首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.  相似文献   

2.
The dissimilatory adenosine-5′-phosposulfate reductase is a key enzyme of the microbial sulfate reduction and sulfur oxidation processes. Because the alpha- and beta-subunit-encoding genes, aprBA, are highly conserved among sulfate-reducing and sulfur-oxidizing prokaryotes, they are most suitable for molecular profiling of the microbial community structure of the sulfur cycle in environment. In this study, a new aprA gene-targeting assay using a combination of PCR and denaturing gradient gel electrophoresis is presented. The screening of sulfate-reducing and sulfur-oxidizing reference strains as well as the analyses of environmental DNA from diverse habitats (e.g., microbial mats, invertebrate tissue, marine and estuarine sediments, and filtered hydrothermal water) by the new primer pair revealed an improved microbial diversity coverage and less-pronounced template-to-PCR product bias in direct comparison to those of the previously published primer set (B. Deplancke, K. R. Hristova, H. A. Oakley, V. J. McCracken, R. Aminov, R. I. Mackie, and H. R. Gaskins, Appl. Environ. Microbiol. 66:2166-2174, 2000). The concomitant molecular detection of sulfate-reducing and sulfur-oxidizing prokaryotes was confirmed. The new assay was applied in comparison with the 16S rRNA gene-based analysis to investigate the microbial diversity of the sulfur cycle in sediment, seawater, and manganese crust samples from four study sites in the area of the Lesser Antilles volcanic arc, Caribbean Sea (Caribflux project). The aprA gene-based approach revealed putative sulfur-oxidizing Alphaproteobacteria of chemolithoheterotrophic lifestyle to have been abundant in the nonhydrothermal sediment and water column. In contrast, the sulfur-based microbial community that inhabited the surface of the volcanic manganese crust was more complex, consisting predominantly of putative chemolithoautotrophic sulfur oxidizers of the Betaproteobacteria and Gammaproteobacteria.  相似文献   

3.
The importance of the ectomycorrhiza symbiosis for plant acquisition of phosphorus and nitrogen is well established whereas its contribution to sulfur nutrition is only marginally understood. In a first step to investigate the role of ectomycorrhiza in plant sulfur nutrition, we characterized sulfate and glutathione uptake in Laccaria bicolor. By studying the regulation of sulfate uptake in this ectomycorrhizal fungus, we found that in contrast to bacteria, yeast, and plants, sulfate uptake in L. bicolor was not feedback-inhibited by glutathione. On the other hand, sulfate uptake was increased by sulfur starvation as in other organisms. The activity of 3′-phosphoadenosine 5′-phosphosulfate reductase, the key enzyme of the assimilatory sulfate reduction pathway in fungi, was increased by sulfur starvation and decreased after treatment with glutathione revealing an uncoupling of sulfate uptake and reduction in the presence of reduced sulfur compounds. These results support the hypothesis that L. bicolor increases sulfate supply to the plant by extended sulfate uptake and the plant provides the ectomycorrhizal fungus with reduced sulfur.  相似文献   

4.
Plants play a prominent role as sulfur reducers in the global sulfur cycle. Sulfate, the major form of inorganic sulfur utilized by plants, is absorbed and transported by specific sulfate transporters into plastids, especially chloroplasts, where it is reduced and assimilated into cysteine before entering other metabolic processes. How sulfate is transported into the chloroplast, however, remains unresolved; no plastid‐localized sulfate transporters have been previously identified in higher plants. Here we report that SULTR3;1 is localized in the chloroplast, which was demonstrated by SULTR3;1‐GFP localization, Western blot analysis, protein import as well as comparative analysis of sulfate uptake by chloroplasts between knockout mutants, complemented transgenic plants, and the wild type. Loss of SULTR3;1 significantly decreases the sulfate uptake of the chloroplast. Complementation of the sultr3;1 mutant phenotypes by expression of a 35S‐SULTR3;1 construct further confirms that SULTR3;1 is one of the transporters responsible for sulfate transport into chloroplasts.  相似文献   

5.
Concentrations of various sulfur compounds (SO42−, H2S, S0, acid-volatile sulfide, and total sulfur) were determined in the profundal sediments and overlying water column of a shallow eutrophic lake. Low concentrations of sulfate relative to those of acid-volatile sulfide and total sulfur and a decrease in total sulfur with sediment depth implied that the contribution of dissimilatory sulfur reduction to H2S production was relatively minor. Addition of 1.0 mM Na235SO4 to upper sediments in laboratory experiments resulted in the production of H235S with no apparent lag. Kinetic experiments with 35S demonstrated an apparent Km of 0.068 mmol of SO42− reduced per liter of sediment per day, whereas tracer experiments with 35S indicated an average turnover time of the sediment sulfate pool of 1.5 h. Total sulfate reduction in a sediment depth profile to 15 cm was 15.3 mmol of sulfate reduced per m2 per day, which corresponds to a mineralization of 30% of the particulate organic matter entering the sediment. Reduction of 35S0 occurred at a slower rate. These results demonstrated that high rates of sulfate reduction occur in these sediments despite low concentrations of oxidized inorganic compounds and that this reduction can be important in the anaerobic mineralization of organic carbon.  相似文献   

6.
In freshwater systems, contributions of chemosynthetic products by sulfur-oxidizing bacteria in sediments as nutritional resources in benthic food webs remain unclear, even though chemosynthetic products might be an important nutritional resource for benthic food webs in deep-sea hydrothermal vents and shallow marine systems. To study geochemical aspects of this trophic pathway, we sampled sediment cores and benthic animals at two sites (90 and 50 m water depths) in the largest freshwater (mesotrophic) lake in Japan: Lake Biwa. Stable carbon, nitrogen, and sulfur isotopes of the sediments and animals were measured to elucidate the sulfur nutritional resources for the benthic food web precisely by calculating the contributions of the incorporation of sulfide-derived sulfur to the biomass and of the biogeochemical sulfur cycle supporting the sulfur nutritional resource. The recovered sediment cores showed increases in 34S-depleted sulfide at 5 cm sediment depth and showed low sulfide concentration with high δ34S in deeper layers, suggesting an association of microbial activities with sulfate reduction and sulfide oxidation in the sediments. The sulfur-oxidizing bacteria may contribute to benthic animal biomass. Calculations based on the biomass, sulfur content, and contribution to sulfide-derived sulfur of each animal comprising the benthic food web revealed that 58%–67% of the total biomass sulfur in the benthic food web of Lake Biwa is occupied by sulfide-derived sulfur. Such a large contribution implies that the chemosynthetic products of sulfur-oxidizing bacteria are important nutritional resources supporting benthic food webs in the lake ecosystems, at least in terms of sulfur. The results present a new trophic pathway for sulfur that has been overlooked in lake ecosystems with low-sulfate concentrations.  相似文献   

7.
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate – including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data – as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non‐phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.  相似文献   

8.
The S cycle in the water column of a small, soft-water lake was studied for 9 years as part of an experimental study of the effects of acid rain on lakes. The two basins of the lake were artificially separated, and one basin was experimentally acidified with sulfuric acid while the other served as a reference or control. Spatial and seasonal patterns of sulfate uptake by plankton (53–70 mmol m–2 yr–1), deposition of sulfur to sediments in settling seston (53 mmol m–2 yr–1), and sulfate diffusion (0–39 mmol m–2 yr–1) into sediments were examined. Measurements of inputs (12–108 mmol m–2 yr–1) and outputs (5.5–25 mmol m–2 yr–1) allowed construction of a mass balance that was then compared with rates of S accumulation in sediments cores (10–28 mmol m–2 yr–1) and measured fluxes of S into the sediments. Because of the low SO4 2– concentrations (µmole L–1) in the lake, annual uptake by plankton (53–70 mmol m–2 yr–1) represented a large fraction (>50%) of the SO4 2– inventory in the lake. Despite this large flux through the plankton, only small seasonal fluctuations in SO4 2– concentrations (µmole L–1) were observed; rapid mineralization of organic matter (half-life <3 months) prevented sulfate depletion in the water column. The turnover time for sulfate in the water column is only 1.4 yr; much less than the 11-yr turnover time of a conservative ion in this seepage lake. Sulfate diffusion into and reduction in the sediments (0–160 µmole m–2 d–1) caused SO4 2– depletion in the hypolimnion. Modeling of seasonal changes in lake-water SO4 2– concentrations indicated that only 30–50% of the diffusive flux of sulfate to the sediments was permanently incorporated in solid phases, and about 15% of sulfur in settling seston was buried in the sediments. The utility of sulfur mass balances for seepage lakes would be enhanced if uncertainty about the deposition velocity for both sulfate aerosols and SO2, uncertainty in calculation of a lake-wide rate of S accumulation in sediments, and uncertainty in the measured diffusive fluxes could be further constrained.  相似文献   

9.
Ivanov  M. V.  Rusanov  I. I.  Pimenov  N. V.  Bairamov  I. T.  Yusupov  S. K.  Savvichev  A. S.  Lein  A. Yu.  Sapozhnikov  V. V. 《Microbiology》2001,70(5):583-593
In the beginning of the summer of 1999, complex microbiological and biogeochemical investigations of meromictic Lake Mogil'noe (Kil'din Island, Barents Sea) were carried out. The analysis of the results shows a clearly pronounced vertical zonality of the microbial processes occurring in the water column of the lake. To a depth of 8 m, the total number and activity of microorganisms was limited by the relatively low content of organic matter (OM). In the upper part of the hydrogen-sulfide zone of the lake (beginning at a depth of 8.25 m), the content of particulate OM and the microbial number sharply increased. In this zone, the daily production of OM during anaerobic photosynthesis at the expense of massive development of colored sulfur bacteria reached 620 mg C/m2, which was twofold greater than the daily production of phytoplankton photosynthesis and led to a considerable change in the isotopic composition (13C) of the particulate OM. In the same intermediate layer, the highest rates of sulfate reduction were recorded, and fractionation of stable sulfur isotopes occurred. Below 10 m was the third hydrochemical zone, characterized by maximum concentrations of H2S and CH4and by a relatively high rate of autotrophic methanogenesis. The comparison of the results obtained with the results of investigations of previous years, performed in the end of summer, shows a decrease in the intensity of all microbial processes inspected. An exception was anoxygenic photosynthesis, which can utilize not only the de novo formed H2S but also the H2S accumulated in the lake during the winter period.  相似文献   

10.
Microbial sulfate reduction is among the most ubiquitous metabolic processes on earth. The oldest evidence of microbial sulfate reduction appears in the ca. 3.5 Ga Dresser Formation in the North Pole area of Pilbara Craton in Western Australia. That evidence was found through analysis of quadruple sulfur isotopes of sulfate and sulfide minerals deposited on the seafloor. However, the activity of microbial sulfate reduction below the Archean seafloor remains poorly understood. Here, we report the quadruple sulfur isotopic compositions of sulfide minerals within hydrothermally altered seafloor basalt and less altered basaltic komatiite collected from the North Pole Dome area. The Δ33S values of the sulfide minerals were nonzero negative, suggesting that sulfate reduction occurred below the Archean seafloor. To constrain the substrate sulfate sources and sulfate reduction processes, we constructed a numerical model. Comparing the modeled and observed sulfur isotopes, we show that the substrate sulfate comprises seawater sulfate with a negative Δ33S anomaly and 34S‐enriched sulfate with no anomalous Δ33S. The latter component probably represents sulfate produced by local hydrothermal processes. The maximum sulfur isotopic fractionation between the putative substrate sulfate and the observed sulfide minerals within the altered basalt and basaltic komatiite is 35‰, which is consistent with a microbial origin. Alternatively, thermochemical sulfate reduction may also produce sulfide. However, considering the hydrothermal temperature inferred from the metamorphic grade of the altered basalt, the sulfur isotopic fractionation produced by inorganic sulfate reduction is probably below 20‰. Collectively, larger fractionations imply the involvement of biological sulfate reduction processes, both in the hydrothermal system below the seafloor and in less altered subsurface settings.  相似文献   

11.
Iron- and sulfate-reducing microorganisms play an important role for alkalinity-generating processes in mining lakes with low pH. In the acidic mining lake 111 in Lusatia, Germany, a passive in situ remediation method was tested in a large scale experiment, in which microbial iron and sulfate reduction are stimulated by addition of Carbokalk (a mixture of the nonsugar compounds of sugar beets and lime) and straw. The treated surface sediment consisted of three layers of different pH and geochemical composition. The top layer was acidic and rich in Fe(III), the second and third layer both showed moderately acidic to circum-neutral pH values, but only the second was rich in organics, strongly reduced and sulfidic. Aim of the study was to elucidate the relative importance of neutrophilic heterotrophic, acidophilic heterotrophic, and acidophilic autotrophic iron-reducing microorganisms in each of the three layers. In order to distinguish between them, the effect of their respective characteristic electron donors acetate, glucose, and elemental sulfur on potential iron reduction rates was investigated. Limitation of iron reduction by the availability of Fe(III) was revealed by the addition of Fe(OH)3. The three groups of iron-reducing microorganisms were quantified by most probable number (MPN) technique and their community composition was analyzed by cloning and sequencing of 16S rRNA genes. In the acidic surface layer, none of the three electron donors stimulated iron reduction; acetate even had an inhibiting effect. In agreement with this, no decrease of the added electron donors was observed. Iron reduction rates were low in comparison to the other layers. Iron reduction in layers 2 and 3 was enhanced by glucose and acetate, accompanied by a decrease of these electron donors. Addition of elemental sulfur did not enhance iron reduction in either layer. Layer 2 exhibited the highest iron reduction rate (4.08 mmol dm−3d−1) and the highest cell numbers in MPN media. In MPN enrichments from all layers, Acidithiobacillus-like sequences were frequent. In addition to these, sequences related to Fulvimonas and Clostridium dominated in layer 1. MPN enrichments of layer 2 were diverse, containing Rhodocyclaceae-related sequences and surprisingly low numbers of Geobacteraceae. In layer 3, Sulfobacillus and Trichococcus spp. were also important. It was concluded that in the surface layer mainly acidophilic, probably autotrophic and heterotrophic, iron reducers were active, whereas in layers 2 and 3 mainly neutrophilic heterotrophs were important for iron reduction. These differ from well-studied Fe(III) reducers in other environments, so they deserve further study. The potential for acid-producing sulfur-driven Fe(III) reduction seemed not to be critical for in situ remediation.  相似文献   

12.
Experimental acidification of a softwater lake to below pH 5 fundamentally changed the sulfur cycle and lowered internal alkalinity generation (IAG). Prior to reaching pH 4.5, the balance of sulfur reduction and oxidation reactions within the lake was in favour of reduction, and the lake was a net sink for sulfate. In the four years at pH 4.5 the balance of reduction and oxidation reactions was in favour of oxidation, and there was a net production of sulfate (SO4 2–) within the lake. Evidence indicating a decrease in net SO4 2– reduction at pH 4.5 was also obtained in an anthropogenically acidified lake that had been acidified for many decades. In both lakes, the decrease in net SO4 2– reduction appeared to be linked not to a simple inhibition of SO4 2– reduction but rather to changes in benthic ecosystem structure, especially the development of metaphytic filamentous green algae, which altered the balance between SO4 2– reduction and sulfur oxidation.At pH's above 4.5, net SO4 2– reduction was the major contributor to IAG in the experimental lake, as it is in many previously studied lakes at pH 5 and above. At pH 4.5, the change in net annual SO4 2– reduction (a decrease of 110%) resulted in a 38% decrease in total IAG. Because of the important role of net SO4 2– reduction in acid neutralization in softwater lakes, models for predicting acidification and recovery of lakes may need to be modified for lakes acidified to pH <5.  相似文献   

13.
14.
The net mineralization of organic sulfur compounds in surface sediments of Wintergreen Lake was estimated from a mass-balance budget of sulfur inputs and sediment sulfur concentrations. The net mineralization of organic sulfur inputs is <50% complete, which is consistent with the dominance of organic sulfur (>80% of total sulfur) in sediment. Although sediment sulfur is predominantly organic, sulfate reduction is the most significant process in terms of the quantities of sulfur transformed in surface sediments. Rates of sulfate reduction in these sediments average 7 mmol/m2 per day. On an annual basis, this rate is 19-fold greater than net rates of organic sulfur mineralization and 65-fold greater than sulfate ester hydrolysis.  相似文献   

15.
Sulfur is required for the biosynthesis of cysteine, methionine and numerous other metabolites, and thus is critical for cellular metabolism and various growth and developmental processes. Plants are able to sense their physiological state with respect to sulfur availability, but the sensor remains to be identified. Here we report the isolation and characterization of two novel allelic mutants of Arabidopsis thaliana, sel1‐15 and sel1‐16, which show increased expression of a sulfur deficiency‐activated gene βglucosidase 28 (BGLU28). The mutants, which represent two different missense alleles of SULTR1;2, which encodes a high‐affinity sulfate transporter, are defective in sulfate transport and as a result have a lower cellular sulfate level. However, when treated with a very high dose of sulfate, sel1‐15 and sel1‐16 accumulated similar amounts of internal sulfate and its metabolite glutathione (GSH) to wild‐type, but showed higher expression of BGLU28 and other sulfur deficiency‐activated genes than wild‐type. Reduced sensitivity to inhibition of gene expression was also observed in the sel1 mutants when fed with the sulfate metabolites Cys and GSH. In addition, a SULTR1;2 knockout allele also exhibits reduced inhibition in response to sulfate, Cys and GSH, consistent with the phenotype of sel1‐15 and sel1‐16. Taken together, the genetic evidence suggests that, in addition to its known function as a high‐affinity sulfate transporter, SULTR1;2 may have a regulatory role in response to sulfur nutrient status. The possibility that SULTR1;2 may function as a sensor of sulfur status or a component of a sulfur sensory mechanism is discussed.  相似文献   

16.
Sediment fluxes were studied in the subtropical Lake Kinneret (Israel) in 2006, 2007, and 2008 from mid-June to October, when lake was chemically stratified and the green sulfur bacterium Chlorobium phaeobacteroides formed a dense population in the anoxic metalimnion. The rate of seston accumulation in traps was measured with sedimentation traps positioned along an offshore transect connecting the littoral zone and lake center. The sediment fluxes increased from the lake center towards the littoral, while the percentage of organic material (OM) decreased correspondingly. High fluxes of bacteriochlorophyll e (BChl e—a signature pigment of Chl. phaeobacteroides) and chlorophyll a (Chl a—a marker for eukaryotic algae and cyanobacteria) were detected in all locations. The relative contributions of Chl a and BChl e to the bulk of the accumulated OM were higher in traps positioned below the thermocline in the pelagic zone than in traps located near the shore line. The presence of BChl e in traps exposed to oxic conditions in the littoral, where Chl. phaeobacteroides does not develop, implies horizontal translocation of cells from the lake center towards its periphery. We assume that seiche-mediated movement of particles embedded in the metalimnetic waters is the most probable explanation for the existence of Chl. phaeobacteroides tracer in an oxic environment, but do not exclude the possibility of resuspension of settled particles as source for BChl e in littoral traps. The green sulfur bacteria are potentially important component of the sediment flux of photosynthesizing organisms in a thermally stratified lake and should be taken into account when carbon budget are constructed.  相似文献   

17.
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.  相似文献   

18.
We report a study of nitrogenase activity (acetylene reduction) and hydrogen gas metabolism in intact smooth cyanobacterial mats from Hamelin Pool, Shark Bay, Western Australia. The predominant cyanobacterial population in these mats is Microcoleus chthonoplastes. The mats had a significant capacity for nitrogen fixation, predominantly attributable to the photosyn‐thetic component. By physical and chemical perturbation we revealed an active hydrogen metabolism within the mats. Most of the H2 formation was attributed to fermentative processes, whereas hydrogen was consumed in light‐dependent, together with oxygen‐ and sulfate‐dependent respiratory processes. It was concluded that H2 formed by fermentative bacteria in the dark drives a significant proportion of sulfate reduction in the mats, but there was little H2 transfer from the cyanobacteria to the sulfate‐reducing bacteria. Thus photosynthetically produced H2 gas is unlikely to significantly alter the previously measured carbon: sulfur ratio relating photosynthesis to sulfate reduction.  相似文献   

19.
At two stations surveyed in Nitinat Lake, a ~200‐m‐deep anoxic tidal fjord, sulfide was detected as close as 15 m from the surface. Biological characterization, determined from small subunit ribosomal RNA gene sequencing, of the chemocline and anaerobic zone revealed many sequences related to sulfur‐oxidizing bacteria, suggesting that sulfur cycling is a dominant process. γ‐ and ε‐Proteobacteria related to thiotrophic symbionts, as well as Chlorobium sp., dominated the transition zone. These are expected to play a role in dark and phototrophic CO2 fixation, respectively. ε‐Proteobacteria phylotype abundance increased with depth, eventually comprising 69–97% of all sequences recovered from the anoxic zone. The vast majority (74%) of these phylotypes were affiliated with a novel Acrobacter sp. group (NITEP5). Quantification of NITEP5 revealed that up to 2.8 × 105 cells ml?1 were present in the anoxic zone. Surprisingly, although sequences related to known sulfate‐reducing bacteria were recovered from the transition zone, quantification of the dsr gene and 35SO42? uptake tests suggest that sulfate‐reduction within the water column is negligible. Overall, sequence diversity between different vertical zones was high, although the spatial segregation of γ‐Proteobacteria, Chlorobi, and ε‐Proteobacteria did not appear to vary significantly between seasons.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号