首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The dichain type E botulinum neurotoxin, a product of nicking the single chain protein by trypsin, is composed of a heavy and light chains. Sequence of the first 13 and 20 N-terminal residues of these two chains were determined. Also, proof is provided here that (i) the light chain of the nicked (dichain) is derived from the N-terminal one-third of the parent single chain neurotoxin, and (ii) molecular events leading to the activation, of the single chain neurotoxin cannot involve tryptic cleavage at or very close to the N-terminal of the single chain protein. The partial amino acid sequence of the light chain of botulinum type E and tetanus neurotoxins show significant similarity between the two clostridial neurotoxins.  相似文献   

2.
Partial amino acid sequences of botulinum neurotoxins types B and E   总被引:4,自引:0,他引:4  
Clostridium botulinum type E neurotoxin, a single-chain protein of Mr 147,000, was purified and subjected to amino acid sequencing. The same was done for single-chain botulinum type B neurotoxin (Mr 152,000), and for the heavy and light chains (Mr 104,000 and 51,000 respectively) derived from type B by limited trypsin digestion. Twelve to eighteen residues were identified and the following conclusions were drawn: The light chain of the nicked (dichain) type B is derived from the N-terminal one-third of the single-chain (unnicked) parent neurotoxin; sequence homologies are present between single-chain types B and E and the light chain of the nicked type A [J. J. Schmidt, V. Sathyamoorthy, and B. R. DasGupta (1984) Biochem. Biophys. Res. Commun. 119, 900-904]; the N-terminal regions of the heavy chains of types A and B have some structural similarity; and activation of type B neurotoxin cannot involve removal of amino acids or peptides from the N terminus.  相似文献   

3.
The 145-kDa type A botulinum neurotoxin (NT) is produced by the bacteria Clostridium botulinum (strain, Hall). The heavy (H) and light (L) chains (97- and 53-kDa, respectively) of this protein are linked by at least one disulfide bond. The N- and C-terminal halves of the H chain appear to have different functions in the mechanism of action of the NT [1987) FEBS Lett. 226, 115-120). Well-characterized and highly purified preparations of the two halves of the H chain are needed for such studies. Two different approaches were taken to cut the H chain with trypsin and isolate the fragments. In one method the cleavage products were: (i) 94-kDa fragment made of the L chain linked to the N-terminal half of the H chain (49 kDa) by a disulfide bond(s), and (ii) the C-terminal 44-kDa fragment. The N-terminal half of H chain was separated from the L chain by reducing the disulfide bond(s) linking them and then purified by ion-exchange chromatography. The 1-27 residues of 49-kDa N-terminal half of the H chain were Ala-Leu-Asn-Asp-Leu-Cys-Ile-Lys-Val-Asn-Asn-Trp-Asp-Leu-Phe-Phe-Ser-Pro- Ser-Glu - Asp-Asn-Phe-Thr-Asn-Asp-Leu-. The sequence of the other half of the H chain (44 kDa) was X-Ile-Ile-Asn-Leu-X-Ile-Leu-Asn-Leu-Arg-Tyr-Glu-X-Asn-His-Leu-Ile-Asp-Le u-Lys- X-Tyr-Ala-Ser-. In the second method, the H chain was first separated from the L chain, purified, and then cleaved. One product of cleavage, the 44-kDa fragment, was partially sequenced; the first 25 residues were identical to the sequence of the 44-kDa fragment generated by the first method. The present work also demonstrated that (i) The cysteine residue(s) located on the N-terminal half of the H chain form the -S-S- link(s) with the L chain. (ii) The other half of the H chain (44-kDa fragment, apparently the C-terminal half) is not linked via -S-S- to the L-chain or to the N-terminal half (49-kDa fragment) of the H chain.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The polymerase chain reaction (PCR) was used as the basis for the development of highly sensitive and specific diagnostic tests for organisms harboring botulinum neurotoxin type A through E genes. Synthetic DNA primers were selected from nucleic acid sequence data for Clostridium botulinum neurotoxins. Individual components of the PCR for each serotype (serotypes A through E) were adjusted for optimal amplification of the target fragment. Each PCR assay was tested with organisms expressing each of the botulinum neurotoxin types (types A through G), Clostridium tetani, genetically related nontoxigenic organisms, and unrelated strains. Each assay was specific for the intended target. The PCR reliably identified multiple strains having the same neurotoxin type. The sensitivity of the test was determined with different concentrations of genomic DNA from strains producing each toxin type. As little as 10 fg of DNA (approximately three clostridial cells) was detected. C. botulinum neurotoxin types A, B, and E, which are most commonly associated with human botulism, could be amplified from crude DNA extracts, from vegetative cells, and from spore preparations. This suggests that there is great potential for the PCR in the identification and detection of botulinum neurotoxin-producing strains.  相似文献   

5.
The dichain (nicked) type A botulinum neurotoxin is a protein (mol. wt. 145,000) composed of a heavy and a light chain (mol. wt. 97,000 and 53,000, respectively) that are held together by disulfide bond(s). We report here the sequence of the first 17 amino acid residues of the light chain, and the first 10 residues of the heavy chain. The heavy chain was isolated from the neurotoxin by two different methods, while the light chain was isolated by the only available method. The identical amino acid sequence was found in both preparations of heavy chain. Two samples of the light chain isolated from two separately prepared batches of the neurotoxin also had identical sequences.  相似文献   

6.
Local blockade of transmitter release was produced by s.c. injection of purified botulinum neurotoxin (NT) types A or E above the tibialis anterior muscle of adult male rats. Extensor digitorum longus nerve-muscle preparation was examined for toxin-induced alterations in single twitch and tetanic tension (in situ) or transmitter release (in vitro). For both single twitch and tetanic tension, muscles treated with type E NT recovered from an initial partial paralysis (induced with 56 mouse LD50) or full paralysis (induced with 565 mouse LD50) by 7 days after NT injection, while those treated with only 5 mouse LD50 of type A remained either fully or partially paralysed through 10 days. Also, miniature end-plate potential frequency and mean quantal content were reduced for a longer period of time and/or to a greater extent for muscles treated with type A NT than for those treated with type E. The present results are consistent with the observed higher specific toxicity (i.p. injections in mice) for type A NT than for type E, although these differences may be exaggerated after s.c. injections. The differences in the paralytic effect between types A and E may be determined by differences in amino acid sequence, which causes type E to dissociate more easily from its site of action and/or be detoxified more rapidly. The clinical implications of these findings are discussed.  相似文献   

7.
The Clostridium botulinum neurotoxins (BoNTs) cleave SNARE proteins, which inhibit binding and thus fusion of neurotransmitter vesicles to the plasma membrane of peripheral neurons. BoNTs comprise an N-terminal light chain (LC) and C-terminal heavy chain, which are linked by a disulfide bond. There are seven serotypes (A-G) of BoNTs based upon immunological neutralization. Although the binding and entry of BoNT/A into neurons has been subjected to considerable investigation, the intracellular events that allow BoNT/A to efficiently cleave SNAP-25 within neurons is less well understood. Earlier studies showed that intracellular LC/A bound to the plasma membrane of neurons. In this study, intracellular LC/A is shown to directly bind SNAP-25 on the plasma membrane. Solid phase binding showed that the N-terminal residues of LC/A bound residues 80-110 of SNAP-25, which was also observed in cultured neurons. Association of the N-terminal 8 amino acids of LC/A and residues 80-110 of SNAP-25 also enhanced substrate cleavage. These findings explain how LC/A associates with SNAP-25 on the plasma membrane and provide a basis for LC/A cleavage of SNAP-25 within the SNARE complex.  相似文献   

8.
To define conserved domains within the light (L) chains of clostridial neurotoxins, we determined the sequence of botulinum neurotoxin type B (BoNT/B) and aligned it with those of tetanus toxin (TeTx) and BoNT/A, BoNT/C1, BoNT/D, and BoNT/E. The L chains of BoNT/B and TeTx share 51.6% identical amino acid residues whereas the degree of identity to other clostridial neurotoxins does not exceed 36.5%. Each of the L chains contains a conserved motif, HExxHxxH, characteristic for metalloproteases. We then generated specific 5'- and 3'-deletion mutants of the L chain genes of TeTx and BoNT/A and tested the biological properties of the gene products by microinjection of the corresponding mRNAs into identified presynaptic cholinergic neurons of the buccal ganglia of Aplysia californica. Toxicity was determined by measurement of neurotransmitter release, as detected by depression of postsynaptic responses to presynaptic stimuli (Mochida, S., Poulain, B., Eisel, U., Binz, T., Kurazono, H., Niemann, H., and Tauc, L. (1990) Proc. Natl. Acad. Sci. U. S. A. 87, 7844-7848). Our studies allow the following conclusions. 1) Residues Cys439 of TeTx and Cys430 of BoNT/A, both of which participate in the interchain disulfide bond, play no role in the toxification reaction. 2) Derivatives of TeTx that lacked either 8 amino- or 65 carboxyl-terminal residues are still toxic, whereas those lacking 10 amino- or 68 carboxyl-terminal residues are nontoxic. 3) For BoNT/A, toxicity could be demonstrated only in the presence of added nontoxic heavy (H) chain. A deletion of 8 amino-terminal or 32 carboxyl-terminal residues from the L chain had no effect on toxicity, whereas a removal of 10 amino-terminal or 57 carboxyl-terminal amino acids abolished toxicity. 4) The synergistic effect mediated by the H chain is linked to the carboxyl-terminal portion of the H chain, as demonstrated by injection of HC-specific mRNA into neurons containing the L chain. This finding suggests that the HC domain of the H chain becomes exposed to the cytosol during or after the putative translocation step of the L chain.  相似文献   

9.
Botulinum neurotoxins (BoNTs) are metalloproteases which block neuroexocytosis via specific cleavage and inactivation of SNARE proteins. Such proteolysis accounts for the extreme toxicity of these neurotoxins and of their prolonged effect. The recently determined structures of BoNT/A and/B allows one to design active-site mutants to probe the role of specific residues in the proteolysis of SNARE proteins. Here we present the results of mutations of the second glutamyl residue involved in zinc coordination and of a tyrosine and a phenylalanine residues that occupy critical positions within the active site of BoNT/A. The spectroscopic properties of the purified mutants are closely similar to those of the wild-type molecule indicating the acquisition of a correct tertiary structure. Mutation of the Glu-262* nearly abolishes SNAP-25 hydrolysis as expected for a residue involved in zinc coordination. The Phe-266 and Tyr-366 mutants have reduced proteolytic activity indicating a direct participation in the proteolytic reaction, and their possible role in catalysis is discussed.  相似文献   

10.
The C3 exoenzyme gene is located on a bacteriophage in Clostridium botulinum types C and D (M. R. Popoff, D. Hauser, P. Boquet, M. W. Eklund, and D. M. Gill, Infect. Immun. 59:3673-3679, 1991). A derivative CN phage from phage C of C. botulinum Stockholm (C-St) (K. Oguma, H. Iida, and K. Inoue, Jpn. J. Microbiol. 19:167-172, 1975), isolated as neurotoxin negative, also does not produce exoenzyme C3. The botulinal neurotoxin C1 gene is present on the CN phage but contains a stop mutation in the DNA region encoding the N-terminal part of the heavy chain (codon 553). The putative truncated botulinal neurotoxin C1 protein was not recovered in a C. botulinum strain harboring the CN phage. We found that the C3 gene is localized on a 21.5-kbp DNA fragment flanked by the core motif 5'-AAGGAG-3' in DNAs of phage C of C. botulinum 468 (C-468), C-St phage, and phage D of C. botulinum 1873 (D-1873). The 21.5-kbp DNA fragment is deleted in CN phage DNA, and the motif 5'-AAGGAG-3' is present only in one copy at the deletion junction, but the deletion in the CN phage could be nonspecific, since this phage was obtained by nitrosoguanidine treatment. These findings could indicate that the C3 gene is localized on a 21.5-kbp mobile element. C. botulinum type C strain 003-9 produces a C3 exoenzyme (Y. Nemoto, T. Namba, S. Kozaki, and S. Narumiya, J. Biol. Chem. 266:19312-19319, 1991), and Staphylococcus aureus E1 produces a related C3 enzyme which is named epidernmal cell differentiation inhibitor (S. Inoue, M. Sugai, Y. Murooka, S. Y. Paik, Y. M. Hong, H. Oghai, and H. Suginaka, Biochem. Biophys. Res. Comm. 174:459-464, 1991) and which shares 80.6 and 56.6% similarity, respectively with the C3 enzymes from C-468 or C-St and D-1873 phages athe amino acid level. The features of the putative 21.5-kbp transposon were not found in C. botulinum 003-9 and S. aureus E1, as determined by analysis of the C3 and epidermal cell differentiation inhibitor gene-flanking DNA regions. These data suggest a common ancestral origin and divergent evolution of the C3 genes in these three groups of bacterial strains and dissemination of a 21.5-kbp element carrying the C3 gene C-468, C-St, and D-1873 phages.  相似文献   

11.
Botulinum neurotoxins (BoNTs) are the most potent of the known biological toxins, and consequently are listed as category A biowarfare agents. Currently, the only treatments against BoNTs include preventative antitoxins and long-term supportive care. Consequently, there is an urgent need for therapeutics to counter these enzymes--post exposure. In a previous study, we identified a number of small, nonpeptidic lead inhibitors of BoNT serotype A light chain (BoNT/A LC) metalloprotease activity, and we identified a common pharmacophore for these molecules. In this study, we have focused on how the dynamic movement of amino acid residues in and surrounding the substrate binding cleft of the BoNT/A LC might affect inhibitor binding modes. The X-ray crystal structures of two BoNT/A LCs (PDB refcodes=3BTA and 1E1H) were examined. Results from these analyses indicate that the core structural features of the examined BoNT/A LCs, including alpha-helices and beta-sheets, remained relatively unchanged during 1 ns dynamics trajectories. However, conformational flexibility was observed in surface loops bordering the substrate binding clefts in both examined structures. Our analyses indicate that these loops may possess the ability to decrease the solvent accessibility of the substrate binding cleft, while at the same time creating new residue contacts for the inhibitors. Loop movements and conformational/positional analyses of residues within the substrate binding cleft are discussed with respect to BoNT/A LC inhibitor binding and our common pharmacophore for inhibition. The results from these studies may aid in the future identification/development of more potent small molecule inhibitors that take advantage of new binding contacts in the BoNT/A LC.  相似文献   

12.
The single chain (unnicked) type-E and the dichain (nicked) type-A botulinum neurotoxins were modified with diethylpyrocarbonate (ethoxyformic anhydride), a reagent highly specific for histidine residues. The type-E neurotoxin could be completely detoxified without causing detectable damage to its serological reactivity. Under identical modification reaction conditions, the type A was incompletely detoxified with some alteration in its serological reactivity. Modification of histidine residues was evident from the increase in absorbance at 240 nm, and reactivation of the detoxified proteins by reversing the modification with hydroxylamine. The completely detoxified type-E neurotoxin, used as toxoid, elicited antibodies in rabbits. The antiserum precipitated and neutralized the neurotoxin. This toxoid is homogeneous as tested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, whereas the traditional toxoid produced with formaldehyde is heterogeneous.  相似文献   

13.
The neuroparalytic activities of botulinum neurotoxin type A (BoNT A), tetanus toxin (TeTx), or homologous and heterologous combinations of their constituent polypeptides were examined at cholinergic and non-cholinergic synapses of Aplysia californica. When applied extracellularly, BoNT A or a mixture of its heavy (HC) and light (LC) chains were far more potent in blocking transmitter release at cholinergic than non-cholinergic synapses. The reverse was true for TeTx or a mixture its constituent chains. Such selectivity was assigned to differences in neuronal targetting and uptake of the neurotoxins since both exhibited similar potencies when injected directly into the cell body of either cell type. When bath-applied, heterologous combinations of the toxins' HC and LC appeared as effective as the parent neurotoxins from whence each HC was derived. Moreover, targetting/internalization was attributable to the analogous N-terminal moieties, H2 and beta 2, of the HC from BoNT A and TeTx. Thus, it may be postulated that the latter regions possess two functional domains, one being distinct and responsible for the divergent neuronal specificity, whereas the other serves a common role in translocating the LC of either toxin. Also, it was shown that the C-terminal portion of the HC of TeTx is unable to play the intracellular role of its counterpart in BoNT A.  相似文献   

14.
Botulinum neurotoxin (NT) serotypes A, B and E differ in microstructure and biological activities. The three NTs were examined for secondary structure parameters (-helix, -sheet, -turn and random coil content) on the basis of circular dichroism; degree of exposed Tyr residues (second derivative spectroscopy) and state of the Trp residues (fluorescence and fluorescence quantuin yield). The proteins are high in -pleated sheet content (41–44%) and low in -helical content (21–28%). About 30–36% of the amino acids are in random coils. The -sheet contents in the NTs are similar irrespective of their structural forms (i.e. single or dichain forms) or level of toxicity. About 84%, 58% and 61% of Tyr residues of types A, B, and ENT, respectively, were exposed to the solvent (pH 7.2 phosphate buffer). Although the fluorescence emission maximum of Trp residues of type B NT was most blue shifted (331 nm compared to 334 for types A and E NT, and 346 nm for free tryptophan) the fluorescence quantum yields of types A and B were similar and higher than type E. In general the NTs have similar secondary (low -helix and high -sheets) and tertiary (exposed tyrosine residues and tryptophan fluorescence quantum yield) structures. Within this generalized picture there are significant differences which might be related to the differences in their biological activities.  相似文献   

15.
Botulinum neurotoxin light chain (BoNT LC, 50 kDa) is responsible for the zinc endopeptidase activity specific for proteins of neuroexocytosis apparatus. We describe the expression of recombinant type A BoNT LC in Escherichia coli as well as the purification and characterization of the recombinant protein. A high level of expression of BoNT/A LC was obtained by an extended postinduction time of 15 h at 30 degrees C. Recombinant BoNT/A LC was isolated from an Ni(2+) column. Due to its high pI ( approximately 8.7), purification was achieved by a single step of passing the protein through anion-exchange chromatography at pH 8.0 without the need of elution. The purified recombinant BoNT/A LC retained proteolytic activity and had a secondary structure similar to that of native LC determined by CD measurement.  相似文献   

16.
Jin R  Sikorra S  Stegmann CM  Pich A  Binz T  Brunger AT 《Biochemistry》2007,46(37):10685-10693
Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.  相似文献   

17.
Summary Botulinum neurotoxin (NT) is synthesized byClostridium botulinum in any of seven antigenically distinct forms, called types A through G. Protease(s) endogenous to the bacteria, or trypsin, nicks the single chain protein to a dichain molecule which generally is more toxic. The conformation of dichain type A (nicked by endogenous protease), single chain type E, and dichain type E NT (nicked by trypsin) have been determined using circular dichroism (CD) and fluorescence spectroscopy. The high degree of ordered secondary structure (α helix 28%, β sheet 42%, total 70%) found in type A NT at pH 6.0 was similar to that found at pH 9.0 (α 22%, β 47%, total 69%). The secondary structure of the single chain type E NT at pH 6.0 (α 18%, β 37%, total 55%) differed somewhat from these values at pH 9.0 (α 22%, β 43%, total 65%). The dichain type E NT at pH 6.0 assumed a secondary structure (α 20%, β 47%, total 67%) more similar to that of dichain type A than the single chain type E NT. Examination with the fluorogenic probe toluidine napthalene sulfonate revealed that the hydrophobicity of the type A and E NTs were higher at pH 9.0 than at pH 6.0. Also, the hydrophobicity of the dichain type E NT was higher than its precursor the single chain protein and appeared similar to that of the dichain type A NT. The CD and fluorescence studies indicate that conversion of the single chain type E NT to the dichain form (i.e. nicking by trypsin) induced changes in conformation. The ordered secondary structure (a + β contents) of botulinum NT, 70% for type A and 67% for dichain type E, agree well with 65% of α + β contents of tetanus toxin [21] that is produced byClostridium tetani.  相似文献   

18.
The botulinum neurotoxin (BoNT) is the most lethal protein known to man causing the deadly disease botulinum. The neurotoxin, composed of a heavy (HC) and light (LC) chain, work in concert to cause muscle paralysis. A therapeutic strategy to treat individuals infected with the neurotoxin is inhibiting the catalytic activity of the BoNT LC. We report the synthesis, inhibition study and computational docking analysis of novel small molecule BoNT/A LC inhibitors. A structure activity relationship study resulted in the discovery of d-isoleucine functionalized with a hydroxamic acid on the C-terminal and a biphenyl with chlorine at C- 2 connected by a sulfonamide linker at the N-terminus. This compound has a measured IC50 of 0.587 µM for the BoNT/A LC. Computational docking analysis indicates the sulfonamide linker adopts a geometry that is advantageous for binding to the BoNT LC active site. In addition, Arg363 is predicted to be involved in key binding interactions with the scaffold in this study.  相似文献   

19.
Botulinum neurotoxin serotypes A, B and E were modified at pH 7.9 with tetranitromethane, a reagent highly specific for tyrosine residues. The type B and E neurotoxins were completely detoxified without significant damage to their serological activities. Under similar modification conditions, the type A neurotoxin was incompletely detoxified with some alteration in its serological reactivity. Modification of only tyrosine residues to nitrotyrosine was evident from amino acid analysis of the acid hydrolysates of the modified proteins. The completely detoxified type B and E neurotoxins, used as toxoid, elicited antibodies in rabbits. The antisera precipitated and neutralized the homologous neurotoxin. The two toxoids, type B and E, were prepared with >99% pure neurotoxins as tested by sodium dodecyl sulfate-polyacrylamide gel electrophoresis whereas the traditional toxoids produced with formaldehyde are very crude preparations of the neurotoxin ( 90% impure). Chemical modification using tetranitromethane is more specific than products that form during 7 days of reaction between a protein and formaldehyde. The toxoids produced with tetranitromethane may be considered second-generation toxoids, compared with the first-generation toxoids (crude preparation of neurotoxins detoxified with formaldehyde).  相似文献   

20.
A sensitive and specific immunoassay for the simultaneous detection of Clostridium botulinum type C (BoNT/C) and type D neurotoxin was developed. Goat anti-mouse immunoglobulin G was bound to polyethylene disks in a small disposable column used for this assay. The sample was preincubated together with monoclonal antibodies specific for the heavy chain of BoNT/C and D and affinity-purified, biotinylated polyclonal antibodies against these neurotoxins. This complex was captured on the assay disk. Streptavidin-poly-horseradish peroxidase was used as a conjugate, and a precipitating substrate allowed the direct semiquantitative readout of the assay, if necessary. For a more accurate quantitative detection, the substrate can be eluted and measured in a photometer. Depending on the preincubation time, a sensitivity of 1 mouse lethal dose ml(-1) was achieved in culture supernatants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号