首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Restriction fragment length polymorphisms (RFLPs) were used to study the population genetics and temporal dynamics of the cassava bacterial pathogen Xanthomonas axonopodis pv. manihotis. The population dynamics were addressed by comparing samples collected from 1995 to 1999 from six locations, spanning four different edaphoclimatic zones (ECZs). Forty-five different X. axonopodis pv. manihotis RFLP types or haplotypes were identified between 1995 and 1999. High genetic diversity of the X. axonopodis pv. manihotis strains was evident within most of the fields sampled. In all but one site, diversity decreased over time within fields. Haplotype frequencies significantly differed over the years in all but one location. Studies of the rate of change of X. axonopodis pv. manihotis populations during the cropping cycle in two sites showed significant changes in the haplotype frequencies but not composition. However, variations in pathotype composition were observed from one year to the next at a single site in ECZs 1 and 2 and new pathotypes were described after 1997 in these ECZs, thus revealing the dramatic change in the pathogen population structure of X. axonopodis pv. manihotis. Disease incidence was used to show the progress of cassava bacterial blight in Colombia during the 5-year period in different ecosystems. Low disease incidence values were correlated with low rainfall in 1997 in ECZ 1.  相似文献   

2.
Analyses of DNA polymorphism and virulence variation were used to evaluate the population structure of Xanthomonas axonopodis pv. manihotis, the pathogen causing cassava bacterial blight in Colombia. We collected strains from the major cassava-growing regions which can be grouped into different edaphoclimatic zones (ECZs) according to environmental conditions, production constraints, and economic parameters. DNA polymorphism was assessed by a restriction fragment length polymorphism analysis, using an X. axonopodis pv. manihotis plasmid DNA sequence (pthB) as a probe to evaluate the genetic relatedness among 189 Colombian strains. The sampling intensity permitted the estimation of genetic differentiation within and among ECZs, sites, and fields and even within an individual plant. A multiple correspondence analysis indicated that the Colombian X. axonopodis pv. manihotis population showed a high degree of diversity relative to X. axonopodis pv. manihotis populations studied previously, and the entire collection was grouped into seven clusters. A general correlation was observed between the clusters and the geographical origin of the strains, as each cluster was largely composed of strains from the same ECZ. Representative strains, identified with pthB, were further characterized by ribotyping, hybridization to two repetitive genomic probes (pBS6 and pBS8), and restriction analysis of plasmid contents to evaluate the complementarity of these markers. Virulence variation was observed within the Colombian collection. Strains of different aggressiveness were found in all ecological zones, but no correlation between virulence variation and DNA polymorphism was observed. The genetic and virulence analyses contribute to understanding the X. axonopodis pv. manihotis population structure in Colombia.  相似文献   

3.
Xanthomonas axonopodis pv manihotis is the causal agent of cassava bacterial blight (CBB) worldwide. CBB disease is a major constraint to cassava cultivation, and losses can be extremely severe in regions where highly susceptible cultivars are grown. To develop an efficient disease management policy, the genetic diversity of the pathogens population must be known. There is dearth of information on the genetic diversity of X. axonopodis pv manihotis population in Nigeria. We used RAPD (random amplified polymorphic DNA) and AFLP (amplified fragment length polymorphism), a PCR-based technique, to characterize the X. axonopodis pv manihotis isolates from the western States of Nigeria. Thirteen strains Xam and 2 reference strains were tested with eight primers combination of AFLP and 4 RAPD primers. RAPD amplified DNA fragment data showed four major clusters at 80 % similarity coefficient level and two strains were not clustered by this analysis. Strains Kwa76A and Ond48A were also separated in the principal component analysis of the same data. Numerical analysis differentiated the AFLP patterns into four distinct clusters and grouped two strains separately at 66 % similarity. PCA assembly grouped the bacterial strains into 4 and one of the strains was singled out from the others. The two DNA analyses techniques seem to be complimentary to one another and informative on the genomic structure of Xam population in Western Nigeria. The genetic analysis presented here contributes to understanding of the Xam population structure in Western Nigeria.  相似文献   

4.
Populations of Xanthomonas axonopodis pv. manihotis and X. axonopodis pv. vignicola, causal agents of cassava and cowpea bacterial blight, respectively, were quantified in insects. The pathogens were found in the faeces, the intestines, and on the legs and mandibles of Zonocerusvariegatus. Additionally, X. axonopodis pv. manihotis was localized in the insect gut by immunofluorescence microscopy. Xanthomonas axonopodis pv. manihotis survived at least 1 week in the insect intestines and at least 5 weeks in faeces kept under controlled conditions, while survival in faeces exposed to sunlight was <2 weeks. Five percentage [e.g. 5.8 × 107 colony‐forming units (CFU)/g faeces] of the fed population of X. axonopodis pv. manihotis in cassava leaves were recovered viable in the faeces after passage through the insect. The transmission of cassava bacterial blight by pathogen‐contaminated insect faeces to intact, healthy cassava leaves was demonstrated for the first time. Xanthomonas axonopodis pv. vignicola was isolated from organs and faeces of the grasshopper Pyrgomorpha cognata, the Senegalese grasshopper (Oedaleus senegalensis), bee (Apis mellifera) and three Coleoptera (Ootheca mutabilis, Mylabris spp., Exochomus troberti) collected in bacterial blight‐infected cowpea fields. Cowpea belonged to the diet of 19 grasshopper species collected in cowpea fields as demonstrated by residues in their faeces. Pathogen‐contaminated Z. variegatus initiated an epiphytic population of 8.9 × 104 CFU/g on healthy cowpea leaves. Spraying cassava and cowpea leaves with 102 and 104 CFU/ml of their respective pathogen was sufficient to evoke symptoms. A possible role of insects in the transmission of X. axonopodis pvs. vignicola and manihotis is discussed.  相似文献   

5.
Cassava bacterial blight, caused by Xanthomonas axonopodis pv. manihotis (Xam), is the most important bacterial disease affecting this crop. A continuous surveillance of the pathogen population dynamics is required to develop an efficient disease management program. During the 1990s, Xam populations showed high levels of genetic variation and relevant migratory processes that were important determinants of the distribution of the pathogen diversity in Colombia. Aiming to characterize the current population structure of the pathogen and the evolutionary forces that shape these populations, sampling collections were carried out from September 2008 until November 2010 in the Colombian Caribbean Region. One hundred and sixty bacterial isolates were characterized using amplified fragment length polymorphism (AFLP) markers. Additionally, a subset of effector genes were sequenced in some isolates to determine their usefulness in Xam population studies and to provide additional information to that obtained with AFLPs. Virulence patterns of ten isolates were determined in nine cassava accessions. Our results show a complex architecture of population and confirm migratory process previously reported in the Caribbean Region. Chinú, one of the locations sampled, presented remarkable features in population dynamics such as longer genetic distances, higher diversity indices, and a genetically differentiated population when it was compared with other locations. Virulence tests showed that MCOL2215, one of the most cultivated cassava varieties in the Caribbean coast, was susceptible to the majority of Xam isolates tested. This study shows the current condition of populations of Xam in the Caribbean Region of Colombia, and it contributes to improve the existing bacterial blight control practices.  相似文献   

6.
Fifty-one strains representing Xanthomonas campestris pv. manihotis and cassavae and different pathovars occurring on plants of the family Euphorbiaceae were characterized by ribotyping with a 16S+23S rRNA probe of Escherichia coli and by restriction fragment length polymorphism analysis with a plasmid probe from X. campestris pv. manihotis. Pathogenicity tests were performed on cassava (Manihot esculenta). Histological comparative studies were conducted on strains of two pathovars of X. campestris (vascular and mesophyllic) that attack cassava. Our results indicated that X. campestris pv. manihotis and cassavae have different modes of action in the host and supplemented the taxonomic data on restriction fragment length polymorphism that clearly separate the two pathovars. The plasmid probe could detect multiple restriction fragment length polymorphisms among strains of the pathovar studied. Ribotyping provides a useful tool for rapid identification of X. campestris pathovars on cassava.  相似文献   

7.
Efficient control of Xanthomonas axonopodis pv. dieffenbachiae, the causal agent of anthurium bacterial blight, requires a sensitive and reliable diagnostic tool. A nested PCR test was developed from a sequence-characterized amplified region marker identified by randomly amplified polymorphic DNA PCR for the detection of X. axonopodis pv. dieffenbachiae. Serological and pathogenicity tests were performed concurrently with the nested PCR test with a large collection of X. axonopodis pv. dieffenbachiae strains that were isolated worldwide and are pathogenic to anthurium and/or other aroids. The internal primer pair directed amplification of the expected product (785 bp) for all 70 X. axonopodis pv. dieffenbachiae strains pathogenic to anthurium tested and for isolates originating from syngonium and not pathogenic to anthurium. This finding is consistent with previous studies which indicated that there is a high level of relatedness between strains from anthurium and strains from syngonium. Strains originating from the two host genera can be distinguished by restriction analysis of the amplification product. No amplification product was obtained with 98 strains of unrelated phytopathogenic bacteria or saprophytic bacteria from the anthurium phyllosphere, except for a weak signal obtained for one X. axonopodis pv. allii strain. Nevertheless, restriction enzyme analysis permitted the two pathovars to be distinguished. The detection threshold obtained with pure cultures or plant extracts (103 CFU ml−1) allowed detection of the pathogen from symptomless contaminated plants. This test could be a useful diagnostic tool for screening propagation stock plant material and for monitoring international movement of X. axonopodis pv. dieffenbachiae.  相似文献   

8.
9.
10.
Common bacterial blight (CBB), caused by Xanthomonas axonopodis pv. phaseoli and X. axonopodis pv. phaseoli var. fuscans is one of the most destructive diseases of common bean worldwide. The interrelatedness, genetic diversity and geographical distribution of the CBB pathogens was assessed using restriction fragment length polymorphism (RFLP) analysis of polymerase chain reaction amplified 16S ribosomal gene, including the 16S–23S intergenic spacer region and repetitive element PCR (rep‐PCR). RFLP profiles generated by the restriction endonucleases MboI, RsaI and HaeIII differentiated X. axonopodis pv. phaseoli from X. axonopodis pv. phaseoli var. fuscans and non‐pathogenic Xanthomonas species associated with common bean. Cluster analysis of rep‐PCR profiles revealed a high level of genetic differentiation (GST = 0.56) between the two CBB pathogens, showing that they are genetically distinct. Significant levels of genetic diversity were observed within each strain, indicating that the two bacteria are not clonal. More genetic diversity was observed in X. axonopodis pv. phaseoli (H = 0.134; I = 0.223) than X. axonopodis pv. phaseoli var. fuscans (H = 0.108; I = 0.184). However, no geographical differentiation was evident for either X. axonopodis pv. phaseoli var. fuscans (GST = 0.013) or X. axonopodis pv. phaseoli (GST = 0.017). This lack of geographical differentiation has important practical implications, as available host resistance genes are likely to be effective in controlling the disease in diverse geographical areas.  相似文献   

11.
It has been demonstrated that for a nonpathogenic, leaf-associated bacterium, effectiveness in the control of bacterial speck of tomato is correlated with the similarity in the nutritional needs of the nonpathogenic bacterium and the pathogen Pseudomonas syringae pv. tomato. This relationship was investigated further in this study by using the pathogen Xanthomonas campestris pv. vesicatoria, the causal agent of bacterial spot of tomato, and a collection of nonpathogenic bacteria isolated from tomato foliage. The effects of inoculation of tomato plants with one of 34 nonpathogenic bacteria prior to inoculation with the pathogen X. campestris pv. vesicatoria were quantified by determining (i) the reduction in disease severity (number of lesions per square centimeter) in greenhouse assays and (ii) the reduction in leaf surface pathogen population size (log10 of the number of CFU per leaflet) in growth chamber assays. Nutritional similarity between the nonpathogenic bacteria and X. campestris pv. vesicatoria was quantified by using either niche overlap indices (NOI) or relatedness in cluster analyses based upon in vitro utilization of carbon or nitrogen sources reported to be present in tomato tissues or in Biolog GN plates. In contrast to studies with P. syringae pv. tomato, nutritional similarity between the nonpathogenic bacteria and the pathogen X. campestris pv. vesicatoria was not correlated with reductions in disease severity. Nutritional similarity was also not correlated with reductions in pathogen population size. Further, the percentage of reduction in leaf surface pathogen population size was not correlated with the percentage of reduction in disease severity, suggesting that the epiphytic population size of X. campestris pv. vesicatoria is not related to disease severity and that X. campestris pv. vesicatoria exhibits behavior in the phyllosphere prior to lesion formation that is different from that of P. syringae pv. tomato.  相似文献   

12.
Bacterial Blight is an important disease of cassava, causing losses that have resulted in historical famines in certain growing zones. The disease is caused by Xanthomonas axonopodis pv. manihotis, a gram-negative rod that belongs to the gammaproteobacteria. In this review, we describe the pathosystem and the recent studies that have been undertaken to elucidate both susceptibility and resistance mechanisms in cassava, with the hope of generating resistant plants using biotechnology. We first describe studies of the pathogen, including pathogen population changes through time as well as genomic tools that have recently been generated to determine pathogenicity factors. Secondly, we discuss mechanisms of disease resistance that have been elucidated in recent years and how these mechanisms could be used for the generation of improved plants resistant to CBB.  相似文献   

13.
Bacterial blight caused by Xanthomonas axonopodis pv. punicae (Xap) is a major disease in pomegranate (Punica granatum) cultivation in India. The Xap strains from three distinct geographical origins, Delhi, Maharashtra and Andhra Pradesh were studied for their genetic variability and phylogenetic relationship with other Xanthomonads targeting two important loci 16S rRNA and gyrB. All Xap strains showed 100 % sequence conservation in both the loci, suggesting that geographical origin does not necessarily reflect variation to genetic make-up of the Xap. Phylogeny derived from 16S rRNA gene revealed that two Xanthomonas species, Xanthomonas citri subsp. malvacearum DSM 3849 T and X. axonopodis pv. manihotis NCPPB1834 formed a single cluster along with Xap. Further, analysis in the gyrB locus indicated that X. citri subsp. malvacearum shared 99.4 % identity while pathovars X. axonopodis pv. manihotis shared only 95 % identity with the Xap strains. Thus, we established that gyrB was the preferred locus over 16S rRNA gene to discriminate the Xap strains from closely related Xanthomonas species type strains. Nevertheless, our study demonstrated for the first time that pomegranate bacterial blight pathogen is phylogenetically very close to Xanthomonas citri subsp. malvacearum infecting cotton.  相似文献   

14.
The occurrence of “Xanthomonas axonopodis pv. phaseoli var. fuscans” (proposed name) populations as biofilms on bean leaves was investigated during three field experiments on plots established with naturally contaminated bean seeds. Behavior of aggregated versus solitary populations was determined by quantification of culturable cells in different fractions of the epiphytic population separated by particle size. X. axonopodis pv. phaseoli var. fuscans population dynamic studies confirmed an asymptomatic and epiphytic colonization of the bean phyllosphere. For all years of experiment and cultivars tested, biofilms and solitary components of the populations were always detected. Biofilm population sizes remained stable throughout the growing season (around 105 CFU/g of fresh weight) while solitary population sizes were more abundant and varied with climate. According to enterobacterial repetitive intergenic consensus fingerprinting, aggregated bacterial isolates were not different from solitary isolates. In controlled conditions, application of a hydric stress resulted in a decrease of the solitary populations on the leaf surface while the biofilm fraction remained stable. Suppression of the hydric stress allowed solitary bacterial populations to increase again. Aggregation in biofilms on leaf surfaces provides protection to the bacterial cells against hydric stress.  相似文献   

15.
We evaluated cassava bacterial blight (CBB) infection in an pair-cross population of 150 individuals derived from an intra-specific cross between two non-inbred cassava (Manihot esculenta Crantz) lines. The replicated trials were carried out in the field under high disease pressure over two consecutive crop cycles. Evaluations were conducted at 4 and 7 months after planting for the two cycles. Simple regression analysis and the nonparametric Kruskal-Wallis rank-sum test revealed that eight quantitative trait loci (QTLs) were involved in resistance. We detected changes in QTLs from crop cycle to crop cycle. The pathogen population (Xanthomonas axonopodis pv. manihotis) was also monitored over the period, using a restriction fragment length polymorphism probe and pathogenic tests. Changes in QTL detection over the 2 years could be correlated with changes in pathogen population structure. One QTL, located in linkage group D, was conserved over the two crop cycles, and in field to greenhouse evaluations. This study thus identified molecular markers useful for marker assisted-selection, a technique that can accelerate the long, multiple-season process of breeding for CBB resistance. Received: 1 January 2000 / Accepted: 25 June 2000  相似文献   

16.
Abstract

The adverse effects of increasing concentration of Xanthomonas axonopodis pv. malvacearum on cotton seed quality parameters, seedling dry weight and on defense-related enzyme, Phenylalanine Ammonia Lyase (PAL) were studied. Different concentrations of pathogen (1×102 to 1×108 CFU/ml) were treated on both fuzzy and acid delinted seeds and subjected to the standard blotter method to study the effect of the pathogen on seed quality parameters. The seedling symptom test following the roll towel method, the modified germination test to study the blight incidence and the field emergence test were carried out to discover the field planting value and disease incidence under laboratory and field conditions. From these experiments, it was found that the decrease in the seed quality parameters like seed germination, seedling vigour, and the dry weight of seedlings when X. axonopodis pv. malvacearum concentration was increased. Whereas the bacterial blight incidence increased with an increase in pathogen concentration, in both greenhouse and field conditions. Phenylalanine ammonia lyase activity was found to increase along with the pathogen concentrations, but total phenol content decreased as pathogen concentration increased. The effect of X. axonopodis pv. malvacearum load on seed quality parameters, PAL enzyme activity of fuzzy and acid delinted cotton seeds are discussed in the present study.  相似文献   

17.
Xanthomonas axonopodis pv. manihotis (Xam) causes cassava bacterial blight, the most important bacterial disease of cassava. Xam, like other Xanthomonas species, requires type III effectors (T3Es) for maximal virulence. Xam strain CIO151 possesses 17 predicted T3Es belonging to the Xanthomonas outer protein (Xop) class. This work aimed to characterize nine Xop effectors present in Xam CIO151 for their role in virulence and modulation of plant immunity. Our findings demonstrate the importance of XopZ, XopX, XopAO1 and AvrBs2 for full virulence, as well as a redundant function in virulence between XopN and XopQ in susceptible cassava plants. We tested their role in pathogen‐associated molecular pattern (PAMP)‐triggered immunity (PTI) and effector‐triggered immunity (ETI) using heterologous systems. AvrBs2, XopR and XopAO1 are capable of suppressing PTI. ETI suppression activity was only detected for XopE4 and XopAO1. These results demonstrate the overall importance and diversity in functions of major virulence effectors AvrBs2 and XopAO1 in Xam during cassava infection.  相似文献   

18.
19.
《PloS one》2013,8(11)
Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.  相似文献   

20.
Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s). To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30–100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号