首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Summary Relationships between leaf nitrogen content and within canopy light exposure were studied in mature nectarine peach trees (Prunus persica cv. Fantasia) that had received 0, 112, 196, 280 or 364 kg of fertilizer nitrogen per hectare per year for the previous 3 years. The relationships between light saturated leaf CO2 assimilation rates and leaf nitrogen concentration were also determined on trees in the highest and lowest nitrogen fertilization treatments. The slope of the linear relationship between leaf N content per unit leaf area and light exposure was similar for all nitrogen treatments but the y-intercept of the relationship increased with increasing N status. The slope of the relationship between leaf N content per unit leaf area and light saturated CO2 assimilation rates was greater for the high N trees than the low N trees, but maximum measured leaf CO2 assimilation rates were similar for both the high and low N treatments. A diagrammatic model of the partitioning of leaf photosynthetic capacity with respect to leaf light exposure for high and low nitrogen trees suggests that the major influence of increased N availability is an increase in the photosynthetic capacity of partially shaded leaves but not of the maximum capacity of highly exposed leaves.  相似文献   

2.
We evaluated the responses in growth, biomass allocation, photosynthesis and stomatal conductance, to changes in light in woody seedlings from the tropical deciduous forest in Mexico, which shows a highly seasonal rain pattern. We studied ten species, which differed by 30-fold in relative growth rate (RGR). We analyzed plant growth in two contrasting light levels during 52 days and two transfers: from high to low (HL) and from low to high (LH) light intensity, and the respective controls in high (HH) and low (LL) light for another 52 days. The photosynthetic capacity (A max) and stomatal conductance were measured at the day of the transfer between light conditions and at the end of the experiment. Species with high RGR showed the largest changes in RGR in response to contrasting light conditions (HH/LL ratio), and species with low RGR showed low responses. The fast-growing species were the most plastic, followed by species with intermediate growth rates, with the slow-growing species being the least plastic. Fast-growing species achieved higher maximum photosynthetic capacities (A max) and stomatal conductance and higher response to light than slow-growing species. Species with high RGR showed a low RGR HH/LH ratio, suggesting a large response of L plants when transfered to H. The RGR of the species were associated with species specific leaf area and with the response in the leaf area, net assimilation rate and leaf weight ratio, suggesting the importance of the leaf area produced and the leaf characteristics rather than root:shoot ratio in determining RGR. Considering that seed germination is expected at the beginning of the rainy period, seedlings of most of the species will experience high-light conditions during its early growth. There are large annual variations in the time required for canopy closure (35–75 days). The influence of these variations may have different effect on the species studied. Species with intermediate growth rate and intermediate response to light changes were less affected by light reduction than fast-growing species. The intermediate-RGR species Caesalpiniaeriostachys is the most abundant and widely distributed species, perhaps this could be in part due to its ability to acclimate to both light increases and decreases. The fast-growing species studied here can be found in open sites in the forest and in areas cleared for pasture growth. These fast-growing species eventually reach the canopy, although this may require several canopy openings during their lives, which implies juvenile shade tolerance. In the tropical deciduous forest juvenile pioneer trees also benefit from the temporary high light available caused by the dry period during the rainy season. The slow-growing species Celaenodendronmexicanum forms small patches of monospecific forest; the adult trees are not completely deciduous, and they retain their old leaves for a long time period before shedding. Thus seedlings of this species may receive lower levels of light, in agreement with its shade tolerance and its lower response to light increases. Received: 14 April 1997 / Accepted: 29 July 1997  相似文献   

3.
Understanding changes in community composition caused by invasive species is critical for predicting effects on ecosystem function, particularly when the invasive threatens a foundation species. Here we focus on dynamics of forest structure, composition and microclimate, and how these interact in southern Appalachian riparian forests following invasion by hemlock woolly adelgid, HWA, Adelges tsugae. We measured and quantified changes in microclimate; canopy mortality; canopy and shrub growth; understory species composition; and the cover and diversity in riparian forests dominated by eastern hemlock Tsuga canadensis over a period of seven years. Treatments manipulated hemlock mortality either through invasion (HWA infested stands) or girdling (GDL) hemlock trees. Mortality was rapid, with 50% hemlock tree mortality occurring after six years of invasion, in contrast to more than 50% mortality in two years following girdling. Although 50% of hemlock trees were still alive five years after infestation, leaf area lost was similar to that of girdled trees. As such, overall responses over time (changes in light transmittance, growth, soil moisture) were identical to girdled stands with 100% mortality. Our results showed different growth responses of the canopy species, shrubs and ground layer, with the latter being substantially influenced by presence of the evergreen shrub, rhododendron Rhododendron maximum. Although ground layer richness in the infested and girdled stands increased by threefold, they did not approach levels recorded in hardwood forests without rhododendron. Increased growth of co‐occurring canopy trees occurred in the first few years following hemlock decline, with similar responses in both treatments. In contrast, growth of rhododendron continued to increase over time. By the end of the study it had a 2.6‐fold higher growth rate than expected, likely taking advantage of increased light available during leaf‐off periods of the deciduous species. Increased growth and dominance of rhododendron may be a major determinant of future responses in southern Appalachian ecosystems; however, our results suggest hemlock will be replaced by a mix of Acer, Betula, Fagus and Quercus canopy genera where establishment is not limited by rhododendron.  相似文献   

4.
Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf‐level photosynthesis of Central Amazon trees via these two mechanisms. Through four seasons of 2015, we measured leaf gas exchange, chlorophyll a fluorescence parameters, chlorophyll concentration, and nutrient content in leaves of 57 upper canopy and understory trees of a lowland terra firme forest on well‐drained infertile oxisol. Photosynthesis decreased 28% in the upper canopy and 17% in understory trees during the extreme dry season of 2015, relative to other 2015 seasons and was also lower than the climatically normal dry season of the following non‐El Niño year. Photosynthesis reduction under extreme drought and high temperature in the 2015 dry season was related only to stomatal closure in both upper canopy and understory trees, and not to chlorophyll a fluorescence parameters, chlorophyll, or leaf nutrient concentration. The distinction is important because stomatal closure is a transient regulatory response that can reverse when water becomes available, whereas the other responses reflect more permanent changes or damage to the photosynthetic apparatus. Photosynthesis decrease due to stomatal closure during the 2015 extreme dry season was followed 2 months later by an increase in photosynthesis as rains returned, indicating a margin of resilience to one‐off extreme climatic events in Amazonian forests.  相似文献   

5.
The large seeds of Aglaia mackiana (Meliaceae) germinate and produce vigorous seedlings under closed canopies or in large gaps. To assess seedling ecology after germination, we measured growth, herbivore damage, and survivorship of seedlings over one year. The sample included shaded seedlings from dispersed seeds, undispersed seeds under parent trees, and seedlings transplanted to gaps. We quantified the light environment using hemispherical canopy photographs taken above seedlings at the beginning and end of the one–year study. Seedlings transplanted to gaps grew faster and had more leaves, larger total leaf surface area, longer secondary roots, and greater root mass than shaded seedlings. Seedlings in gaps did not differ from shaded seedlings in survivorship or amount of herbivore– and pathogen–caused leaf damage. The canopy photographs taken one year apart suggest there is a rough equilibrium in closed canopies with slight changes occurring around an average light level. Sites with < 0.06 ISF (a unitless, relative measure of canopy openness or reflected sunlight) tended to remain the same with minor fluctuations toward brighter or darker. Sites with canopy openness > 0.06 ISF tended to close; few gaps grew larger. Seedlings under parenr trees and seedlings away from parent trees had similar amounts of leaf damage and virtually identical survivorship after 18 months, but seedlings under parent trees had slower growth rates and smaller total leaf surface areas. Dispersal did not strongly benefit seeds via escaping high levels of mortality or comperition around the parent.  相似文献   

6.
Pinus sylvestris and Salix dasyclados, which differ in leaf longevity, were compared with respect to four aspects of photosynthetic light use and response: high light acclimation, photoinhibition resistance and recovery, lightfleck exposure and use and chloroplast acclimation across leaves. The first two aspects were examined using seedlings under controlled conditions and the other two were tested using trees in the field. When exposed to high light, shade leaves of Pinus acclimated completely, achieving the same photosynthetic capacities as sun leaves, whereas shade leaves of Salix did not reach sun leaf capacities although the absolute magnitude of their acclimation was larger. Shade leaves of Pinus were also more resistant to photoinhibition than those of Salix. Much of the direct light supplied within the canopy was in the form of rapid fluctuations, lightflecks, for Pinus and Salix alike. They exploited short lightflecks with similar efficiency. The greater proportion of diffuse light in the canopy for Pinus than Salix seems to lead to a lesser degree of differential intra-leaf acclimation of chloroplasts, in turn leading to lower efficiency of photosynthesis under unilateral light as reflected by a lower convexity, rate of bending, of the light–response curve. The differences in light use and responses are discussed in relation to possible differences in characteristics of the long and short-lived leaf.  相似文献   

7.
The response of small understory trees to long-term drought is vital in determining the future composition, carbon stocks and dynamics of tropical forests. Long-term drought is, however, also likely to expose understory trees to increased light availability driven by drought-induced mortality. Relatively little is known about the potential for understory trees to adjust their physiology to both decreasing water and increasing light availability. We analysed data on maximum photosynthetic capacity (Jmax, Vcmax), leaf respiration (Rleaf), leaf mass per area (LMA), leaf thickness and leaf nitrogen and phosphorus concentrations from 66 small trees across 12 common genera at the world's longest running tropical rainfall exclusion experiment and compared responses to those from 61 surviving canopy trees. Small trees increased Jmax, Vcmax, Rleaf and LMA (71, 29, 32, 15% respectively) in response to the drought treatment, but leaf thickness and leaf nutrient concentrations did not change. Small trees were significantly more responsive than large canopy trees to the drought treatment, suggesting greater phenotypic plasticity and resilience to prolonged drought, although differences among taxa were observed. Our results highlight that small tropical trees have greater capacity to respond to ecosystem level changes and have the potential to regenerate resilient forests following future droughts.  相似文献   

8.
In stream ecosystems, the growth of aquatic primary producers is affected by spatial and temporal variations in the riparian canopy, which can influence the availability of light resources. Aquatic plants can acclimate to low light environments by employing a suite of morphological or physiological mechanisms to increase light capture or photosynthetic efficiency. Some species may also use alternate types of propagules to colonize environments with heterogeneous light environments. In a greenhouse experiment we examined the morphological and physiological response of watercress (Nasturtium officinale R. Br.) to a gradient of increasing light levels, which ranged from 7% ambient light to full sunlight. We also determined if watercress seedlings and vegetative fragments differed in their growth response to increasing light levels. Total biomass and root biomass of seedlings and vegetative fragments decreased with decreasing light levels. The difference in plant biomass across treatments was due to morphological changes in total canopy area and leaf area, both of which increased with decreasing light levels. Seedlings and vegetative fragments did not differ in their response to light availability, but vegetative fragments had higher final biomass as a result of higher initial biomass. Physiological acclimation to low light levels appears to be of secondary importance for watercress as the concentrations of total chlorophyll, chlorophyll a, chlorophyll b, and chlorophyll a:b did not differ among light levels or between seedlings and vegetative fragments. Seedlings and vegetative fragments grown under high light levels had a greater percentage of carbon and a lower percentage of nitrogen than plants grown under low light conditions. The results of this study indicate that watercress displays considerable morphological plasticity and acclimates to low light conditions primarily by increasing leaf area and canopy surface area. There is no evidence that the type of watercress propagule (seedling vs. vegetative fragment) imparts any growth advantage in low light environments and watercress grown from either type of propagule showed no differences in their morphological or physiological responses to varying light regimes. Handling editor: S. M. Thomaz  相似文献   

9.
1. Headwater stream ecosystems are primarily heterotrophic, with allochthonous organic matter being the dominant energy. However, sunlight indirectly influences ecosystem structure and functioning, affecting microbial and invertebrate consumers and, ultimately, leaf litter breakdown. We tested the effects of artificial shading on litter breakdown rates in an open‐canopy stream (high ambient light) and a closed‐canopy stream (low ambient light). We further examined the responses of invertebrate shredders and aquatic hyphomycetes to shading to disentangle the underlying effects of light availability on litter breakdown. 2. Litter breakdown was substantially slower for both fast‐decomposing (alder, Alnus glutinosa) and slow‐decomposing (beech, Fagus sylvatica) leaf litters in artificially shaded stream reaches relative to control (no artificial shading) reaches, regardless of stream type (open or closed canopy). 3. Shredder densities were higher on A. glutinosa than on F. sylvatica litter, and shading had a greater effect on reducing shredder densities associated with A. glutinosa than those associated with F. sylvatica litter in both stream types. Fungal biomass was also negatively affected by shading. Results suggest that the effects of light availability on litter breakdown rates are mediated by resource quality and consumer density. 4. Results from feeding experiments, where A. glutinosa litter incubated under ambient light or artificial shade was offered to the shredder Gammarus fossarum, suggest that experimental shading and riparian canopy openness influenced litter palatability interactively. Rates of litter consumption by G. fossarum were decreased by experimental shading in the open‐canopy stream only. 5. The results suggest that even small variations in light availability in streams can mediate substantial within‐stream heterogeneity in litter breakdown. This study provides further evidence that changes in riparian vegetation, and thus light availability, influence organic matter processing in heterotrophic stream ecosystems through multiple trophic levels.  相似文献   

10.
Abstract The influence of soil moisture content on leaf dynamics and insect herbivory was examined between September 1991 and March 1992 in a river red gum (Eucalyptus camaldulensis) forest in southern central New South Wales. Long-term observations of leaves were made in trees standing either within intermittently flooded waterways or at an average of 37. 5m from the edge of the waterways. The mean soil moisture content was significantly (P≤0.05) greater in the waterways than in the non-flooded areas. Trees in the higher soil moisture regime produced significantly larger basal area increments and increased canopy leaf area. This increase in canopy leaf area was achieved, in part, through a significant increase in leaf longevity and mean leaf size. Although a greater number of leaves was initiated and abscissed per shoot from the non-flooded trees, more leaves were collected from litter traps beneath the denser canopies of the flooded trees. Consumption of foliage by insects on the trees subjected to flooding compared to the non-flooded trees was not significantly different. However, the relative impact of insect herbivory was significantly greater on the non-flooded trees. Leaf chewing was the most common form of damage by insects, particularly Chryso-melidae and Curculionidae. No species was present in outbreak during this study. Leaf survival decreased as the per cent area eaten per leaf increased. In addition, irrespective of the level of herbivory, leaf abscission tended to be higher in E. camaldulensis under moisture deficit. The influence of soil moisture content on the balance between river red gum growth and insect herbivory is discussed.  相似文献   

11.
Environmental controls on carbon dynamics operate at a range of interacting scales from the leaf to landscape. The key questions of this study addressed the influence of water and nitrogen (N) availability on Pinus palustris (Mill.) physiology and primary productivity across leaf and canopy scales, linking the soil‐plant‐atmosphere (SPA) model to leaf and stand‐scale flux and leaf trait/canopy data. We present previously unreported ecophysiological parameters (e.g. Vcmax and Jmax) for P. palustris and the first modelled estimates of its annual gross primary productivity (GPP) across xeric and mesic sites and under extreme drought. Annual mesic site P. palustris GPP was ~23% greater than at the xeric site. However, at the leaf level, xeric trees had higher net photosynthetic rates, and water and light use efficiency. At the canopy scale, GPP was limited by light interception (canopy level), but co‐limited by nitrogen and water at the leaf level. Contrary to expectations, the impacts of an intense growing season drought were greater at the mesic site. Modelling indicated a 10% greater decrease in mesic GPP compared with the xeric site. Xeric P. palustris trees exhibited drought‐tolerant behaviour that contrasted with mesic trees' drought‐avoidance behaviour.  相似文献   

12.
Pentaclethra macroloba (Willd.) Kuntze (Mimosaceae) is a dominant late-successional tree species in the Atlantic lowland forests of Costa Rica. Leaves of P. macroloba from three heights in the forest canopy were compared with leaves of seedlings grown in controlled environment chambers under four different irradiance levels. Changes in leaf characteristics along the canopy gradient paralleled changes resulting from the light gradient under controlled conditions. The effect of light or canopy position on light-saturated photosynthesis was small, with maximum photosynthesis increasing from 5 to 6.5 μmol m−-2 s−-1 from understory to canopy. Both chamber grown and field leaves showed large adjustments in photosynthetic efficiency at low light via reductions in dark respiration rates and increases in apparent quantum yields. Light saturation of all leaves occurred at or below 500 μmol m−-2 s−-1. Leaf thickness, specific leaf weight, and stomatal density increased to a greater extent than saturated photosynthesis with higher irradiance during growth or height in the canopy. As a result, there was a poor correspondence between leaf thickness and light-saturated photosynthesis on an area basis. It is concluded that Pentaclethra macroloba possesses the characteristics of a typical shade-tolerant species.  相似文献   

13.
 In this study a comparison of the canopy architecture and the growth and distribution of roots was made in 10-year-old trees of Hevea brasiliensis grown in a severely drought-prone area on the west coast of India under rainfed and irrigated conditions. LAI and light interception increased significantly in the irrigated compared to the rainfed trees. Girth and height of the tree were 29 and 19% more while width and height of the canopy were 19 and 20% more in the irrigated than rainfed trees. There were 22% more primary branches which had 26% more diameter in the irrigated trees than rainfed trees. The branches were inserted on the main trunk at an angle of 58.36° in the irrigated and 44.22° in rainfed trees. The above changes led to more light penetration which altered the light distribution inside the rainfed trees during summer and inhibited leaf photosynthesis particularly in the top canopy leaves. In the rainfed trees most of the growth occurred during the short favorable season immediately after the monsoon between June and October and no growth or even shrinking of the trunk was seen during summer. In the irrigated trees a higher growth was seen throughout the year and summer had no adverse effect. Although there was some difference in the root distribution pattern, the total root density per unit soil volume did not vary between the irrigated and rainfed trees. Key words  Hevea brasiliensis· Drought · Crown architecture · Micro-climate · Root growth Received: 8 May 1998 / Accepted 8 October 1998  相似文献   

14.
Light is considered a non‐limiting factor for vascular epiphytes. Nevertheless, an epiphyte's access to light may be limited by phorophyte shading and the spatio‐temporal environmental patchiness characteristic of epiphytic habitats. We assessed the extent to which potential light interception in Rodriguezia granadensis, an epiphytic orchid, is determined by individual factors (plant size traits and leaf traits), or environmental heterogeneity (light patchiness) within the crown of the phorophyte, or both. We studied 104 adult plants growing on Psidium guajava trees in two habitats with contrasting canopy cover: a dry tropical forest edge, and isolated trees in a pasture. We recorded the number of leaves and the leaf area, the leaf position angles, and the potential exposure of the leaf surface to direct irradiance (silhouette area of the leaf blade), and the potential irradiance incident on each plant. We found the epiphytes experience a highly heterogeneous light environment in the crowns of P. guajava. Nonetheless, R. granadensis plants displayed a common light interception strategy typical of low‐light environments, resembling terrestrial, forest understory plants. Potential exposure of the total leaf surface to direct irradiance correlated positively with plant size and within‐plant variation in leaf orientation. In many‐leaved individuals, within‐plant variation in leaf angles produced complementary leaf positions that enhanced potential light interception. This light interception strategy suggests that, in contrast to current wisdom, enhancing light capture is important for vascular epiphytes in canopies with high spatio‐temporal heterogeneity in light environments.  相似文献   

15.
Summary This study is part of a series of investigations on the influence of altitude on structure and function of plant leaves. Unlike most other mountain areas, the Southern Alps of New Zealand provide localities where physiologically effective moisture stress occurs neither at high nor at low elevation, but the changes in temperature and radiation with elevation are similar or even steeper than in most other regions. In comparison with results from other mountains, where moisture may impair plant functioning at low elevation, this study allows an estimation of the relative role of water for the expression of various leaf features typically associated with alpine plants. Maximum leaf diffusive conductance (g), leaf nitrogen content (LN), stomatal density (n) and distribution, as well as area (A), thickness (d) and specific area (SLA) of leaves were studied. Three different plant life forms were investigated over their full altitudinal range (m): trees, represented by Nothofagus menziesii (1,200 m), ericaceous dwarf shrubs (1,700 m), and herbaceous plants of the genus Ranunculus (2,500 m). In all three life forms g, LN, and n increased, while SLA and A decreased with elevation. Recent investigations have found similar trends in other mountains from the temperate zone, but the changes are larger in New Zealand than elsewhere. Herbs show the greatest differences, followed by shrubs and then trees.It is concluded that g is dependent upon light climate rather than water supply, whereas SLA and related structural features appear to be controlled by the temperature regime, as they show similar altitudinal changes under different light and moisture gradients. The higher leaf nitrogen content found at high elevations in all three life forms, suggests that metabolic activity of mature leaves is not restricted by low nitrogen supply at high altitude. In general, the leaves of herbaceous plants show more pronounced structural and functional changes with altitude than the leaves of shrubs and trees.  相似文献   

16.
The aim of this study is to explore the effects of canopy conditions on clump and culm numbers, and the morphological plasticity and biomass distribution patterns of the dwarf bamboo species Fargesia nitida. Specifically, we investigated the effects of canopy conditions on the growth and morphological characteristics of F. nitida, and the adaptive responses of F. nitida to different canopy conditions and its ecological senses. The results indicate that forest canopy had a significant effect on the genet density and culm number per clump, while it did not affect the ramet density. Clumps tended to be few and large in gaps and forest edge plots, and small under forest understory plots. The ramets showed an even distribution under the closed canopy, and cluster distribution under gaps and forest edge plots. The forest canopy had a significant effect on both the ramets’ biomass and biomass allocation. Favourable light conditions promoted ramet growth and biomass accumulation. Greater amounts of biomass in gaps and forest edge plots were shown by the higher number of culms per clump and the diameter of these culms. Under closed canopy, the bamboos increased their branching angle, leaf biomass allocation, specific leaf area and leaf area ratio to exploit more favourable light conditions in these locations. The spacer length, specific spacer length and spacer branching angles all showed significant differences between gaps and closed canopy conditions. The larger specific spacer length and spacer branching angle were beneficial for bamboo growth, scattering the ramets and exploiting more favourable light conditions. In summary, this study shows that to varying degrees, F. nitida exhibits both a wide ecological amplitude and high degree of morphological plasticity in response to differing forest canopy conditions. Moreover, the changes in plasticity enable the plants to optimize their light usage efficiency to promote growth and increase access to resources available in heterogeneous light environments. __________ Translated from Acta Ecologica Sinica, 2006, 26(12): 4019–4026 [译自: 生态学报]  相似文献   

17.
 The vertical distribution of foliage angle and area of three Chamaecyparis obtusa trees was determined by the triangle method, which calculates foliage geometry using measured coordinates of the leaf ”corners”, in a 43-year-old plantation in central Japan. Vertical distribution patterns of leaf area were different depending on tree size, but the boundary heights, which divide the canopy into sunlit and shaded parts, were similar in the three sample trees. The value of the average foliage angle [I(Z)] at a given depth (Z) from the tip of the stem decreased continually from the upper to lower layers within the canopy. The vertical patterns of changes in I(Z) were different among the three trees, but could be expressed by the following allometric equation as a function of depth.
where a, b and c are constants. The average foliage angle of C. obtusa depended on the position within the canopy and tree size; the value was larger in the sunlit parts of the canopy than in the shaded parts. However, the foliage angle distribution in the overall canopy fitted an ellipsoidal area distribution model. The probability of diffuse light penetration through the canopy was calculated using foliage angle and cumulative leaf area parameters. The probability was different from that calculated by Beer’s Law for light extinction, especially in the sunlit part of the canopy. These results suggested that the foliage angle distribution within the canopy is an important factor in: (1) the estimation of the absorption of diffuse radiation: and (2) evaluation of the amount of absorbed direct radiation in the canopy of this forest. Received: 9 February 1998 / Accepted: 16 February 1999  相似文献   

18.
Modelling is used to predict long‐term forest responses to increased atmospheric CO2 concentrations. Although productivity models are based on light intercepted by the canopy, very little experimental data are available for closed forest stands. Nevertheless, the relationships between light inside a canopy, leaf area, canopy structure, and individual leaf characteristics may be affected by elevated CO2, affecting in turn carbon gain. Using a free‐air CO2 enrichment (FACE) design in a high‐density plantation of Populus spp., we studied the effects of increased CO2 concentrations on transmittance (τ) of photosynthetic photon flux density (Qp), on ratios of red/far‐red light (R/FR), on leaf area index (LAI), on leaf inclination, on leaf chlorophyll (chl) and nitrogen (N) concentrations, and on specific leaf area (SLA) in the 2nd and 3rd years of treatment. Continuous measurements of τ were made in addition to canopy height profiles of light and leaf characteristics. Two years of Qp measurements showed an average decrease of canopy transmittance in the FACE treatment, with very small differences at canopy closure. Results were explained by an unaffected LAI in closed canopies, without a FACE‐induced stimulation of relative crown depth. In agreement, leaf inclination and extinction coefficients for light were similar in control and FACE conditions. Ratios of R/FR were not significantly affected by the FACE treatment, neither were leaf characteristics, with the exception of leaf N, which allows speculation about N limitation. In general, treatment differences in canopy profiles resulted from an initial stimulation of height growth in the FACE treatment. P. × euramericana differed from P. alba and P. nigra, but species did not differ significantly in their response to the FACE treatment. By the time fast‐growing high‐density forest plantations have passed the exponential growth phase and reached canopy closure, the likely effects of elevated atmospheric CO2 concentration on canopy architecture and absorption of Qp are minor.  相似文献   

19.
紫耳箭竹克隆形态可塑性对典型冠层结构及光环境的响应   总被引:3,自引:0,他引:3  
黄慧敏  董蓉  钱凤  向运蓉  何丹妮  陈淼  陶建平 《生态学报》2018,38(19):6835-6845
在重庆金佛山国家自然保护内,选择了3种典型群落类型(落叶阔叶林、常绿落叶阔叶混交林和常绿阔叶林),使用Hemiview数字植物冠层分析系统量化群落冠层结构和光环境特征,并对林下紫耳箭竹(Fargesia decurvata)的形态可塑性特征进行调查,分析冠层结构和光环境特征改变下紫耳箭竹形态可塑性的差异,并探讨它们之间的相互关系。结果表明:(1)随着落叶阔叶林"常绿落叶阔叶混交林"常绿阔叶林演替的进行,群落的冠层开度降低,叶面积指数增加,平均叶倾角变小,趋于水平化,冠层对光的截获能力提高,林下光照的强度降低(P0.05)。(2)随着光照强度的降低,紫耳箭竹分株矮小化,叶片变窄,生物量积累降低,但通过增大比茎长、叶面积率和比叶面积提高对光的利用效率,并增大分枝角度和比隔长有效适应弱光环境。(3)在光照条件差的常绿阔叶林下,紫耳箭竹降低对地下茎的投资,将较多的生物量用于秆的增高增长和叶片的生长;而在光照条件好的落叶阔叶林环境下,紫耳箭竹降低对枝、叶生物量的分配,则加大对地下茎的投资,可认为是克隆植物对水分资源所表现的一种觅食行为。研究表明,紫耳箭竹种群随着冠层结构的改变发生了明显的可塑性变化,这些可塑性变化是种群对冠层结构和光环境差异的适应性反应的结果,有利于增强种群对异质生境中光资源的获取和利用;群落内部可以通过调控冠层结构的改变协调和控制小径竹种群的发展。  相似文献   

20.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号