylase content in the pancreas, but did not change protein, RNA and DNA content. 3) in contrast to the control animals in which SP caused a 71.1% increase of PA accumulation over the sham operation, subtotal pancreatectomy was not able to stimulate PA in rats fed with ethanol. 4) Also Cae infusion did not stimulate PA accumulation in the ethanol fed animals in comparison to the controls. Since the involvement of PLD activation in the early stages of pancreatic regeneration was postulated, our results suggest that chronic ethanol feeding can influence this process by decrease of PA production, probably because of the inhibition of hydrolytic PLD activity in the presence of ethanol. This could be one of the mechanisms responsible for pancreatic injury after chronic ethanol consumption.  相似文献   

12.
1. 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase (EC 4.1.3.5) in extracts of rat liver mitochondria can be inactivated by succinyl-CoA and activated by incubation in a medium designed to cause desuccinylation ('desuccinylation medium'). 2. The enzyme is less active in extracts of whole liver from control rats than from rats treated with glucagon or mannoheptulose. Incubation in desuccinylation medium raises the activity in extracts from control rats to the same value as treated rats, suggesting that the extent of succinylation in vivo is greater in controls than in hormone-treated animals. 3. This result is also obtained in liver homogenates and in isolated mitochondria. 4. Increasing the succinyl-CoA content of mitochondria to the same high level lowers the enzyme activity to the same value in mitochondria isolated from control or treated rats. In each case subsequent incubation of the lysates in desuccinylation medium raises the enzyme activity by the same extent. 5. Measurement of the incorporation of radiolabel from 2-oxo[5-14C]glutarate into protein is consistent with the proposal that all these changes in activity in isolated mitochondria may be explained by changes in the extent of succinylation of the enzyme. 6. From these data and our earlier work we conclude that, in vivo, mitochondrial HMG-CoA synthase in fed rats is normally substantially succinylated (about 40%) and inactivated, and that glucagon increases the activity of HMG-CoA synthase by lowering the concentration of succinyl-CoA and thus decreasing the extent of succinylation of the enzyme (to less than 10%). This may be an important control mechanism in ketogenesis.  相似文献   

13.

Background

Gap junctions between β-cells participate in the precise regulation of insulin secretion. Adherens junctions and their associated proteins are required for the formation, function and structural maintenance of gap junctions. Increases in the number of the gap junctions between β-cells and enhanced glucose-stimulated insulin secretion are observed during pregnancy. In contrast, protein restriction produces structural and functional alterations that result in poor insulin secretion in response to glucose. We investigated whether protein restriction during pregnancy affects the expression of mRNA and proteins involved in gap and adherens junctions in pancreatic islets. An isoenergetic low-protein diet (6% protein) was fed to non-pregnant or pregnant rats from day 1–15 of pregnancy, and rats fed an isocaloric normal-protein diet (17% protein) were used as controls.

Results

The low-protein diet reduced the levels of connexin 36 and β-catenin protein in pancreatic islets. In rats fed the control diet, pregnancy increased the levels of phospho-[Ser279/282]-connexin 43, and it decreased the levels of connexin 36, β-catenin and beta-actin mRNA as well as the levels of connexin 36 and β-catenin protein in islets. The low-protein diet during pregnancy did not alter these mRNA and protein levels, but avoided the increase of levels of phospho-[Ser279/282]-connexin 43 in islets. Insulin secretion in response to 8.3 mmol/L glucose was higher in pregnant rats than in non-pregnant rats, independently of the nutritional status.

Conclusion

Short-term protein restriction during pregnancy prevented the Cx43 phosphorylation, but this event did not interfer in the insulin secretion.  相似文献   

14.
Recent evidence suggests that changes in plasma zinc concentration may play a central role in the development of early lesions of zinc deficiency. The aim of the following work was to better understand events occurring in plasma during the onset of zinc deficiency, and to investigate biochemical mechanisms by which plasma zinc may exert its effects. Fifty male weanling rats of 90 g weight were allocated to five treatment groups of ten rats each. Treatments were: 1, zinc deficient, mixed diet (1-2 mg Zn per kg): 2, zinc deficient, self-select diet; 3, zinc repleted; 4, control, pair fed; 5, control, ad libitum fed. With the exception of treatment 1, which consisted of a 25% casein diet, all rats were offered protein as a separate component of the diet. Control rats received zinc in the drinking water (100 mg l-1). The sequence of events following initiation of zinc deficiency were: reduced plasma zinc concentration (2 days), reduced plasma angiotensin-converting enzyme and alkaline phosphatase activities (3-4 days), reduced feed intake and growth (5-6 days) and reduced percentage protein intake (12 days). Plasma zinc concentration in the deficient rats was inversely correlated with the growth rate of the rat over the previous 24 h. Zinc repletion resulted in marked overshoot in plasma zinc concentration (300%) and converting-enzyme activity (150%) within 24 h, but a return to normal within 72 h. Alkaline phosphatase activity responded likewise, albeit more slowly. Protein self selection had no effect on the manifestations of zinc deficiency, although reduced protein intake was associated with lower plasma zinc concentration. The results provide evidence of a role for plasma zinc in the development of early clinical signs of zinc deficiency, possibly acting biochemically through reduced activity of zinc-dependent peptidases such as angiotensin-converting enzyme.  相似文献   

15.
E T Li  G H Anderson 《Life sciences》1984,34(25):2453-2460
After a meal of protein, in contrast to a meal of carbohydrate (CHO) at 1915 hr, rats allowed to choose from high carbohydrate and high protein diets during 2000-2100 hr prefer CHO (1). Thus the hypothesis that this regulation of macronutrient selection involves brain 5-hydroxytryptamine (5-HT) metabolism was tested. Compared to three baseline days during which rats (250- 300g ) consumed 1 g CHO, rats fed tryptophan (TRP, 5-HT precursor; 15 mg in 1 g CHO) selected meals higher in protein concentration (35.4% vs 46.6%, F (1,12) = 20.05, p less than 0.001) from 10% and 60% casein diets during 2000-2100 hr. Associated with the higher protein selection was an elevated brain 5-HT turnover in rats killed 30 minutes after consuming CHO + TRP. Pretreating rats with p-chlorophenylalanine, an inhibitor of TRP hydroxylase, blocked this effect of TRP (36.3% vs 37.0%). Fenfluramine (1 and 2 mg/kg i.p. at 1945 hr), which transiently enhances neuronal 5-HT release, increased the rat's relative preference for protein from 28.8% to 37.5% (2 mg/kg, t = 3.21, p less than 0.025) during 2000-2100 hr. These rats, also exhibited a selective preference for CHO between 3-12 hrs post injection which paralleled the known subsequent depletion of 5-HT by fenfluramine. We conclude that the relative proportion of protein and carbohydrate selected in a meal is controlled, at least in part, by prior food effects on brain 5-HT metabolism.  相似文献   

16.
Whereas ghrelin is produced primarily in the stomach, a small amount of it is produced in pancreatic islets. Although exogenous administration of ghrelin suppresses insulin secretion in vitro or in vivo, the role of intraislet ghrelin in the regulation of insulin secretion in vivo remains unclear. To understand the physiological role of intraislet ghrelin in insulin secretion and glucose metabolism, we developed a transgenic (Tg) mouse model, rat insulin II promoter ghrelin-internal ribosomal entry site-ghrelin O-acyl transferase (RIP-GG) Tg mice, in which mouse ghrelin cDNA and ghrelin O-acyltransferase are overexpressed under the control of the rat insulin II promoter. Although pancreatic desacyl ghrelin levels were elevated in RIP-GG Tg mice, pancreatic ghrelin levels were not altered in animals on a standard diet. However, when Tg mice were fed a medium-chain triglyceride-rich diet (MCTD), pancreatic ghrelin levels were elevated to ~16 times that seen in control animals. It seems likely that the gastric ghrelin cells possess specific machinery to provide the octanoyl acid necessary for ghrelin acylation but that this machinery is absent from pancreatic β-cells. Despite the overexpression of ghrelin, plasma ghrelin levels in the portal veins of RIP-GG Tg mice were unchanged from control levels. Glucose tolerance, insulin secretion, and islet architecture in RIP-GG Tg mice were not significantly different even when the mice were fed a MCTD. These results indicate that intraislet ghrelin does not play a major role in the regulation of insulin secretion in vivo.  相似文献   

17.
The in vivo effects of protein malnutrition and protein rehabilitation on lactase phlorizin hydrolase (LPH) synthesis were examined. Five-day-old pigs were fed isocaloric diets containing 10% (deficient, n = 12) or 24% (sufficient, n = 12) protein. After 4 wk, one-half of the animals in each dietary group were infused intravenously with [(13)C(1)]leucine for 6 h, and the jejunum was analyzed for enzyme activity, mRNA abundance, and LPH polypeptide isotopic enrichment. The remaining animals were fed the protein-sufficient diet for 1 wk, and the jejunum was analyzed. Jejunal mass and lactase enzyme activity per jejunum were significantly lower in protein-deficient vs. control animals but returned to normal with rehabilitation. Protein malnutrition did not affect LPH mRNA abundance relative to elongation factor-1alpha, but rehabilitation resulted in a significant increase in LPH mRNA relative abundance. Protein malnutrition significantly lowered the LPH fractional synthesis rate (FSR; %/day), whereas the FSR of LPH in rehabilitated and control animals was similar. These results suggest that protein malnutrition decreases LPH synthesis by altering posttranslational events, whereas the jejunum responds to rehabilitation by increasing LPH mRNA relative abundance, suggesting pretranslational regulation.  相似文献   

18.
1. Glyceride biosynthesis from glycerol phosphate and [1-(14)C]palmitate was studied in liver homogenates of rats that were fed ad libitum or starved for 36-40hr. The changes in enzyme activity were related to total DNA content or total liver homogenate as these were found to be equivalent and to be the most meaningful parameters. 2. In liver homogenates from fed rats, labelled palmitate was incorporated mainly into phosphatidate (58% of the total incorporation into lipids), diglycerides (25%) and triglycerides (16%), whereas monoglycerides, cholesterol esters and phospholipids other than phosphatidate were labelled only to a small extent. Addition of particle-free supernatant to full homogenates increased the total incorporation of palmitate by 45% and the pattern of incorporation altered to 53% incorporated into triglycerides, 24% into diglycerides and 17% into phosphatidate. This result suggested that, in liver homogenates, phosphatidate phosphohydrolase (EC 3.1.3.4) may be rate-limiting in the biosynthesis of glycerides via the glycerol phosphate pathway. 3. Upon starvation, the amount of palmitate incorporated per liver into total phospholipids plus glycerides was decreased to between 68% and 75% of that observed with fed animals. In homogenates from fed animals 41-44% of the labelled phospholipids plus glycerides was in glycerides; this value increased to between 63% and 75% with starved rats. Of the palmitate incorporated into total phospholipids, between 85% and 86% was found in phosphatidate, independent of the nutritional state of the animal. The ratio of palmitate incorporated into triglycerides/diglycerides rose from 0.7, obtained with fed rats, to 1.0 with starved animals. 4. These results indicate that starvation caused a decrease in the activity (per total liver) of acyl-CoA-glycerol phosphate acyltransferase(s) (EC 2.3.1.15) and an increase in the activity of acyl-CoA-diglyceride acyltransferase (EC 2.3.1.20). The largest change, however, seemed to be related to the increased activity of the phosphatidate phosphohydrolase in the particle-free supernatant. 5. The latter enzyme was assayed in the particle-free supernatant with membrane-bound phosphatidate as substrate. In starvation, the activity per total liver was increased to between 130% and 190% and the specific activity to between 180% and 320% of the values for fed rats.  相似文献   

19.
Type 2 diabetes mellitus is characterized by insulin resistance of peripheral tissues and dysfunction of pancreatic beta-cells. Furthermore, the number of pancreatic beta-cells decreases as a secondary effect of advanced type 2 diabetes, although the molecular mechanism has not been elucidated. Recently, it has been shown that hyperglycemic conditions induce the expression of cyclooxygenase-2 in pancreatic islets and increase the downstream product prostaglandin E(2) (PGE(2)). To investigate whether high glucose-induced PGE(2) has an adverse effect on pancreatic beta-cells, we generated transgenic mice (RIP-C2mE) that express cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in their beta-cells using the rat insulin-2 gene promoter (RIP). The homozygous RIP-C2mE (Tg/Tg) mice showed severe hyperglycemia from six weeks of age. Although the heterozygous RIP-C2mE (Tg/-) mice showed normal blood glucose levels throughout their lifetime, this level increased significantly compared with that of wild-type mice when glucose was loaded. The relative number of beta-cells to the total islet cell number was reduced to 54 and 14% in the RIP-C2mE (Tg/-) and (Tg/Tg) mice, respectively, whereas that in the wild-type mice was 84%. Importantly, the proliferation rate in the islets of the RIP-C2mE (Tg/Tg) mice at four weeks of age decreased significantly in comparison to that in the wild-type mice. Because beta-cells replicate not only during the postnatal period but also in the adult pancreas at a basal level, it is possible that increased PGE(2) signaling thus contributes to the reduction of the pancreatic beta-cell mass through inhibition of proliferation, thereby aggravating diabetes further.  相似文献   

20.
Amylase (Am) and chymotrypsinogen (Chtg) were demonstrated in rat and guinea pig exocrine pancreatic cells by immunofluorescence and immunoferritin cytochemistry on thin and ultrathin frozen sections. We describe two observations indicating that Am and Chtg may behave differently in the pre-Golgi phase of their intracellular transport. Firstly, aggregates of material within the RER cisternae of the guinea pig (so-called intracisternal granules) reacted strongly with anti-Chtg, but showed no affinity for anti-Am. Secondly, in both rat and guinea pig, the increase in labeling intensity from cytoplasm (RER) to secretory granules was larger for Chtg than for Am. We hypothesize that the two proteins do not travel in-parallel towards the Golgi complex. Compared with Chtg, Am would lag behind in the RER cisternae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号