首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
2.
3.
Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4.  相似文献   

4.
5.
Notch signaling is essential for the development of T cell progenitors through the interaction of NOTCH1 receptor on their surface with the ligand, Delta-like 4 (DLL4), which is expressed by the thymic epithelial cells. Notch signaling is quickly shut down once the cells pass β-selection, and CD4/CD8 double positive (DP) cells are unresponsive to Notch. Over the past two decades a number of papers reported that over-activation of Notch signaling causes T cell acute lymphoblastic leukemia (T-ALL), a cancer that prominently features circulating monoclonal CD4/CD8 double positive T cells in different mouse models. However, the possible outcomes of Notch over-activation at different stages of T cell development are unknown, and the fine timing of Notch signaling that results in T-ALL is poorly understood. Here we report, by using a murine model that ectopically expresses DLL4 on developing T cells, that the T-ALL onset is highly dependent on a sustained Notch activity throughout the DP stage, which induces additional mutations to further boost the signaling. In contrast, a shorter period of Notch activation that terminates at the DP stage causes a polyclonal, non-transmissible lymphoproliferative disorder that is also lethal. These observations resolved the discrepancy of previous papers on DLL4 driven hematological diseases in mice, and show the critical importance of the timing and duration of Notch activity.  相似文献   

6.
Delta-like 3 (DLL3) is a member of the DSL family of Notch ligands in amniotes. In contrast to DLL1 and DLL4, the other Delta-like proteins in the mouse, DLL3 does not bind in trans to Notch and does not activate the receptor, but shows cis-interaction and cis-inhibitory properties on Notch signaling in vitro. Loss of the DSL protein DLL3 in the mouse results in severe somite patterning defects, which are virtually indistinguishable from the defects in mice that lack lunatic fringe (LFNG), a glycosyltransferase involved in modifying Notch signaling. Like LFNG, DLL3 is located within the trans-Golgi, however, its biochemical function is still unclear. Here, we show that i) both proteins interact, ii) epidermal growth factor like repeats 2 and 5 of DLL3 are O-fucosylated at consensus sites for POFUT1, and iii) further modified by FNG proteins in vitro. Embryos double homozygous for null mutations in Dll3 and Lfng are phenotypically indistinguishable from the single mutants supporting a potential common function. Mutation of the O-fucosylation sites in DLL3 does not disrupt the interaction of DLL3 with LFNG or full length Notch1or DLL1, and O-fucosylation-deficient DLL3 can still inhibit Notch in cis in vitro. However, in contrast to wild type DLL3, O-fucosylation-deficient DLL3 cannot compensate for the loss of endogenous DLL3 during somitogenesis in the embryo. Together our results suggest that the cis-inhibitory activity of DLL3 observed in cultured cells might not fully reflect its assumed essential physiological property, suggest that DLL3 and LFNG act together, and strongly supports that modification of DLL3 by O-linked fucose is essential for its function during somitogenesis.  相似文献   

7.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context.

This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC).

We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

8.
Ong CT  Sedy JR  Murphy KM  Kopan R 《PloS one》2008,3(7):e2823
Recent reports suggested that Delta1, 4 and Jagged1, 2 possessed the ability to instruct CD4+ T cell into selection of Th1 or Th2 fates, respectively, although the underlying mechanism endowing the cleaved Notch receptor with memory of ligand involved in its activation remains elusive. To examine this, we prepared artificial antigen-presenting cells expressing either DLL1 or Jag1. Although both ligands were efficient in inducing Notch2 cleavage and activation in CD4+ T or reporter cells, the presence of Lunatic Fringe in CD4+ T cells inhibited Jag1 activation of Notch1 receptor. Neither ligand could induce Th1 or Th2 fate choice independently of cytokines or redirect cytokine-driven Th1 or Th2 development. Instead, we find that Notch ligands only augment cytokine production during T cell differentiation in the presence of polarizing IL-12 and IL-4. Moreover, the differentiation choices of naïve CD4+ T cells lacking γ-secretase, RBP-J, or both in response to polarizing cytokines revealed that neither presenilin proteins nor RBP-J were required for cytokine-induced Th1/Th2 fate selection. However, presenilins facilitate cellular proliferation and cytokine secretion in an RBP-J (and thus, Notch) independent manner. The controversies surrounding the role of Notch and presenilins in Th1/Th2 polarization may reflect their role as genetic modifiers of T-helper cells differentiation.  相似文献   

9.
CCM3, a product of the cerebral cavernous malformation 3 or programmed cell death 10 gene (CCM3/PDCD10), is broadly expressed throughout development in both vertebrates and invertebrates. Increasing evidence indicates a crucial role of CCM3 in vascular development and in regulation of angiogenesis and apoptosis. Furthermore, loss of CCM3 causes inherited (familial) cerebral cavernous malformation (CCM), a common brain vascular anomaly involving aberrant angiogenesis. This study focused on signalling pathways underlying the angiogenic functions of CCM3. Silencing CCM3 by siRNA stimulated endothelial proliferation, migration and sprouting accompanied by significant downregulation of the core components of Notch signalling including DLL4, Notch4, HEY2 and HES1 and by activation of VEGF and Erk pathways. Treatment with recombinant DLL4 (rhDLL4) restored DLL4 expression and reversed CCM3‐silence‐mediated impairment of Notch signalling and reduced the ratio of VEGF‐R2 to VEGF‐R1 expression. Importantly, restoration of DLL4‐Notch signalling entirely rescued the hyper‐angiogenic phenotype induced by CCM3 silence. A concomitant loss of CCM3 and the core components of DLL4‐Notch signalling were also demonstrated in CCM3‐deficient endothelial cells derived from human CCM lesions (CCMEC) and in a CCM3 germline mutation carrier. This study defined DLL4 as a key downstream target of CCM3 in endothelial cells. CCM3/DLL4‐Notch pathway serves as an important signalling for endothelial angiogenesis and is potentially implicated in the pathomechanism of human CCMs.  相似文献   

10.
The Notch signaling pathway drives proliferation, differentiation, apoptosis, cell fate choices and maintenance of stem cells during embryogenesis and in self-renewing tissues of the adult. In addition, aberrant Notch signaling has been implicated in several tumors, where Notch can function both as an oncogene or a tumor-suppressor gene, depending on the context. This Extra View aims to review what is currently known about Notch signaling, in particular in gastrointestinal tumors, providing a summary of our data on Notch1 signaling in gastric cancer with results obtained in colorectal cancer (CRC). We have already reported that the epigenetic regulation of the Notch ligand DLL1 controls Notch1 signaling activation in gastric cancer, and that Notch1 inhibition is associated with the diffuse type of gastric cancer. Here, we describe additional data showing that in CRC cell lines, unlike gastric cancer, DLL1 expression is not regulated by promoter methylation. Moreover, in CRC, Notch1 receptor is not affected by any mutation. These data suggest a different regulation of Notch1 signaling between gastric cancer and CRC.  相似文献   

11.
摘要 目的:探究微小核糖核酸(miR)-152-3p调控果蝇Notch同源物1(Notch1)/Delta样配体4(DLL4)通路对家兔深II度烧伤创面血管生成的影响。方法:将50只新西兰家兔随机分为对照组、模型组、miR-152-3p拮抗剂(antagomir)组、miR-152-3p antagomir阴性对照+空载组、miR-152-3p antagomir+Notch1敲低组,每组10只,除对照组外其余各组家兔构建深II度烧伤模型,分组给药处理后,实时荧光定量聚合酶链式反应(qRT-PCR)检测各组家兔创面组织miR-152-3p与Notch1、DLL4 mRNA表达;检测各组家兔创面愈合率及微循环血流灌注值(MPD);免疫组织化学染色检测各组家兔创面微血管密度(MVD);酶联免疫吸附反应(ELISA)检测各组家兔血清血管内皮细胞生长因子(VEGF)及促血管生成素1(Ang1)水平;免疫印迹检测各组家兔创面组织VEGF、Ang1与Notch1/DLL4通路蛋白表达;双荧光素酶报告基因实验检测兔脐静脉内皮细胞中miR-152-3p对Notch1及DLL4的靶向调节。结果:与对照组相比,模型组家兔创面组织miR-152-3p与Notch1、DLL4 mRNA表达升高(P<0.05),创面MPD及MVD、血清VEGF及Ang1水平、创面组织VEGF与Ang1蛋白表达降低(P<0.05)。与模型组相比,miR-152-3p antagomir组家兔创面组织miR-152-3p mRNA表达降低(P<0.05),创面愈合率、创面MPD及MVD、血清VEGF及Ang1水平、创面组织Notch1、DLL4 mRNA及蛋白表达、创面组织VEGF与Ang1蛋白表达升高(P<0.05);miR-152-3p antagomir阴性对照+空载组家兔各指标无明显差异(P>0.05);与miR-152-3p antagomir组相比,miR-152-3p antagomir+Notch1敲低组家兔创面组织miR-152-3p mRNA表达无明显差异(P>0.05),创面愈合率、创面MPD及MVD、血清VEGF及Ang1水平、创面组织Notch1、DLL4 mRNA及蛋白表达、创面组织VEGF与Ang1蛋白表达降低(P<0.05)。miR-152-3p可靶向下调兔脐静脉内皮细胞中Notch1及DLL4的表达。结论:敲低miR-152-3p可通过上调Notch1/DLL4通路而增强家兔深II度烧伤创面血管生成,进而促进其创面愈合。  相似文献   

12.
13.
14.
The highly conserved Notch-signaling pathway mediates cell-to-cell communication and is pivotal for multiple developmental processes and tissue homeostasis in adult organisms. Notch receptors and their ligands are transmembrane proteins with multiple epidermal-growth-factor-like (EGF) repeats in their extracellular domains. In vitro the EGF repeats of mammalian ligands that are essential for Notch activation have been defined. However, in vivo the significance of the structural integrity of each EGF repeat in the ligand ectodomain for ligand function is still unclear. Here, we analyzed the mouse Notch ligand DLL1. We expressed DLL1 proteins with mutations disrupting disulfide bridges in each individual EGF repeat from single-copy transgenes in the HPRT locus of embryonic stem cells. In Notch transactivation assays all mutations impinged on DLL1 function and affected both NOTCH1 and NOTCH2 receptors similarly. An allelic series in mice that carried the same point mutations in endogenous Dll1, generated using a mini-gene strategy, showed that early developmental processes depending on DLL1-mediated NOTCH activation were differently sensitive to mutation of individual EGF repeats in DLL1. Notably, some mutations affected only somite patterning and resulted in vertebral column defects resembling spondylocostal dysostosis. In conclusion, the structural integrity of each individual EGF repeat in the extracellular domain of DLL1 is necessary for full DLL1 activity, and certain mutations in Dll1 might contribute to spondylocostal dysostosis in humans.  相似文献   

15.
Notch signaling is activated in a subset of non-small cell lung cancer cells because of overexpression of Notch3, but the role of Notch ligands has not been fully defined. On the basis of gene expression profiling of a panel of non-small cell lung cancer cell lines, we found that the predominant Notch ligands were JAG1, JAG2, DLL1, and DLL3. Given that Notch ligands reportedly have overlapping receptor binding specificities, we postulated that they have redundant biological roles. Arguing against this hypothesis, we found that JAG1 and JAG2 were differentially regulated; JAG1 expression was dependent upon epidermal growth factor receptor (EGFR) activation in HCC827 cells, which require EGFR for survival, whereas JAG2 expression was EGFR-independent in these cells. Furthermore, HCC827 cells underwent apoptosis following depletion of JAG1 but not JAG2, whereas co-culture experiments revealed that depletion of JAG2, but not JAG1, enhanced the ability of HCC827 cells to chemoattract THP-1 human monocytes. JAG2-depleted HCC827 cells expressed high levels of inflammation-related genes, including interleukin 1 (IL1) and a broad range of IL1-regulated cytokines, which was attenuated by inhibition of IL1 receptor (IL1R). Our findings suggest that JAG1 and JAG2 have distinct biological roles including a previously undiscovered role for JAG2 in regulating the expression of cytokines that can promote antitumor immunity.  相似文献   

16.
BackgroundSelenium binding protein 1 (SELENBP1) is frequently downregulated in malignancies such as colorectal cancer (CRC), however, whether it is involved in tumor angiogenesis is still unknown.MethodsWe analyzed the expression and localization of SELENBP1 in vessels from CRC and neighboring tissues. We investigated the in vitro and in vivo activity of SELENBP1 in angiogenesis and explored the underlying mechanism.ResultsSELENBP1 was localized to endothelial cells in addition to glandular cells, while its vascular expression was decreased in tumor vessels compared to that in vessels from neighboring non-tumor tissues. Gain-of-function and loss-of-function experiments demonstrated that SELENBP1 inhibited angiogenesis in vitro, and blocked communications between HUVECs and CRC cells. Overexpression of SELENBP1 in CRC cells inhibited tumor growth and angiogenesis, and enhanced bevacizumab-sensitivity in a mouse subcutaneous xenograft model. Mechanic analyses revealed that SELENBP1 may suppress tumor angiogenesis by binding with Delta-like ligand 4 (DLL4) and antagonizing the DLL4/Notch1 signaling pathway. The inhibitory effects of SELENBP1 on in vitro angiogenesis could largely be rescued by DLL4.ConclusionThese results revealed a novel role of SELENBP1 as a potential tumor suppressor that antagonizes tumor angiogenesis in CRC by intervening the DLL4/Notch1 signaling pathway.  相似文献   

17.
18.

Background

Descending thoracic aortic aneurysm and dissection (DTAAD) is characterized by progressive medial degeneration, which may result from excessive tissue destruction and insufficient repair. Resistance to tissue destruction and aortic self-repair are critical in preventing medial degeneration. The signaling pathways that control these processes in DTAAD are poorly understood. Because Notch signaling is a critical pathway for cell survival, proliferation, and tissue repair, we examined its activation in DTAAD.

Methods

We studied descending thoracic aortic tissue from patients with sporadic thoracic aortic aneurysm (TAA; n = 14) or chronic thoracic aortic dissection (TAD; n = 16) and from age-matched organ donors (n = 12). Using western blot, real-time RT-PCR, and immunofluorescence staining, we examined aortic tissue samples for the Notch ligands Delta-like 1, Delta-like 4 (DLL1/4), and Jagged1; the Notch receptor 1 (Notch1); the Notch1 intracellular domain (NICD); and Hes1, a downstream target of Notch signaling.

Results

Western blots and RT-PCR showed higher levels of the Notch1 protein and mRNA and the NICD and Hes1 proteins in both TAA and TAD tissues than in control tissue. However, immunofluorescence staining showed a complex pattern of Notch signaling in the diseased tissue. The ligand DLL1/4 and Notch1 were significantly decreased and NICD and Hes1 were rarely detected in medial vascular smooth muscle cells (VSMCs) in both TAA and TAD tissues, indicating downregulation of Notch signaling in aortic VSMCs. Interestingly Jagged1, NICD, and Hes1 were highly present in CD34+ stem cells and Stro-1+ stem cells in aortas from TAA and TAD patients. NICD and Hes1 were also detected in most fibroblasts and macrophages that accumulated in the aortic wall of DTAAD patients.

Conclusions

Notch signaling exhibits a complex pattern in DTAAD. The Notch pathway is impaired in medial VSMCs but activated in stem cells, fibroblasts, and macrophages.  相似文献   

19.
Increased expression of Notch signaling pathway components is observed in Kaposi sarcoma (KS) but the mechanism underlying the manipulation of the canonical Notch pathway by the causative agent of KS, Kaposi sarcoma herpesvirus (KSHV), has not been fully elucidated. Here, we describe the mechanism through which KSHV directly modulates the expression of the Notch ligands JAG1 and DLL4 in lymphatic endothelial cells. Expression of KSHV-encoded vFLIP induces JAG1 through an NFκB-dependent mechanism, while vGPCR upregulates DLL4 through a mechanism dependent on ERK. Both vFLIP and vGPCR instigate functional Notch signalling through NOTCH4. Gene expression profiling showed that JAG1- or DLL4-stimulated signaling results in the suppression of genes associated with the cell cycle in adjacent lymphatic endothelial cells, indicating a role for Notch signaling in inducing cellular quiescence in these cells. Upregulation of JAG1 and DLL4 by KSHV could therefore alter the expression of cell cycle components in neighbouring uninfected cells during latent and lytic phases of viral infection, influencing cellular quiescence and plasticity. In addition, differences in signaling potency between these ligands suggest a possible complementary role for JAG1 and DLL4 in the context of KS.  相似文献   

20.
Adult bone mass is maintained through a balance of the activities of osteoblasts and osteoclasts. Although Notch signaling has been shown to maintain bone homeostasis by controlling the commitment, differentiation, and function of cells in both the osteoblast and osteoclast lineages, the precise mechanisms by which Notch performs such diverse and complex roles in bone physiology remain unclear. By using a transgenic approach that modified the expression of delta‐like 1 (DLL1) or Jagged1 (JAG1) in an osteoblast‐specific manner, we investigated the ligand‐specific effects of Notch signaling in bone homeostasis. This study demonstrated for the first time that the proper regulation of DLL1 expression, but not JAG1 expression, in osteoblasts is essential for the maintenance of bone remodeling. DLL1‐induced Notch signaling was responsible for the expansion of the bone‐forming cell pool by promoting the proliferation of committed but immature osteoblasts. However, DLL1‐Notch signaling inhibited further differentiation of the expanded osteoblasts to become fully matured functional osteoblasts, thereby substantially decreasing bone formation. Osteoblast‐specific expression of DLL1 did not alter the intrinsic differentiation ability of cells of the osteoclast lineage. However, maturational arrest of osteoblasts caused by the DLL1 transgene impaired the maturation and function of osteoclasts due to a failed osteoblast‐osteoclast coupling, resulting in severe suppression of bone metabolic turnover. Taken together, DLL1‐mediated Notch signaling is critical for proper bone remodeling as it regulates the differentiation and function of both osteoblasts and osteoclasts. Our study elucidates the importance of ligand‐specific activation of Notch signaling in the maintenance of bone homeostasis. J. Cell. Physiol. 232: 2569–2580, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号