首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of cis- and trans-[PtCl2(NCCH2Ph)2] with a 5-fold excess of MeNH2 and Me2NH in CH2Cl2 at −10 °C affords in high yield the bis-amidine derivatives cis- and trans-[PtCl2{Z-N(H)C(NHMe)CH2Ph}2] (1a, 2a) and cis- and trans-[PtCl2{E-N(H)C(NMe2)CH2Ph}2] (3a, 4a), respectively. The complexes were characterized by means of elemental analysis, multinuclear NMR and FT-IR techniques. The X-ray diffraction analysis was carried out for trans-[PtCl2{Z-N(H)C(NHMe)CH2Ph}2] (2a).Moreover, the in vitro cytotoxicity for the new derivatives was evaluated in a wide panel of human tumor cell lines.  相似文献   

2.
Amination of acetonitrile by the amines MeNH2, PrnNH2, PriNH2, ButNH2, and Et2NH is efficiently promoted by the lanthanide iodides LnI2 (Ln = Nd, Dy, Tm), LnI3 (Ln = Pr, Nd, Dy) and LnI3(THF)3 (Ln = Pr, Nd, Dy). The formed mono- and N,N′-disubstituted amidines MeC(NH)NHR (R = Pri, But), MeC(NH)NEt2, MeC(NR)NHR (R = Me, Prn) were isolated mainly as the complexes with starting iodide of general composition LnI2(amidine)x (1) or LnI3(amidine)x (2) (x = 3-8). In the products 1, which evidently are the mixtures of LnI2+, and LnI3 derivatives, the metal exists in trivalent state but one of the ligands actually is amidinate anion. A part of the generated amidines remains in the reaction solutions in free form. Heating of the 1 and 2 in vacuum at 150-200 °C affords corresponding amidine and the complexes with reduced amount of the amidine ligands LnI2(amidine)y (3) or LnI3(amidine)y (4) (y = 2-3). The products 3 and 4 displayed the same catalytic activity in the acetonitrile-amine cross-coupling as the initial iodides. SmI2 and especially YbI2 revealed lower activity. The structure of isopropylacetamidine (5), tert-butylacetamidine (6) and {Dy[MeC(NH)NEt2]6}I3(MeCN) (7) were determined by X-ray diffraction analysis.  相似文献   

3.
Reaction of platinum(II) salts with 5-ferrocenylpyrimidine (FcPM) afforded cis-[Pt(NH3)2(FcPM)2](PF6)2 (1), trans-[Pt(NH3)2(FcPM)2](PF6)2 (2), cis-[PtCl2(FcPM)2] (3), and cis-[PtCl2(DMSO)(FcPM)] (4): their spectroscopic and electrochemical properties were investigated. Complexes 1 and 2 were structurally characterized by X-ray crystallography.  相似文献   

4.
6-Aminomethylnicotinic acid (1a) and 2-aminomethylisonicotinic acid (1b) were each reacted with K2PtCl4 in aqueous 1 M HCl to give the corresponding N,N-chelated cis-dichloroplatinum(II) complexes 2. These were converted into amides 3 via their mixed anhydrides by treating them first with ethyl chloroformate and then with the respective 1° or 2° amine. The analogous 6-aminomethylnicotinic acid ester complexes 7 were obtained by reaction of the preformed ligands with K2PtCl4.  相似文献   

5.
The solid-state packing arrays of the platinum(II) trans- and cis-[PtCl2(PzH)2] (1 and 2) and platinum(IV) trans- and cis-[PtCl4(PzH)2] (3 and 4) complexes have been examined and the occurrence of N-H ? Cl hydrogen-bonding associations in those structures has been discussed. Although different packing motifs are observed, in all cases molecules are interacting mostly via NH ? Cl and CH ? Cl associations. The square planar 1 and 2 form stacked arrays of PtCl2(PzH)2, which are supported by NH ? Cl and CH ? Cl hydrogen bonding. The isomeric structure of the complexes and orientation of the PzH rings determine NH ? Cl bonding mode (intermolecular or intramolecular) and also the extent of the platinum-platinum interaction. The synthetic procedures for the preparation of 1-4 along with elemental and X-ray analyses, TG/DTA, FAB+-MS, IR, and 1H and 13C{1H} NMR data are also given in this article.  相似文献   

6.
The study of the reactivity of three 1-(2-dimethylaminoethyl)-1H-pyrazole derivatives of general formula [1-(CH2)2NMe2}-3,5-R2-pzol] {where pzol represents pyrazole and RH (1a), Me (1b) or Ph (1c)} with [MCl2(DMSO)2] (MPt or Pd) under different experimental conditions allowed us to isolate and characterize cis-[M{κ2-N,N′-{[1-(CH2)2NMe2}-3,5-R2-pzol])}Cl2] {MMPtPt (2a-2c) or Pd (3a-3c)} and two cyclometallated complexes [M{κ3-C,N,N′-{[1-(CH2)2NMe2}-3-(C5H4)-5-Ph-pzol])}Cl] {MPt(II) (4c) or Pd(II) (5c)}. Compounds 4c and 5c arise from the orthometallation of the 3-phenyl ring of ligand 1c. Complex 2a has been further characterized by X-ray crystallography. Ligands and complexes were evaluated for their in vitro antimalarial against Plasmodium falciparum and cytotoxic activities against lung (A549) and breast (MDA MB231 and MCF7) cancer cellular lines. Complexes 2a-2c and 5c exhibited only moderate antimalarial activities against two P. falciparum strains (3D7 and W2). Interestingly, cytotoxicity assays revealed that the platinacycle 4c exhibits a higher toxicity than cisplatin in the three human cell lines and that the complex 2a presents a remarkable cytotoxicity and selectivity in lung (IC50 = 3 μM) versus breast cancer cell lines (IC50 > 20 μM). Thus, complexes 2c and 4c appear to be promising leads, creating a novel family of anticancer agents. Electrophoretic DNA migration studies in presence of the synthesized compounds have been performed, in order to get further insights into their mechanism of action.  相似文献   

7.
The chloro complexes [PtCl2(RSR′)2] (1-10) (RSR′ = MeSCH2C(O)OMe, 1; MeSCH2C(O)OEt, 2; MeSCH2C(O)Omenthyl(−), 3; MeSCH2CH2C(O)OMe, 4; , 5; EtSCH2C(O)Me, 6; MeSCH(Me)C(O)Me, 7; MeSPh, 8; MeS-o-C6H4Me, 9; and MeS-o-C6H4Et, 10) are obtained in high yield (63-90%) by reaction of [PtCl2(PhCN)2] with the proper thioether in 1/2 molar ratio, in anhydrous chloroform, at reflux under argon for ca. 10 h. The X-ray crystal structure of [PtCl2(MeS-o-C6H4Me)2] (9) shows an almost regular trans square planar geometry (triclinic, space group , a 6.806(1), b 7.789(2), c 10.085(3) Å, α 101.80(2)°, β 69.55(2)°, γ 115.27(2)°, R(Fo) 0.023, ). The dichloro complexes react with silver acetate in a complex manner, which depends on the nature of the thioether, and only with RSR′ = MeSPh the simple diacetato complex [Pt(OAc)2(RSR′)2] is obtained as the major product.  相似文献   

8.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

9.
The thiocarbamate esters 4-RC6H4NHC(S)OMe (R = H, Cl, OMe, NO2, Me) react with cis-[PtCl2(PTA)2] (PTA = 1,3,5-triaza-7-phosphaadamantane) in the presence of base to afford the platinum(II) complexes trans-[Pt{SC(OMe)NC6H4R}2(PTA)2] (R = H, Cl, OMe, NO2, Me) in high yields. The complexes were fully characterised spectroscopically and, in case of the NO2 derivate, by X-ray crystallography. Cytotoxicity of these complexes was studied in vitro in four human cancer cell lines (CH1, HT29, A549, SK-OV-3) using the MTT assay. The results show that the Cl substituted derivate is the most potent of these compounds in vitro. Moreover, this derivative is capable of partially circumventing primary cisplatin resistance in ovarian and colon carcinoma cells.  相似文献   

10.
The diphosphinite ligand 9,9-(Ph2POCH2)2-fluorene (1) was reacted with group 10 metal dichlorides to form chelate complexes of formula [MCl2(1)] (MNi, 2; MPd, 3; MPt, 4) showing 8-membered metallocycles. Chloride abstraction from 3 with AgOTf afforded the dinuclear complex [M(μ-Cl)Pd(1)]2(OTf)2 (5), in which the ligand adopts a different conformation with respect of 3. In 5, the fluorene moiety and the phenyl groups display stabilizing interactions with the anion which is located close to the metal centre. With Fe(II), Co(II) and Zn(II) chlorides, the non-isolated intermediates [MCl2(1)] readily undergo oxidation to [MCl2(1ox)] (MFe, 6; MCo, 7; MZn, 8; 1ox = 9,9-(Ph2P(O)OCH2)2-fluorene) in which the diphosphinate ligand and the metal centre form 10-membered metallocycles. Complexes 6-8 are the first examples of structurally characterized diphosphinate metal chelates. The Zn(II) diphosphinite complex [ZnCl2(1)] (9) could be observed by NMR spectroscopy, along with the mixed phosphinite-phosphinate, mono-oxidized complex which is an intermediate in the formation of 8. Complex [ZnCl2(9.9-fluorene-dimethanol)(Ph2P(O)H)] (10) was also observed as hydrolysis product of 9. The X-ray molecular structures of 2, 3, 5.2OTf, 6, 7, 8 and 10 are reported.  相似文献   

11.
The reactions of the fluorovinyl-substituted phosphines PPh2(CFCF2) and PPh2(CClCF2), with K2PtX4 (X = Br, I) have been investigated. The resulting complexes have been characterized by a combination of 19F and 31P{1H} NMR, IR and Raman spectroscopy. The reactions of these phosphines with K2PtBr4 yield the monomeric complexes cis-[PtBr2{PPh2(CFCF2)}2] (1) and trans-[PtBr2{PPh2(CClCF2)}2] (2), respectively, whilst the reactions with K2PtI4 yield both the monomeric species trans-[PtI2{PPh2(CXCF2)}2], {X = F (3), Cl (4)}, and the dimeric species [PtI(μ-I){PPh2(CXCF2)}]2, {X = F (5), Cl (6)}. The dimers 5 and 6 represent the first crystallographically characterised platinum(II) iodide-bridged phosphine complexes, and both adopt the symmetric-trans structure.  相似文献   

12.
Two new complex salts of the form (Bu4N)2[Ni(L)2] (1) and (Ph4P)2[Ni(L)2] (2) and four heteroleptic complexes cis-M(PPh3)2(L) [M = Ni(II) (3), Pd(II) (4), L = 4-CH3OC6H4SO2NCS2] and cis-M(PPh3)2(L′) [ M = Pd(II) (5), Pt(II) (6), L′ = C6H5SO2NCS2] were prepared and characterized by elemental analyses, IR, 1H, 13C and 31P NMR and UV-Vis spectra, solution and solid phase conductivity measurements and X-ray crystallography. A minor product trans-Pd(PPh3)2(SH)2, 4a was also obtained with the synthesis of 4. The NiS4 and MP2S2 core in the complex salts and heteroleptic complexes are in the distorted square-plane whereas in the trans complex, 4a the centrosymmetric PdS2P2 core is perforce square planar. X-ray crystallography revealed the proximity of the ortho phenyl proton of the PPh3 ligand to Pd(II) showing rare intramolecular C-H?Pd anagostic binding interactions in the palladium cis-5 and trans-4a complexes. The complex salts with σrt values ∼10−5 S cm−1 show semi-conductor behaviors. The palladium and platinum complexes show photoluminescence properties in solution at room temperature.  相似文献   

13.
The “amidate-hanging” Pt mononuclear complexes, which can easily bind a second metal ion with the non-coordinated oxygen atoms in the amidate moieties, have been synthesized and characterized by 1H NMR, MS, IR spectroscopy, and single crystal X-ray analysis. Five new complexes with various amidate ligands and co-ligands, cis-[Pt(PVM)2(en)] · 4H2O (1, PVM = pivaloamidate, en = ethylenediamine), cis-[Pt(PVM)2(NH2CH3)2] · H2O (2), cis-[Pt(PVM)2(NH2tBu)2] (3), cis-[Pt(TCM)2(NH3)2] (4, TCM = trichloroacetamidate), and cis-[Pt(BZM)2(NH3)2] (5, BZM = benzamidate), were successfully synthesized by direct base hydrolysis of the corresponding Pt nitrile complexes, cis-[Pt(NCR)2(Am)2]2+ (P1, P2, P3, and P5) (NCR = nitrile, Am = amine). These nitrile complexes were obtained by introducing nitriles into the Pt aqua complexes, cis-[Pt(OH2)2(Am)2](ClO4)2, whereas introduction of trichloronitrile into [Pt(OH2)2(NH3)2](ClO4)2 induced more facilitated water nucleophilic attack to afford [Pt(TCM)(NH(COH)CCl3)(NH3)2](ClO4) (P4). The base treatments of the precursor complexes (P1-5) lead to produce “amidate-hanging” Pt mononuclear complexes (1-5) without geometry isomerization. The 195Pt chemical shifts for 1-5 exhibit subtle differences of the Pt electron densities among them.  相似文献   

14.
The reaction of the N-alkylaminopyrazole (NN′) ligands 1-[2-(ethylamino)ethyl]-3,5-dimethylpyrazole (deae), 1-[2-(tert-butylamino)ethyl]-3,5-dimethylpyrazole (deat), or (NNN) ligands bis[(3,5-dimethylpyrazolyl)methyl]ethylamine (bdmae) and bis[(3,5-dimethylpyrazolyl)ethyl]ethylamine (ddae) with [PtCl2(CH3CN)2] affords a series of square-planar Pt(II) complexes with formula [PtCl2(NN′)] (NN′ = deae (1); deat (2)), [PtCl2(bdmae)] (3), or [PtCl(ddae)]Cl (4). Treatment of complex 4 in the presence of AgBF4 in CH2Cl2/methanol (3:1) gives [PtCl(ddae)](BF4) (5). These Pt(II) complexes have been characterised by elemental analyses, conductivity measurements and IR, 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopies. The 1H NMR spectroscopic studies of the complexes prove the rigid conformation of the ligands when they are complexed. The solid-state structure of complex 1 was determined by single crystal X-ray diffraction methods. The deae ligand is coordinated through the Npz and Namino atoms to the metallic centre, which completes its coordination with two chlorine atoms in cis disposition.  相似文献   

15.
The reaction between Zn(OAc)2 · 2H2O (1) and the 3-iminoisoindolin-1-ones H2NCNC(O)C6R1R2R3R4 (R1-R4 = H 2; R1, R4 = H, R2, R3 = Cl 3; R1, R3, R4 = H, R2 = Me 4) in EtCN at 70 °C for ca. 12 h affords the novel family of complexes [Zn{H2NCNC(O)C6R1R2R3R4}2(OAc)2] (R1-R4 = H 5; R1, R4 = H, R2, R3 = Cl 6; R1, R3, R4 = H, R2 = Me 7) in excellent (90% and 93% for 5 and 6, correspondingly) to good (64% for 7) yields. The isolated compounds were characterized by elemental analyses (C, H, N), IR, NMR and ESI+-MS. X-ray diffraction data for 2 and 5 indicate that both free (2) and ligated (5) 3-iminoisoindolin-1-ones exist in the zwitterionic form.  相似文献   

16.
The new diiron alkynyl methoxy carbene complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CCR′}(Cp)2]+ (R = 2,6-Me2C6H3 (Xyl), R′ = Tol, 3a; R = Xyl, R′ = Ph, 3b; R = Xyl, R′=Bun, 3c; R = Xyl, R′=SiMe3, 3d; R = Me, R′ = Tol, 3e; R = Me, R′ = Ph, 3f) are obtained in two steps by addition of R′CCLi (R′ = Tol, Ph, Bun, SiMe3) to the carbonyl aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2]+ (R = Xyl, 1a; Me, 1b), followed by methylation of the resulting alkynyl acyl compounds [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(O)CCR′}(Cp)2] (R = Xyl, R′ = Tol, 2a; R = Xyl, R′ = Ph, 2b; R = Xyl, R′ = Bun, 2c; R = Xyl, R′ = SiMe3, 2d; R = Me, R′ = Tol, 2e; R = Me, R′ = Ph, 2f). Complexes 3 react with secondary amines (i.e., Me2NH, C5H10NH) to give the 4-amino-1-metalla-1,3-dienes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO){C(OMe)CHC(R′)(NMe2)}(Cp)2]+ (R = Xyl, R′ = Tol, 4a; R = Xyl, R′ = Ph, 4b; R = Me, R′ = Ph, 4c) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(Tol)(NC5H10)}(Cp)2]+, 5. The addition occurs stereo-selectively affording only the E-configured products. Analogously, addition of primary amines R′NH2 (R′ = Ph, Et, Pri) affords the 4-(NH-amino)-1-metalla-1,3-diene complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(R)(NHR′)}(Cp)2]+ (R = Ph, 6a; Et, 6b; Pri, 6c). In the case of 6a, only the E isomer is formed, whereas a mixture of the E and Z isomers is present in the case of 6b,c, with prevalence of the latter. Moreover, the two isomeric forms exist under dynamic equilibrium conditions, as shown by VT NMR studies. Complexes 6 are deprotonated by strong bases (e.g., NaH) resulting in the formation of the neutral vinyl imine complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){C(OMe)CHC(NR)(Tol)}(Cp)2] (R = Ph, 7a; Et, 7b; Pri, 7c); the reaction can be reverted by addition of strong acids. X-ray crystal structures have been determined for 3a[CF3SO3] · Et2O, 4c[CF3SO3], 6a[BF4] · CH2Cl2, 6c[CF3SO3] · 0.5Et2O and 7a · CH2Cl2.  相似文献   

17.
The aminoallenylidene(pentacarbonyl)chromium complexes [(CO)5CrCCC(NR1R2)Ph] (1a-c) react with dimethylamine by addition of the amine to the C1C2 bond of the allenylidene ligand to give alkenyl(amino)carbene complexes [(CO)5CrC(NMe2)CHC(NR1R2)Ph] (2a-c) (R1 = Me: R2 = Me (a), Ph (b); R1 = Et: R2 = Ph (c)). In contrast, addition of a large excess (usually 20 equivalents) of ammonia or primary amines, H2NR, to solutions of [(CO)5CrCCC(NMe2)Ph] (1a) affords the aminoallenylidene complexes [(CO)5CrCCC(NHR)Ph] (1d-w) in which the dimethylamino group is replaced by NH2 or NHR, respectively. In addition to simple amines such as methylamine, butylamine, and aniline, amines carrying a functional group (allylamine, propargylamine) and amino acid esters as well as amino terpenes and amino sugars can be used to displace the NMe2 substituent. Usually the Z isomer (with respect to the partial C3-N double bond) is formed exclusively. Products derived from addition of H2NR to the C1C2 bond of 1a are not observed. The amino group in 1d-w is rapidly deprotonated by excess of amine to form iminium alkynyl chromates [1d-w], thus protecting 1d-w from addition of free amine to either C3 or across the C1C2 bond. The iminium alkynyl chromates are readily reprotonated by acids or by chromatography on wet SiO2 to reform 1d-w.  相似文献   

18.
Analogues of cytotoxic cis and trans dichloridoplatinum(II) complexes with one ammonia and one aromatic amine (cis- and trans-[PtCl2(aromatic amine)(NH3)]) were synthesised in which the aromatic group was replaced by the fluorescent ligand 7-azaindole (1). Coordination resulted in almost complete quenching of the fluorescence and the ligand had a effect on the biological activities of the cis and trans isomers similar to that previously reported for aromatic amines as is exemplified by them having similar cytotoxicities (IC50 3.6(5) and 6.0(19) μM, respectively). Observation of fluorescence following treatment of the cis complex with cysteine, glutathione, or methionine suggests labilisation and subsequent loss of the putative non-leaving group ligands. No such effect was observed for the trans complex which does not experience trans labilisation. Two-photon excitation of cells that had been treated with the complexes gave rise to observable fluorescence, suggesting ligand displacement for both complexes. The fluorescence appears to be localised in the lysosomes or late endosomes. These complexes are excellent models of analogues of cytotoxic cis and trans complexes with aromatic amine ligands and can be used to study the metabolism of the non-leaving group positions.  相似文献   

19.
The antitumor effects of platinum(IV) complexes, considered prodrugs for cisplatin, are believed to be due to biological reduction of Pt(IV) to Pt(II), with the reduction products binding to DNA and other cellular targets. In this work we used pBR322 DNA to capture the products of reduction of oxoplatin, c,t,c-[PtCl2(OH)2(NH3)2], 3, and a carboxylate-modified analog, c,t,c-[PtCl2(OH)(O2CCH2CH2CO2H)(NH3)2], 4, by ascorbic acid (AsA) or glutathione (GSH). Since carbonate plays a significant role in the speciation of platinum complexes in solution, we also investigated the effects of carbonate on the reduction/DNA-binding process. In pH 7.4 buffer in the absence of carbonate, both 3 and 4 are reduced by AsA to cisplatin (confirmed using 195Pt NMR), which binds to and unwinds closed circular DNA in a manner consistent with the formation of the well-known 1, 2 intrastrand DNA crosslink. However, when GSH is used as the reducing agent for 3 and 4, 195Pt NMR shows that cisplatin is not produced in the reaction medium. Although the Pt(II) products bind to closed circular DNA, their effect on the mobility of Form I DNA is different from that produced by cisplatin. When physiological carbonate is present in the reduction medium, 13C NMR shows that Pt(II) carbonato complexes form which block or impede platinum binding to DNA. The results of the study vis-à-vis the ability of the Pt(IV) complexes to act as prodrugs for cisplatin are discussed.  相似文献   

20.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号