首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bird-pollinated flowers are known to secrete relatively dilute nectars (with concentrations averaging 20–25% w/w). Many southern African plants that are pollinated by passerine birds produce nectars with little or no sucrose. Moreover, these hexose nectars are extremely dilute (10–15%). This suggests a link between sugar composition and nectar concentration. Nectar originates from sucrose-rich phloem sap, and the proportion of monosaccharides depends on the presence and activity of invertase in the nectary. Hydrolysis of sucrose increases nectar osmolality and the resulting water influx can potentially convert a 30% sucrose nectar into a 20% hexose nectar, with a 1.56 times increase in volume. Hydrolysis may also increase the gradient for sucrose transport and thus the rate of sugar secretion. When sucrose content and refractometer data were compared, some significant correlations were seen, but the occurrence of sucrose-rich or hexose-rich nectars can also be explained on phylogenetic grounds (e.g. Erythrina and Protea). Hexose nectars may be abundant enough to drip from open flowers, but evaporation leads to much variability in nectar concentration and increases the choices available to pollinators.  相似文献   

2.

Background and Aims

The mechanisms of floral nectar production in buckwheat (Fagopyrum esculentum, Polygonaceae), a distylous pseudo-cereal, have received relatively little attention, prompting an investigation of the factors that regulate this process. The aim was to perform a refined study of the structures that secrete nectar and of the internal and external parameters influencing nectar volumes and sugar concentrations.

Methods

In order to control environmental parameters, plants were cultivated in growth rooms under controlled conditions. The structure of nectaries was studied based on histological sections from flowers and flower buds. Nectar was extracted using glass micropipettes and the sugar concentration was measured with a hand refractometer. Sugar concentration in the phloem sap was measured using the anthrone method. To test the influence of photosynthesis on nectar production, different light and defoliation treatments were applied.

Key Results

Unicellular trichomes were located in the epidermis at the ventral part of eight nectary glands situated on the flower receptacle alternately with stamens. Vascular bundles consisting of both phloem and xylem were identified at the boundary between a multilayered nectary parenchyma and a sub-nectary parenchyma with chloroplasts. A higher volume of nectar in thrum morphs was observed. No other difference was found in morphology or in sugar supply to inflorescences between morphs. Nectar secretion was strongly influenced by plant age and inflorescence position. Nectar volumes were higher in the upper inflorescences and during the flowering peak. Light had a dual role, (1) acting directly on reproductive structures to trigger flower opening, which conditions nectar secretion, and (2) stimulating photosynthetic activity, which regulates nectar accumulation in open flowers.

Conclusions

In buckwheat, nectar is secreted by trichomes and probably proceeds, at least in part, from phloem sap. Nectar secretion is strongly influenced by floral morph type, plant age, inflorescence position and light.Key words: Buckwheat, distyly, Fagopyrum esculentum, inflorescence position, morph comparisons, nectary histology, nectar sugar concentration, nectar volume, light intensity, organ biomass, phloem sap, plant age  相似文献   

3.

Background

Floral nectar contains sugars and amino acids to attract pollinators. In addition, nectar also contains different secondary compounds, but little is understood about their origin or function. Does nectar composition reflect phloem composition, or is nectar synthesized and/or modified in nectaries? Studies where both, the nectar as well as the phloem sap taken from the same plant species were analyzed in parallel are rare. Therefore, phloem sap and nectar from different plant species (Maurandya barclayana, Lophospermum erubescens, and Brassica napus) were compared.

Methodology and Principal Findings

Nectar was collected with microcapillary tubes and phloem sap with the laser-aphid-stylet technique. The nectar of all three plant species contained high amounts of sugars with different percentages of glucose, fructose, and sucrose, whereas phloem sap sugars consisted almost exclusively of sucrose. One possible reason for this could be the activity of invertases in the nectaries. The total concentration of amino acids was much lower in nectars than in phloem sap, indicating selective retention of nitrogenous solutes during nectar formation. Nectar amino acid concentrations were negatively correlated with the nectar volumes per flower of the different plant species. Both members of the tribe Antirrhineae (Plantaginaceae) M. barclayana and L. erubescens synthesized the iridoid glycoside antirrhinoside. High amounts of antirrhinoside were found in the phloem sap and lower amounts in the nectar of both plant species.

Conclusions/Significance

The parallel analyses of nectar and phloem sap have shown that all metabolites which were found in nectar were also detectable in phloem sap with the exception of hexoses. Otherwise, the composition of both aqueous solutions was not the same. The concentration of several metabolites was lower in nectar than in phloem sap indicating selective retention of some metabolites. Furthermore, the existence of antirrhinoside in nectar could be based on passive secretion from the phloem.  相似文献   

4.
The nectary structure and chemical nectar composition of 15 species belonging to 12 genera ofBignoniaceae are analyzed. All taxa bear a conspicuous nuptial nectary surrounding the ovary base. The secretory tissue is mostly supplied by phloem branches. The stomata are located in the middle and upper part of the nectary epidermis with an homogeneous distribution. The nuptial nectary is proportionally large in relation to the ovary (15–30%), disregarding the nectary volume. Most species have extranuptial nectaries in both inner and outer surfaces of the calyx. Both kinds of nectaries lack a vascular tissue that straightly supplies them. Nuptial nectar concentration (wt/wt) ranges from 19 to 68%. Sugars and amino acids are found in all species. Half of the species have hexose predominant nectars, the remaining sucrose predominant. Phenols are detected in only three species, whereas reducing acids exclusively inTecoma stans. Alkaloids and lipids were never detected. Extranuptial nectar chemical composition is analyzed in two species:Dolichandra cynanchoides andPodranea ricasoliana. Bees constitute the main flower visitors of the species studied whereas hummingbirds were seen visiting three species. A correlation analysis is performed with the data obtained. There are a few significant correlations which indicate a parallel increase of three parameters: the longer the flower length, the more voluminous the nectary and the higher stomata number, independently of the floral biotype. Phenograms are obtained using 24 floral characters including nectary and nectar data. The clusters obtained do not reflect taxonomic relationships but are useful in the understanding of animal-plant interactions when the flower biotype is considered.This paper is based on a chapter of a doctoral thesis presented at the University of Córdoba (Argentina).  相似文献   

5.
Surface features, anatomy, and ultrastructure of the floral nectary of Eccremocarpus scaber (Bignoniaceae), pollinated predominantly by the largest-known hummingbird (Patagona gigas gigas), were studied together with nectar sugar content and secretion rate. The annular disk nectary comprises epidermis, secretory and ground parenchyma with intercellular spaces, and branched vascular bundles terminating in the secretory parenchyma where only phloem is found. Amyloplasts and vacuoles increase in size throughout development, the latter becoming sites of organelle degradation. Transferlike cells in nectary phloem and P-proteinlike fibrillar material in phloem parenchyma were observed. Flowers produced around 32 μl of nectar (mostly after anthesis) with 11 mg of sugar composed of fructose, glucose, sucrose, and maltose in a ratio of 0.34:0.32:0.17:0.17. Morphological studies as well as the presence of maltose and glucose in nectar suggest storage of the originally phloem-derived sugars as starch with its subsequent hydrolysis. The low sucrose/hexose ratio (0.25) and high nectary secretion force (nectar per flower biomass) observed places E. scaber close to large-bodied bat-pollinated plants. A hypothesis based on nectar origin and nectar secretion is advanced to explain pollinator-correlated variation in sucrose/hexose ratio.  相似文献   

6.
The data relating to the nectaries and nectar secretion in invasive Brassicacean taxa are scarce. In the present paper, the nectar production and nectar carbohydrate composition as well as the morphology, anatomy and ultrastructure of the floral nectaries in Bunias orientalis were investigated. Nectary glands were examined using light, fluorescence, scanning electron and transmission electron microscopy. The quantities of nectar produced by flowers and total sugar mass in nectar were relatively low. Total nectar carbohydrate production per 10 flowers averaged 0.3 mg. Nectar contained exclusively glucose (G) and fructose (F) with overall G/F ratio greater than 1. The flowers of B. orientalis have four nectaries placed at the base of the ovary. The nectarium is intermediate between two nectary types: the lateral and median nectary type (lateral and median glands stay separated) and the annular nectary type (both nectaries are united into one). Both pairs of glands represent photosynthetic type and consist of epidermis and glandular tissue. However, they differ in their shape, size, secretory activity, dimensions of epidermal and parenchyma cells, thickness of secretory parenchyma, phloem supply, presence of modified stomata and cuticle ornamentation. The cells of nectaries contain dense cytoplasm, plastids with starch grains and numerous mitochondria. Companion cells of phloem lack cell wall ingrowths. The ultrastructure of secretory cells indicates an eccrine mechanism of secretion. Nectar is exuded throughout modified stomata.  相似文献   

7.
J. Kuo  J. S. Pate 《Planta》1985,166(1):15-27
The cowpea bears two distinctive types of extrafloral nectaries. One, on the stipels of trifoliolate leaves, consists of a loosely demarcated abaxial area (1–2 mm diameter) of widely-spaced trichomes (papillae) borne on a stomata-free epidermis, and lacking a specific vascular supply. Each trichome has up to eight apical (head) cells, two to four intermediate cells, and a single large stalk cell. The secretory faces of the apical cells bear wall ingrowths and an easily detached cuticle. The wall separating the stalk cell and the underlying epidermal cell(s) has a mean plamodesmatal frequency of 25/m2. The second type of nectary consists of a large elliptical mound of tissue (short and long axes about 2 mm and 4 mm) formed between a pair of flowers on an inflorescence stalk. It comprises four to eight cone-shaped subnits of secretory tissue, each with a circular secretory orifice and an individual supply of phloem, but not of xylem. Cells of the secretory tissue of the nectary subunits separate as they mature, and nectar flows to the orifice through the resulting intercellular spaces. Intact secretory cells and cellular debris are extruded into the nectar. Some of the sieve elements terminating in the inner secretory tissue exhibit open sieve pores. Each mature secretory cell contains many small (2 m diameter) spherical protein bodies and one to three large (up to 2–3 m diameter 15 m long), paracrystalline bodies. These inclusions are absent or not fully developed in inner, less mature regions of the secretory tissue. Mechanisms of secretion are proposed for the two classes of nectary, including estimates of flux of sugar into the trichomes of the stipel nectary.  相似文献   

8.
P. J. Sharkey  J. S. Pate 《Planta》1976,128(1):63-72
Summary Diurnal changes in the carbohydrates of leaf laminae and fruits and in the bleeding of sugar and amino acids from fruit phloem were followed by successive sampling from a population of Lupinus albus L. plants. Phloem sap was collected for a standard 5 min period from cut distal tips of attached fruits. Daily fluctuations in leaf dry matter resulted largely from changes in starch and sugar. Leaf sugar rose to a maximum in the afternoon, starch to a maximum at, or shortly after, dusk. Leaves lost sugar and starch from dusk to dawn. Phloem bleeding rate varied little over a daily cycle but sucrose levels fluctuated from a noon maximum of 12–13% (w/v) to a dawn minimum of 9–10%. The rhythm of phloem sugar levels matched closely those of fruit and leaf. Phloem amino acid levels fluctuated in phase with that of sucrose: the relative composition of the amino fraction did not vary significantly over the daily cycle. Pulse feeding of source leaves with 14CO2 at different times in the photoperiod allowed study of the pattern of release of labelled photosynthate to the fruit phloem and the build up and depletion of 14C starch in leaves. Plants transferred to continuous darkness showed a rapid decline in output and concentration of phloem sap solutes, and translocated nitrogen to their fruits at only one quarter of the rate of control plants retained in natural daylight. The combined data from the experiments showed that the rate of output of sugar from cut phloem of a fruit was directly related to the current level of sugar in leaves. When leaf sugar levels were low (5–10 mg ml tissue water-1) sugar in phloem was 10–11 times more concentrated than in source leaves, but at high leaf sugar levels (25–30 mg ml-1) this concentration difference was only 3–4 fold.  相似文献   

9.
On the mechanisms of nectar secretion: revisited   总被引:1,自引:0,他引:1  

Background and Scope

Models of nectar formation and exudation in multilayered nectaries with modified stomata or permeable cuticle are evaluated. In the current symplasmic model the pre-nectar moves from terminal phloem through the symplasm into the apoplasm (cell walls and intercellular spaces) with nectar formation by either granulocrine or eccrine secretion and its diffusion outwards. It is concluded, however, that no secretory granules are actually produced by the endoplasmic reticulum, and that secretory Golgi vesicles are not involved in the transport of nectar sugar. Therefore, the concept of granulocrine secretion of nectar should be discarded. The specific function of the endomembrane system in nectary cells remains unknown. According to the apoplasmic model, the pre-nectar moves from the terminal phloem in the apoplasm and, on the way, is transformed from phloem sap into nectar. However, viewed ultrastructurally, the unloading (terminal) phloem of nectaries appears to be less active than that of the leaf minor veins, and is therefore not actively involved in the secretion of pre-nectar components into the apoplasm. This invalidates the apoplasmic model. Neither model provides an explanation for the origin of the driving force for nectar discharge.

Proposal

A new model is proposed in which nectar moves by a pressure-driven mass flow in the nectary apoplasm while pre-nectar sugars diffuse from the sieve tubes through the symplasm to the secretory cells, where nectar is formed and sugars cross the plasma membrane by active transport (‘eccrine secretion’). The pressure originates as the result of water influx in the apoplasm from the symplasm along the sugar concentration gradient. It follows from this model that there can be no combinations of apoplasmic and symplasmic pre-nectar movements. The mass-flow mechanism of nectar exudation appears to be universal and applicable to all nectaries irrespective of their type, morphology and anatomy, presence or absence of modified stomata, and their own vascular system.  相似文献   

10.
Summary Comparisons were made of the levels of various solutes in xylem (tracheal) sap and fruit tip phloem sap of Lupinus albus (L.) and Spartium junceum (L.). Sucrose was present at high concentration (up to 220 mg ml-1) in phloem but was absent from xylem whereas nitrate was detected in xylem (up to 0.14 mg ml-1) but not in phloem. Total amino acids reached 0.5–2.5 mg ml-1 (in xylem) versus 16–40 mg ml-1 in phloem. Phloem: xylem concentration ratios for mineral nutrients (K, Na, Mg, Ca, Fe, Zn, Mn, Cu) spanned the range 0.7 to 20, the ratios generally reflecting an element's phloem mobility and its availability to the xylem from the roots.The accessibility of nitrate to xylem and phloem was studied in Lupinus. Increasing the nitrate supply to roots from 100 to 1000 mg NO3–Nl-1 increased nitrate spill over into xylem, but nitrate always failed to appear in phloem. However, phloem loading of small amounts of nitrate was induced by feeding 750 or 1000 mg NO3–Nl-1 directly to cut shoots via the transpiration stream. Transfer of reduced nitrogen to phloem was demonstrated by feeding 15NO3 to shoots and recovering 15N-enriched amides and amino acids in phloem sap. Increased nitrate supply to roots led to increased amino acid levels in xylem and phloem but did not alter markedly the balance between individual amino acids.The fate of xylem-fed 14C-labelled asparagine, glutamine and aspartic acid and of photosynthetically fed 14CO2 was studied in Spartium, with reference to phloem transport to seeds. Substantial fractions of the 14C of all sources appeared in non-amino compounds. [14C]asparagine passed largely in unchanged form to the phloem whereas the 14C from aspartic acid or glutamine appeared in phloem attached to other amino acids (e.g. asparagine and glutamic acid). Serine, asparagine and glutamine were the main amino compounds labelled in phloem sap after feeding 14CO2. The wide distribution of 14C amongst free and bound amino acids of seeds suggested that extensive metabolism of phloem-borne solutes occurred in the fruits.  相似文献   

11.
A long-standing interest in cactus taxonomy has existed since the Linnaean generation, but an appreciation of the reproductive biology of cacti started early in the 1900s. Numerous studies indicate that plant reproductive traits provide valuable systematic information. Despite the extensive reproductive versatility and specializations in breeding systems coupled with the striking floral shapes, the reproductive biology of the Cactaceae has been investigated in approximately 10% of its species. Hence, the systematic value of architectural design and organization of internal floral parts has remained virtually unexplored in the family. This study represents the most extensive survey of flower and nectary morphology in the Cactaceae focusing on tribes Hylocereeae and Rhipsalideae (subfamily Cactoideae). Our objectives were (1) to conduct comparative morphological analyses of flowers and floral nectaries and (2) to compare nectar solute concentration in these two tribes consisting of holo- and semi-epiphytic species. Flower morphology, nectary types, and sugar concentration of nectar have strong taxonomic implications at the tribal, generic and specific levels. Foremost, three types of nectaries were found, namely chamber nectary (with the open and diffuse subtypes), furrow nectary (including the holder nectary subtype), and annular nectary. All Hylocereeae species possess chamber nectaries, in which the nectarial tissue has both trichomes and stomata. The Rhipsalideae are distinguished by two kinds of floral nectaries: furrow and annular, both nectary types with stomata only. The annular nectary type characterizes the genus Rhipsalis. Nectar concentration is another significant taxonomic indicator separating the Hylocereeae and Rhipsalideae and establishing trends linked to nectar sugar concentration and amount of nectar production in relation to flower size. There is an inverse relationship between flower size and amount of nectar production in the smaller Rhipsalideae flowers, in which nectar concentration is more than two-fold higher despite the smaller volume of nectar produced when compared to the large Hylocereeae flowers. Variability of nectary morphology and nectar concentration was also evaluated as potential synapomorphic characters in recent phylogenies of these tribes. In conclusion, our data provide strong evidence of the systematic value of floral nectaries and nectar sugar concentration in the Cactaceae, particularly at different taxonomic levels in the Hylocereeae and Rhipsalideae.  相似文献   

12.
通过解剖镜观察、石蜡切片和薄切片等方法,对芝麻菜的花蜜腺的位置、形态、结构、发育过程及泌蜜前后组织化学变化进行了研究。芝麻菜花蜜腺4枚,分成两对,其中一对侧蜜腺较大,棱柱状,分别着生在外轮2个短雄蕊基部内侧的花托上,结构上由表皮、产蜜组织和维管组织构成;另一对中蜜腺较小,近棒状,分别着生在内轮4个长雄蕊外侧的花托上,结构上仅由表皮和产蜜组织构成。二者表皮细胞外都具角质层,且蜜腺产蜜组织细胞中只含少量的多糖物质。两类蜜腺的蜜汁均由变态气孔泌出体外。无论侧蜜腺还是中蜜腺,蜜腺原基皆是在雌、雄蕊已分化后,由花托相应位置表皮下的1~2层细胞分裂形成的。在蜜腺发育中,产蜜组织细胞在泌蜜前后不具明显的液泡变化。  相似文献   

13.
Sucrose (2,5–1000 mmol l–1), labeled with [14C]sucrose, was taken up by the xylem when supplied to one end of a 30-cm-long leaf strip of Zea mays L. cv. Prior. The sugar was loaded into the phloem and transported to the opposite end, which was immersed in diluted Hoagland's nutrient solution. When the Hoagland's solution at the opposite end was replaced by unlabeled sucrose solution of the same molarity as the labeled one, the two solutions met near the middle of the leaf strip, as indicated by radioautographs. In the dark, translocation of 14C-labeled assimilates was always directed away from the site of sucrose application, its distance depending on sugar concentration and translocation time. When sucrose was applied to both ends of the leaf strip, translocation of 14C-labeled assimilates was directed toward the lower sugar concentration. In the light, transport of 14-C-labeled assimilates can be directed (1) toward the morphological base of the leaf strip only (light effect), (2) toward the base and away from the site of sucrose application (light and sucrose effect), or (3) away from the site of sucrose application independent of the (basipetal or acropetal) direction (sucrose effect). The strength of a sink, represented by the darkened half of a leaf strip, can be reduced by applying sucrose (at least 25 mmol l–1) to the darkened end of the leaf strip. However, equimolar sucrose solutions applied to both ends do not affect the strength of the dark sink. Only above 75 mmol l–1 sucrose was the sink effect of the darnened part of the leaf strip reduced. Presumably, increasing the sucrose concentration replenishes the leaf tissue more rapidly, and photosynthates from the illuminated part of the leaf strip are imported to a lesser extent by the dark sink.Supported by Deutsche Forschungsgemeinschaft  相似文献   

14.
The occurrence, morphology, ontogeny, structure and preliminary nectar analysis of floral and extrafloral nectaries are studied inKigelia pinnata of the Bignoniaceae. The extrafloral nectaries occur on foliage leaves, sepals and outer wall of the ovary, while the floral nectary is situated around the ovary base as an annular, massive, yellowish ring on the torus. The extrafloral nectaries originate from a single nectary initial. The floral nectary develops from a group of parenchymatous cells on the torus. The extrafloral nectaries are differentiated into multicellular foot, stalk and cupular or patelliform head. The floral nectary consists of parenchymatous tissue. The floral nectaries are supplied with phloem tissue. The secretion is copious in floral nectary. Function of the nectary, preliminary nectar analysis, and symbiotic relation between nectaries and animal visitors are discussed.  相似文献   

15.
Phloem-sap composition was studied in plants of Ricinus communis L. grown on a waterculture medium. The sap possessed a relatively high K+:Na+ ratio and low levels of Ca2+ and free H+. Sucrose and K+ (together with its associated anions) accounted for 75% of the phloem-sap solute potential (s). In plants kept in continuous darkness, a decrease in phloem-sap sucrose levels over 24h was accompanied by an increase in K+ levels. Measurements of phloem-sap s and xylem water potential () indicated that this resulted in a partial maintenance of phloem turgor pressure p. In darkness there was also a marked decrease in the malate content of the leaf tissue, and it is possible that organic carbon from this source was mobilized for export in the phloem. The results support the concept of the phloem sap as a symplastic phase. We interpret the increase in K+ levels in the phloem in darkness as an osmoregulatory response to conditions of restricted solute availability. This reponse can be explained on the basis of the sucrose-H+ co-transport mechanism of phloem loading.Abbreviations water potential - s solute potential - p pressure potential  相似文献   

16.
Haploid, diploid and tetraploid lines ofBrassica rapaL. (syn.campestris),and allotetraploidB. napusL., were examined to determine theinfluence of ploidy on floral features, particularly nectarymorphology and anatomy, and to relate nectary structure to nectarproduction capacity. Except for haploids, all lines were rapid-cycling.Average flower dry weight, and petal length and width, werein the descending orderB. napus>B. rapa (4n) >2n>n.Pollen grains of 4nplants were larger than those of 2nplants;haploids lacked pollen. All lines developed nectaries. Typically, each flower producedtwo pairs of nectaries, of different types and nectar productioncapacity. Normally, each lateral gland was located above thebase of a short stamen, and together this pair yielded mostof a flower 's nectar carbohydrate. Each median nectary aroseat the outer junction of the bases of two adjacent long stamens.All lateral nectaries received a vascular supply of phloem alone,but median glands received reduced amounts of phloem, or lackedvasculature altogether. Most nectaries were solitary, but 14%of all flowers, and especially those of 2n B. rapa,had at leastone median and lateral gland connected. Obvious variation existed in nectary morphology between ploidylevels, between flowers of the same plant, and even within flowers.Ten forms of each nectary type were recognized. Plants producingthe most nectar carbohydrate had high frequencies of lateralnectaries which were symmetrical, unfurrowed swellings. TetraploidsofB. rapahad both the highest frequencies of furrowed lateralglands, and of isolated segments of nectarial tissue at thatposition. Even these separated nectarial outgrowths receivedphloem and produced a nectar droplet. At the median location,nectaries were commonly of two forms: peg- or fan-shaped. Lobeson median nectaries, up to four per nectary, were detected inalmost half of glands of 4nflowers examined; lobes were absentin haploids. Brassica rapa; Brassica napus; flower size; nectar production; nectary variability; petal size; ploidyphloem; pollen; rapeseed  相似文献   

17.
  • Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism.
  • We investigated the influence of drought, different temperatures and light–dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined.
  • Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose‐to‐hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period.
  • Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant–pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.
  相似文献   

18.
Summary Phloem conductance of14C-labelled assimilates was investigated in natural stands of Norway spruce showing substantial damage from needle yellowing and needle loss disease. Terminal current-year shoots of a branch were allowed to fix14CO2 (300–600 ppm in air) and carbon dioxide net uptake was monitored with a gas analyser. The difference between14C-uptake and the amount of radiocarbon determined in the photosynthesizing needles was interpreted to reflect assimilate export from the needles to the axis of the tree. Compared with an undamaged control tree,14C-export from the assimilating needles was not impaired in the yellowing tree and only slightly reduced in the tree showing needle loss. Incorporation of14C into starch increased significantly during autumn particularly in the tree showing needle loss. Import of radiocarbon from the14C-labelled phloem sap in twig axes and needles older than 1 year was used as a measure of phloem conductivity of older sections of a branch which showed considerable damage. Carbon uptake by these older plant parts was more pronounced than in undamaged twigs. In the case of older needles enhancement of14C-incorporation suggested an increased sink strength, while the same phenomenon in the twig axes was interpreted as a consequence of partially impaired conductivity of individual sieve elements resulting in an inhomogeneous velocity of phloem transport. The hypothesis is put forward that curtailed viability of the sieve cells is responsible for a delay of transport, which is compensated for by an augmented production of phloem elements from the cambium.  相似文献   

19.
NEC1, a novel gene, highly expressed in nectary tissue of Petunia hybrida   总被引:2,自引:0,他引:2  
To study the molecular regulation of nectary development, we cloned NEC1, a gene predominantly expressed in the nectaries of Petunia hybrida, by using the differential display RT-PCR technique. The secondary structure of the putative NEC1 protein is reminiscent of a transmembrane protein, indicating that the protein is incorporated into the cell membrane or the cytoplast membrane. Immunolocalization revealed that NEC1 protein is present in the nectaries. Northern blot analyses showed that NEC1 is highly expressed in nectary tissue and weakly in the stamen. GUS expression driven by the NEC1 promoter revealed GUS activity in the outer nectary parenchyma cells, the upper part of the filament and the anther stomium. The same expression pattern was observed in Brassica napus. GUS expression was observed as blue spots on the surface of very young nectaries that do not secrete nectar and do accumulate starch. GUS expression was highest in open flowers in which active secretion of nectar and starch hydrolysis had taken place. Ectopic expression of NEC1 resulted in transgenic plants that displayed a phenotype with leaves having 3-4 times more phloem bundles in mid-veins than the wild-type Petunia. The possible role of NEC1 gene in sugar metabolism and nectar secretion is discussed.  相似文献   

20.
黄杨花单性,雌雄同株,雄花花蜜腺4枚,乳头状,着生于退化雌蕊子房顶部;雌花花蜜腺3枚,短柱状,位于3枚花柱之间。雌、雄花蜜腺均由分泌表皮、产蜜组织和维管束构成,在发育过程中产蜜组织细胞的液泡都发生有规律的变化。雌花蜜腺大,属非淀粉型蜜腺,泌蜜量大,蜜汁含糖分多,维管束中仅含韧皮部;雄花蜜腺小,属淀粉型蜜腺,泌蜜量小.蜜汁含糖量小,维管束由木质部和韧皮部构成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号