首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Extracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.  相似文献   

2.
Increased levels of low-density lipoproteins are well-established risk factors of endothelial dysfunction and the metabolic syndrome. In this study, we evaluated the effect of native low-density lipoprotein (nLDL) and oxidized LDL (oxLDL) on the expression of genes of the renin-angiotensin system (angiotensin-converting enzyme, ACE; angiotensin II type 1 receptor, AT(1)) and their receptors (low-density lipoprotein receptor: LDLR; lectin-like oxLDL receptor: LOX-1; toll-like receptor 4: TLR4) in primary cultures of human umbilical vein endothelial cells. ACE and AT(1) expressions were significantly increased after stimulation with nLDL and oxLDL. OxLDL receptor LOX-1 showed a maximum induction after 7 hours. Increased LOX-1 protein expression in response to oxLDL could be blocked by a LOX-1-specific antibody. TLR4 expression was increased by nLDL and oxLDL as well. We conclude that LDL and oxLDL can activate the renin-angiotensin system and their receptors LDLR, LOX-1, and TLR4 in human endothelial cells. These data suggest a novel link between hypercholesterolemia and hypertension in patients with the metabolic syndrome.  相似文献   

3.
HSP70 as endogenous stimulus of the Toll/interleukin-1 receptor signal pathway   总被引:31,自引:0,他引:31  
Human heat-shock protein (HSP)70 activates innate immune cells and hence requires no additional adjuvants to render bound peptides immunogenic. Here we tested the assumption that endogenous HSP70 activates the Toll/IL-1 receptor signal pathway similar to HSP60 and pathogen-derived molecular patterns. We show that HSP70 induces interleukin-12 (IL-12) and endothelial cell-leukocyte adhesion molecule-1 (ELAM-1) promoters in macrophages and that this is controlled by MyD88 and TRAF6. Furthermore, HSP70 causes MyD88 relocalization and MyD88-deficient dendritic cells do not respond to HSP70 with proinflammatory cytokine production. Using the system of genetic complementation with Toll-like receptors (TLR) we found that TLR2 and TLR4 confer responsiveness to HSP70 in 293T fibroblasts. The expanding list of endogenous ligands able to activate the ancient Toll/IL-1 receptor signal pathway is in line with the "danger hypothesis" proposing that the innate immune system senses danger signals even if they originate from self.  相似文献   

4.
Apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like-3G (A3G) is an intracellular innate antiviral factor that deaminates retroviral cytidine to uridine. In an attempt to harness the anti-HIV effect of A3G, we searched for an agent that would up-regulate A3G and identify the receptors involved. Stimulation of cell surface CCR5 with CCL3 and CD40 with CD40L or both molecules with microbial 70-kDa heat shock protein (HSP)70 up-regulated A3G mRNA and protein expression in human CD4(+) T cells and monocyte-derived dendritic cells (DC), demonstrated by real-time PCR and Western blots, respectively. The specificity of CCR5 and CD40 stimulation was established by inhibition with TAK 779 and mAb to CD40, as well as using human embryonic kidney 293 cells transfected with CCR5 and CD40, respectively. A dose-dependent increase of A3G in CCL3- or HSP70-stimulated CD4(+) T cells was associated with inhibition in HIV-1 infectivity. To differentiate between the inhibitory effect of HSP70-induced CCR5 binding and that of A3G, GFP-labeled pseudovirions were used to infect human embryonic kidney 293 cells, which showed inhibition of pseudovirion uptake, consistent with A3G being responsible for the inhibitory effect. Ligation of cell surface CCR5 receptors by CCL3 or CD40 by CD40L activated the ERK1/2 and p38 MAPK signaling pathways that induced A3G mRNA expression and production of the A3G protein. These in vitro results were corroborated by in vivo studies in rhesus macaques in which A3G was significantly up-regulated following immunization with SIVgp120 and p27 linked to HSP70. This novel preventive approach may in addition to adaptive immunity use the intracellular innate antiviral effect of A3G.  相似文献   

5.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) induced maturation of bone marrow-derived dendritic cells (DCs) of wild-type (WT) C57BL/6 mice as evidenced by an increase in surface expression of MHC class I and II molecules and costimulatory molecules such as CD40, CD80, and CD86. Functionally, decreased phagocytic ability and increased alloreactive T cell stimulatory ability were observed in T.g.HSP70-stimulated DCs. These phenotypic and functional changes of T.g.HSP70-stimulated DCs were demonstrated in Toll-like receptor (TLR) 2- and myeloid differentiation factor 88 (MyD88)-deficient but not TLR4-deficient C57BL/6 mice. DCs from WT and TLR2-deficient but not TLR4-deficient mice produced IL-12 after T.g.HSP70 stimulation. T.g.HSP70-stimulated DCs from WT, TLR2-deficient, and MyD88-deficient, but not TLR4-deficient mice expressed IFN-beta mRNA. Thus, T.g.HSP70 stimulates murine DC maturation via TLR4 through the MyD88-independent signal transduction cascade.  相似文献   

6.
We recently reported that soluble 60-kDa heat shock protein (HSP60) can directly activate T cells via TLR2 signaling to enhance their Th2 response. In this study we investigated whether HSP60 might also activate B cells by an innate signaling pathway. We found that human HSP60 (but not the Escherichia coli GroEL or the Mycobacterial HSP65 molecules) induced naive mouse B cells to proliferate and to secrete IL-10 and IL-6. In addition, the HSP60-treated B cells up-regulated their expression of MHC class II and accessory molecules CD69, CD40, and B7-2. We tested the functional ability of HSP60-treated B cells to activate an allogeneic T cell response and found enhanced secretion of both IL-10 and IFN-gamma by the responding T cells. The effects of HSP60 were found to be largely dependent on TLR4 and MyD88 signaling; B cells from TLR4-mutant mice or from MyD88 knockout mice showed decreased responses to HSP60. Care was taken to rule out contamination of the HSP60 with LPS as a causative factor. These findings add B cells to the complex web of interactions by which HSP60 can regulate immune responses.  相似文献   

7.
APCs process heat shock protein (HSP):peptide complexes to present HSP-chaperoned peptides on class I MHC molecules, but the ability of HSPs to contribute chaperoned peptides for class II MHC (MHC-II) Ag processing and presentation is unclear. Our studies revealed that exogenous bacterial HSPs (Escherichia coli DnaK and Mycobacterium tuberculosis HSP70) delivered an extended OVA peptide for processing and MHC-II presentation, as detected by T hybridoma cells. Bacterial HSPs enhanced MHC-II presentation only if peptide was complexed to the HSP, suggesting that the key HSP function was enhanced delivery or processing of chaperoned peptide Ag rather than generalized enhancement of APC function. HSP-enhanced processing was intact in MyD88 knockout cells, which lack most TLR signaling, further suggesting the effect was not due to TLR-induced induction of accessory molecules. Bacterial HSPs enhanced uptake of peptide, which may contribute to increased MHC-II presentation. In addition, HSPs enhanced binding of peptide to MHC-II molecules at pH 5.0 (the pH of vacuolar compartments), but not at pH 7.4, indicating another mechanism for enhancement of MHC-II Ag processing. Bacterial HSPs are a potential source of microbial peptide Ags during phagocytic processing of bacteria during infection and could potentially be incorporated in vaccines to enhance presentation of peptides to CD4+ T cells.  相似文献   

8.
Open heart surgery is a unique model to study the interplay between cellular injury, regulation of inflammatory responses and tissue repair. Stress-inducible heat shock protein 70-kDa (Hsp70) provides a molecular link between these events. In addition to molecular chaperoning, Hsp70 exerts modulatory effects on endothelial cells and leukocytes involved in inflammatory networks. Hsp70 residing in the intracellular compartment is part of an inhibitory feedback loop that acts on nuclear factor kappaB (NF-κB). In contrast, extracellular Hsp70 is recognized by multiple germline-encoded immune receptors, e.g., Toll-like receptor (TLR) 2, TLR4, LOX-1, CD91, CD94, CCR5 and CD40. Hsp70 is thereby able to enhance chemotaxis, phagocytosis and cytolytic activity of innate immune cells and stimulate antigen-specific responses. These apparent contradictory pro- and anti-inflammatory effects of endogenous Hsp70 in the context of cardiac surgery are still not fully understood. An all-embracing model of the compartmentalized effects of endogenous Hsp70 in the orchestration of inflammatory responses in cardiac surgery is proposed.  相似文献   

9.
The peptide binding C-terminal portion of heat shock protein (HSP)70 (aa 359-610) stimulates human monocytes to produce IL-12, TNF-alpha, NO, and C-C chemokines. The N-terminal, ATPase portion (HSP70(1-358)) failed to stimulate any of these cytokines or chemokines. Both native and the truncated HSP70(359-610) stimulation of chemokine production is mediated by the CD40 costimulatory molecule. Maturation of dendritic cells was induced by stimulation with native HSP70, was not seen with the N-terminal HSP70(1-358), but was enhanced with HSP70(359-610), as demonstrated by up-regulation of CD83, CCR7, CD86, CD80, and HLA class II. In vivo studies in macaques showed that immunization with HSP70(359-610) enhances the production of IL-12 and RANTES. Immunization with peptide-bound HSP70(359-610) in mice induced higher serum IgG2a and IgG3 Abs than the native HSP70-bound peptide. This study suggests that the C-terminal, peptide-binding portion of HSP70 is responsible for stimulating Th1-polarizing cytokines, C-C chemokines, and an adjuvant function.  相似文献   

10.
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) was proven to induce IFN-gamma-dependent lethal anaphylactic reaction in T. gondii-infected mice through an alternative PAF-mediated pathway, but not the classical immunoglobulin (Ig)E-dependent pathway. Although marked IFN-gamma production was observed by CD11b(+), CD11c(+), CD4(+) and CD8(+) splenocytes, CD11b(+) and CD11c(+) cells were shown to be the key effecter cells which generated pro-inflammatory lipid such as PAF and caused T.g.HSP70-induced anaphylactic reaction. In the present study, we found that the T.g.HSP70-induced anaphylactic reaction was not observed in TLR 4-deficient ((-/-)) mice, whereas it was observed in WT and TLR2(-/-) mice. The mRNA expression of PAF-AH, the main enzyme for PAF degradation, increased in T. gondii-infected WT and TLR2(-/-) but not in TLR4(-/-) mice after T.g.HSP70 injection. Furthermore, phosphorylation of cPLA(2), which is the key enzyme for pro-inflammatory lipid generation, was detected in CD11b(+) splenocytes of WT and TLR2(-/-) mice but not in TLR4(-/-) mice. Subsequently, cPLA(2) activation was suppressed by inhibiting the TLR4-directed p38 and p44/42 MAPK pathways. However, T.g.HSP70-induced anaphylactic reaction was observed in TRIF(-/-) mice, but not in MyD88(-/-) mice. These findings indicate the cPLA(2) activated-PAF production via TLR4/MyD88-dependent, but not TRIF-dependent, signaling pathway in T.g.HSP70-induced anaphylactic reaction in T. gondii-infected mice.  相似文献   

11.
The system of signaling pattern recognition receptors was studied in eight cosmonauts at the ages from 35 to 56 years before and after long-term space flights (SFs) on board the International Space Station (ISS). The peripheral blood samples were analyzed for the content of monocytes and granulocytes that express the signaling pattern recognition Toll-like receptors (TLRs) with surface (TLR1, TLR2, TLR4, TLR5, and TLR6) and intracellular (TLR3, TLR8, and TLR9) localization. The serum concentration of basic ligands of TLR2 (HSP60) and TLR4 (HSP70 and HMGB1) were also measured. The results of the studies showed a growth of the HSP60, HSP70, and HMGB1 concentrations on the first day after long-term flight. The increase in the concentration of endogenous ligands was followed by a growth of the number of both monocytes and granulocytes that express the respective pattern recognition receptors, TLR2 and TLR4, in the overwhelming majority of the examined cosmonauts. Thesse relationships suggest that changes in the system of signaling pattern recognition receptors may be due to the prevailing influence of endogenous ligands in response to the effect of long-term spaceflight factors on the human body.  相似文献   

12.
Chronic neurodegeneration is in part caused by a vicious cycle of persistent microglial activation and progressive neuronal cell loss. However, the driving force behind this cycle remains poorly understood. In this study, we used medium conditioned by necrotic differentiated-PC12 cells to confirm that damaged neurons can release soluble injury signals, including heat shock protein 60 (HSP60), to efficiently promote the neurotoxic cycle involving microglia. Since lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) has previously been identified as a novel receptor for HSP60, we hypothesize that LOX-1 through binding to extracellular HSP60 promotes microglia-mediated neuroinflammation. In this study, we observed that LOX-1 expression is induced upon toxic microglial activation, and discovered that LOX-1 is necessary in microglia for sensing soluble neuronal injury signal(s) in the conditioned medium to induce generation of pro-inflammatory mediators (IL-1β, TNF-α, NO and ROS) that promote neurotoxicity. Employing a unique eukaryotic HSP60-overexpression method, we further demonstrated that extracellular HSP60 acts on microglial LOX-1 to boost the production of pro-inflammatory factors (IL-1β, NO and ROS) in microglia and to propagate neuronal damage. These results indicate that LOX-1 is essential in microglia for promoting an inflammatory response in the presence of soluble neuronal-injury signals such as extracellular HSP60, thereby linking neuroinflammation and neurotoxicity.  相似文献   

13.
《Autophagy》2013,9(7):991-1003
Autophagic cell death has been observed in granulosa cell cultures via the oxLDL-dependent activation of lectin-like oxidized low density lipoprotein receptor 1 (LOX-1). This activation might differ for cytokeratin-positive (CK+) and CK- granulosa cells. In particular, LOX-1 and Toll-like receptor 4 (TLR4), one of the pattern recognition receptors of innate immunity, might be diversely regulated. Granulosa cell subtype cultures were established from the follicle harvests of patients undergoing in vitro fertilization (IVF) therapy. In response to oxLDL treatment, the fibroblast-like CK- cells upregulated LOX-1 and exhibited reparative autophagy, which could be blocked with anti-LOX-1 antibody. The epithelioid-like CK+ cells did not regulate LOX-1 expression upon oxLDL application, but the expression of TLR4 and CD14 increased between 0 and 36 h of oxLDL/nDL treatment. This up-regulation was associated with non-apoptotic cell death based on the absence of cleaved caspase-3. Reactive oxygen species (ROS) increased with 12 h oxLDL application and steroidogenic acute regulatory (StAR) protein expression was negligible. In CK- cells, the inhibition of TLR4 downregulated LOX-1 and induced apoptosis. We concluded that CK- granulosa cells are protected against oxLDL-dependent apoptosis by TLR4, whereas, in CK+ cells, oxLDL-induced TLR4 activation triggers non-apoptotic cell death. The CK+ cells might represent immune-like granulosa cells involved in ovarian remodeling processes.  相似文献   

14.
Toll-like receptors (TLRs) play important roles in initiation of innate and adaptive immune responses. Emerging evidence suggests that TLR agonists can serve as potential adjuvant for vaccination. Heat shock proteins (HSPs), functionally serving as TLR4 agonists, have been proposed to act as Th1 adjuvant. We have identified a novel Hsp70 family member, termed Hsp70-like protein 1 (Hsp70L1), shown that Hsp70L1 is a potent T helper cell (Th1) polarizing adjuvant that contributes to antitumor immune responses. However, the underlying mechanism for how Hsp70L1 exerts its Th1 adjuvant activity remains to be elucidated. In this study, we found that Hsp70L1 binds directly to TLR4 on the surface of DCs, activates MAPK and NF-κB pathways, up-regulates I-a(b), CD40, CD80, and CD86 expression and promotes production of TNF-α, IL-1β, and IL-12p70. Hsp70L1 failed to induce such phenotypic maturation and cytokine production in TLR4-deficient DCs, indicating a role for TLR4 in mediating Hsp70L1-induced DC activation. Furthermore, more efficient induction of carcinoembryonic antigen (CEA)-specific Th1 immune response was observed in mice immunized by wild-type DCs pulsed with Hsp70L1-CEA(576-669) fusion protein as compared with TLR4-deficient DCs pulsed with same fusion protein. In addition, TLR4 antagonist impaired induction of CEA-specific human Th1 immune response in a co-culture system of peripheral blood lymphocytes (PBLs) from HLA-A2.1(+) healthy donors and autologous DCs pulsed with Hsp70L1-CEA(576-669) in vitro. Taken together, these results demonstrate that TLR4 is a key receptor mediating the interaction of Hsp70L1 with DCs and subsequently enhancing the induction of Th1 immune response by Hsp70L1/antigen fusion protein.  相似文献   

15.
Scavenger receptors and Toll-like receptors (TLRs) cooperate in response to danger signals to adjust the host immune response. The TLR3 agonist double stranded (ds)RNA is an efficient activator of innate signalling in bronchial epithelial cells. In this study, we aimed at defining the role played by scavenger receptors expressed by bronchial epithelial cells in the control of the innate response to dsRNA both in vitro and in vivo. Expression of several scavenger receptor involved in pathogen recognition was first evaluated in human bronchial epithelial cells in steady-state and inflammatory conditions. Their implication in the uptake of dsRNA and the subsequent cell activation was evaluated in vitro by competition with ligand of scavenger receptors including maleylated ovalbumin and by RNA silencing. The capacity of maleylated ovalbumin to modulate lung inflammation induced by dsRNA was also investigated in mice. Exposure to tumor necrosis factor-α increased expression of the scavenger receptors LOX-1 and CXCL16 and the capacity to internalize maleylated ovalbumin, whereas activation by TLR ligands did not. In contrast, the expression of SR-B1 was not modulated in these conditions. Interestingly, supplementation with maleylated ovalbumin limited dsRNA uptake and inhibited subsequent activation of bronchial epithelial cells. RNA silencing of LOX-1 and SR-B1 strongly blocked the dsRNA-induced cytokine production. Finally, administration of maleylated ovalbumin in mice inhibited the dsRNA-induced infiltration and activation of inflammatory cells in bronchoalveolar spaces and lung draining lymph nodes. Together, our data characterize the function of SR-B1 and LOX-1 in bronchial epithelial cells and their implication in dsRNA-induced responses, a finding that might be relevant during respiratory viral infections.  相似文献   

16.
Nguyen DT  Rovira II  Finkel T 《FEBS letters》2002,511(1-3):170-174
Advanced glycation end products (AGE) are known to serve as ligands for the scavenger receptors such as SR-A, CD36 and SR-BI. In the current study, we examined whether AGE is recognized by lectin-like oxidized low density lipoprotein receptor-1 (LOX-1). Cellular binding experiments revealed that AGE-bovine serum albumin (AGE-BSA) showed the specific binding to CHO cells overexpressing bovine LOX-1 (BLOX-1), which was effectively suppressed by an anti-BLOX-1 antibody. Cultured bovine aortic endothelial cells also showed the specific binding for AGE-BSA, which was suppressed by 67% by the anti-BLOX-1 antibody. Thus, LOX-1 is identified as a novel endothelial receptor for AGE.  相似文献   

17.
Recent studies have initiated a paradigm shift in the understanding of the function of heat shock proteins (HSP). It is now clear that HSP can and do exit mammalian cells, interact with cells of the immune system, and exert immunoregulatory effects. We recently demonstrated that exogenously added HSP70 possesses potent cytokine activity, with the ability to bind with high affinity to the plasma membrane, elicit a rapid intracellular Ca(2+) flux, activate NF-kappaB, and up-regulate the expression of pro-inflammatory cytokines in human monocytes. Here for the first time, we report that HSP70-induced proinflammatory cytokine production is mediated via the MyD88/IRAK/NF-kappaB signal transduction pathway and that HSP70 utilizes both TLR2 (receptor for Gram-positive bacteria) and TLR4 (receptor for Gram-negative bacteria) to transduce its proinflammatory signal in a CD14-dependent fashion. These studies now pave the way for the development of highly effective pharmacological or molecular tools that will either up-regulate or suppress HSP70-induced functions in conditions where HSP70 effects are desirable (cancer) or disorders where HSP70 effects are undesirable (arthritis and arteriosclerosis).  相似文献   

18.
We have developed a molecular chaperone-based tumor vaccine that reverses the immune tolerance of cancer cells. Heat shock protein (HSP) 70 extracted from fusions of dendritic (DC) and tumor cells (HSP70.PC-F) possess superior properties such as stimulation of DC maturation and T cell proliferation over its counterpart from tumor cells. More importantly, immunization of mice with HSP70.PC-F resulted in a T cell-mediated immune response including significant increase of CD8 T cells and induction of the effector and memory T cells that was able to break T cell unresponsiveness to a nonmutated tumor Ag and provide protection of mice against challenge with tumor cells. By contrast, the immune response to vaccination with HSP70-PC derived from tumor cells is muted against such nonmutated tumor Ag. HSP70.PC-F complexes differed from those derived from tumor cells in a number of key manners, most notably, enhanced association with immunologic peptides. In addition, the molecular chaperone HSP90 was found to be associated with HSP70.PC-F as indicated by coimmunoprecipitation, suggesting ability to carry an increased repertoire of antigenic peptides by the two chaperones. Significantly, activation of DC by HSP70.PC-F was dependent on the presence of an intact MyD88 gene, suggesting a role for TLR signaling in DC activation and T cell stimulation. These experiments indicate that HSP70-peptide complexes (PC) derived from DC-tumor fusion cells have increased their immunogenicity and therefore constitute an improved formulation of chaperone protein-based tumor vaccine.  相似文献   

19.
Polyamine compound deoxyspergualin (DSG) is a potent immunosuppressive agent that has been applied clinically for protecting graft rejection and treatment of Wegener's granulomatosis. Though DSG can bind to heat-shock proteins (HSPs) in cells, its mechanism of immunosuppressive action remains unknown. It is widely accepted that extracellular HSPs are capable of stimulating dendritic cells (DC) through cell surface receptors, leading to DC activation and cytokine release. In this study, we examined if DSG analogs could inhibit HSP70-induced DC activation. Bone marrow derived immature mouse DCs and peripheral blood mononuclear cell-derived immature human DCs were generated and incubated with Alexa 488-labeled Hsp70 in the presence of methoxyDSG (Gus-1) that had comparable HSP70-binding affinity to DSG or DSG analog GUS-7, which had much more reduced binding affinity for HSP70. The binding of HSP70 to immature DCs was analyzed by laser microscopy and flow cytometry. HSP70-induced DC activation was assessed by TNF-α release by enzyme-linked immunosorbent assay. Binding of Hsp70 to the cell surface of immature DCs was inhibited under the presence of Gus-1, but not under the presence of Gus-7. Immature DCs were activated and released TNF-α by the stimulation with HSP70 for 12 hours; however, the HSP70-induced TNF-α release was suppressed under the presence of Gus-1, and partially suppressed under the presence of Gus-7. Similar results were observed when immature human DCs were stimulated under the same conditions. Immunosuppressive mechanism of DSG may be explained, at least in part, by the inhibition of extracellular HSP70-DC interaction and HSP70-induced activation of immature DCs. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Well-known coronary risk factors such as hyperlipidemia, hypertension, smoking, and diabetes are reported to induce the oxidative stress. Under the oxidative stress, low-density lipoprotein (LDL) is oxidatively modified in the vasculature, and formed oxidized LDL induces endothelial dysfunction, expression of adhesion molecules and apoptosis of vascular smooth muscle cells. It has become evident that these cellular responses induced by oxidized LDL are mediated by lectin-like oxidized LDL receptor-1 (LOX-1). LOX-1 was originally identified from cultured aortic endothelial cells as a receptor for oxidized LDL; however, recent investigations revealed that LOX-1 has diverse roles in the host-defense system and inflammatory responses, and it is involved in the pathogenesis of various diseases such as atherosclerosis-based cardiovascular diseases and septic shock. Beside oxidized LDL, LOX-1 recognizes multiple ligands including apoptotic cells, platelets, advanced glycation end products, bacteria, and heat shock proteins (HSPs). The HSPs function as a chaperone to affect protein folding of newly synthesized or denatured proteins. There are accumulating evidences that the HSPs released into the extracellular space have potent biological activities and it may work as a kind of cytokines. It is demonstrated that LOX-1 works as a receptor for HSP70, since it has high affinity for HSP70. The interaction of LOX-1 with HSP70 is involved in the cross-presentation of antigen. Given the potent and wide variety of biological activities, more understanding their interaction provides potential therapeutic strategy for various human diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号