首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhang  Bin  Li  Pan  Su  Tongbing  Li  Peirong  Xin  Xiaoyun  Wang  Weihong  Zhao  Xiuyun  Yu  Yangjun  Zhang  Deshuang  Yu  Shuancang  Zhang  Fenglan 《Journal of Plant Growth Regulation》2020,39(1):72-86

The wall-associated kinase (WAK) gene family, a subfamily of the receptor-like kinase (RLK) gene family, is associated with the cell wall in plants, and has vital functions in cell expansion, pathogen resistance, and heavy metal stress tolerance because of their roles of the extracellular environment sensors to trigger intracellular signals in Arabidopsis. In the present study, 96 Chinese cabbage (Brassica rapa ssp. pekinensis) BrWAK gene family members were identified from the B. rapa genome using a reiterative database search and manual confirmation. The protein domain characterization, gene structure analysis, and phylogenetic analysis of the BrWAKs classified them into three gene groups. Comparative genomic analysis between WAK genes from Chinese cabbage and Arabidopsis revealed that the BrWAK genes have undergone the gene expansion and deletion events during evolution. Furthermore, the conserved motifs in the kinase domains of the WAK proteins and eukaryotic protein kinase family proteins were compared and some non-RD kinase proteins among the BrWAKs were identified. Ultimately, expression analysis of BrWAK genes in six tissues and under various stress conditions revealed that some tissue-specific WAK genes might function in callus cell growth and reproduction process; Bra012273, Bra016426, Bra016427, and Bra025882 might be involved in downy mildew resistance and high humidity stress; Bra012273, Bra025882, and Bra025883 might be responded to drought and heat stress. Taken together, this research was identified and classified the WAK gene family in Chinese cabbage and provided valuable resources to explore the potential roles of BrWAK genes in plant development and stress responses.

  相似文献   

2.
3.
Proteins with the A20/AN1 zinc-finger domain are present in all eukaryotes and are well characterized in animals, but little is known about their function in plants. Earlier, we have identified an A20/AN1 zinc-finger containing stress associated protein 1 gene (SAP1) in rice and validated its function in abiotic stress tolerance. In this study, genome-wide survey of genes encoding proteins possessing A20/AN1 zinc-finger, named SAP gene family, has been carried out in rice and Arabidopsis. The genomic distribution and gene architecture as well as domain structure and phylogenetic relationship of encoded proteins numbering 18 and 14 in rice and Arabidopsis, respectively, have been studied. Expression analysis of the rice SAP family was done to investigate their response under abiotic stress conditions. All the genes were inducible by one or the other abiotic stresses indicating that the OsSAP gene family is an important component of stress response in rice. Manipulation of their expression and identification of their superior alleles should help confer stress tolerance in target crops.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

4.
5.
6.
Molecular analysis of the NAC gene family in rice   总被引:14,自引:0,他引:14  
Genes that encode products containing a NAC domain, such as NO APICAL MERISTEM (NAM) in petunia, CUP-SHAPED COTYLEDON2 (CUC2) and NAP in Arabidopsis thaliana, have crucial functions in plant development. We describe here molecular aspects of the OsNAC genes that encode proteins with NAC domains in rice (Oryza sativa L.). Sequence analysis revealed that the NAC genes in plants can be divided into several subfamilies, such as the NAM, ATAF, and OsNAC3 subfamilies. In rice, OsNAC1 and OsNAC2 are classified in the NAM subfamily, which includes NAM and CUC2, while OsNAC5 and OsNAC6 fall into the ATAF subfamily. In addition to the members of these subfamilies, the rice genome contains the NAC genes OsNAC3, OsNAC4 (both in the OsNAC3 subfamily), OsNAC7, and OsNAC8. These results and Southern analysis indicate that the OsNAC genes constitute a large gene family in the rice genome. Each OsNAC gene is expressed in a specific pattern in different organs, suggesting that this family has diverse and important roles in rice development.  相似文献   

7.
Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.  相似文献   

8.
Catharanthus roseus Receptor‐Like Kinase 1‐like (CrRLK1L) proteins contain two tandem malectin‐like modules in their extracellular domains (ECDs) and function in diverse signaling pathways in plants. Malectin is a carbohydrate‐binding protein in animals and recognizes a number of diglucosides; however, it remains unclear how the two malectin‐like domains in the CrRLK1L proteins sense the ligand molecule. In this study, we reveal the crystal structures of the ECDs of ANXUR1 and ANXUR2, two CrRLK1L members in Arabidopsis thaliana that have critical functions in controlling pollen tube rupture during the fertilization process. We show that the two malectin‐like domains in these proteins pack together to form a rigid architecture. Unlike animal malectin, these malectin‐like domains lack residues involved in binding to the diglucosides, suggesting that they have a distinct ligand‐binding mechanism. A cleft is observed between the two malectin‐like domains, which might function as a potential ligand‐binding pocket.  相似文献   

9.
Structure and function of the receptor-like protein kinases of higher plants   总被引:25,自引:0,他引:25  
Cell surface receptors located in the plasma membrane have a prominent role in the initiation of cellular signalling. Recent evidence strongly suggests that plant cells carry cell surface receptors with intrinsic protein kinase activity. The plant receptor-like protein kinases (RLKs) are structurally related to the polypeptide growth factor receptors of animals which consist of a large extracytoplasmic domain, a single membrane spanning segment and a cytoplasmic domain of the protein kinase gene family. Most of the animal growth factor receptor protein kinases are tyrosine kinases; however, the plant RLKs all appear to be serine/threonine protein kinases. Based on structural similarities in their extracellular domains the RLKs fall into three categories: the S-domain class, related to the self-incompatibility locus glycoproteins of Brassica; the leucine-rich repeat class, containing a tandemly repeated motif that has been found in numerous proteins from a variety of eukaryotes; and a third class that has epidermal growth factor-like repeats. Distinct members of these putative receptors have been found in both monocytyledonous plants such as maize and in members of the dicotyledonous Brassicaceae. The diversity among plant RLKs, reflected in their structural and functional properties, has opened up a broad new area of investigation into cellular signalling in plants with far-reaching implications for the mechanisms by which plant cells perceive and respond to extracellular signals.  相似文献   

10.
Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain‐containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N‐terminal portion of a multi‐domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP‐like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single‐wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann‐like α/β overall fold. The bound AMP and conservation of residues in the ATP‐binding loop suggest that the protein At3g01520 also belongs to the ATP‐binding USP subfamily members. Proteins 2015; 83:1368–1373. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

11.
12.

Background

Leucine-rich-repeat receptor-like kinases (LRR-RLKs) represent the largest subfamily of putative RLKs in plants. Although several members in this subfamily have been identified, the studies about the relationships between LRR-RLKs and root development are still few. We previously identified a novel LRR-RLK in rice roots, and named it OsRPK1.

Methods

In this study, we first detected OsRPK1 kinase activity in vitro, and assessed its expression profile. We then investigated its biological function using transgenic rice plants over- and under-expressing OsRPK1.

Results

The OsRPK1 gene, which encodes a Ca2 +-independent Ser/Thr kinase, was predominantly expressed in root tips, leaf blades, and undifferentiated suspension cells, and was markedly induced by treatment with auxin or ABA. Knockdown of OsRPK1 promoted the growth of transgenic rice plants, and increased plant height and tiller numbers. In contrast, over-expressing plants showed undeveloped adventitious roots, lateral roots, and a reduced root apical meristem. OsRPK1 over-expression also inhibited the expression of most auxin efflux carrier OsPIN genes, which was accompanied by changes in PAT and endogenous free IAA distribution in the leaves and roots.

Conclusions

The data indicated that OsRPK1, a novel leucine-rich-repeat receptor-like kinase, affects the root system architecture by negatively regulating polar auxin transport in rice.

General significance

This study demonstrated a common regulatory pathway of root system development in higher plants, which might be initiated by external stimuli via upstream receptor-like kinases and downstream carriers for polar auxin transport.  相似文献   

13.
Ankyrin repeat (ANK) containing proteins comprise a large protein family. Although many members of this family have been implicated in plant growth, development and signal transduction, only a few ANK genes have been reported in rice. In this study, we analyzed the structures, phylogenetic relationship, genome localizations and expression profiles of 175 ankyrin repeat genes identified in rice (OsANK). Domain composition analysis suggested OsANK proteins can be classified into ten subfamilies. Chromosomal localizations of OsANK genes indicated nine segmental duplication events involving 17 genes and 65 OsANK genes were involved in tandem duplications. The expression profiles of 158 OsANK genes were analyzed in 24 tissues covering the whole life cycle of two rice genotypes, Minghui 63 and Zhenshan 97. Sixteen genes showed preferential expression in given tissues compared to all the other tissues in Minghui 63 and Zhenshan 97. Nine genes were preferentially expressed in stamen of 1 day before flowering, suggesting that these genes may play important roles in pollination and fertilization. Expression data of OsANK genes were also obtained with tissues of seedlings subjected to three phytohormone (NAA, GA3 and KT) and light/dark treatments. Eighteen genes showed differential expression with at least one phytohormone treatment while under light/dark treatments, 13 OsANK genes showed differential expression. Our data provided a very useful reference for cloning and functional analysis of members of this gene family in rice. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
The ras superfamily of GTP binding proteins encompasses a wide range of family members, related by conserved amino-acid motifs, and act as molecular binary switches that play key roles in cellular processes. Gene duplication and divergence has been postulated as the mechanism by which such family members have evolved their specific functions. We have cloned and sequenced a ras-like gene, tbrlp, from the primitive eukaryote Trypanosoma brucei. The gene encodes a protein of 227 amino acids and contains the six conserved subdomains that designate it as a ras/rap subfamily member. However, the presence of key diagnostic residues characteristic of both the ras and rap families of GTP confuse the familial classification of this gene. Phylogenetic analysis of the GTP binding domain places its origins at the divergence point of the ras/rap families and suggests that tbrlp is an ancestral gene to the ras/rap genes of higher eukaryotes.  相似文献   

15.
TALE (three-amino acid loop extension)转录因子在植物生长发育及细胞分化过程中起重要作用.在多种植物中均已鉴定出TALE转录因子的家族成员,但是萝卜TALE转录因子家族的研究鲜有报道.文中通过生物信息学手段在象牙白萝卜全基因组中鉴定出了分布于9条染色体上的33个TALE家族基因.研究...  相似文献   

16.
Smad family proteins are identified as intracellular signal mediators of the TGF-β superfamily. In this study, we identified two novel members of the Smad family, termed as AmphiSmad1/5/8 and AmphiSmad4, from Chinese amphioxus. Both AmphiSmad1/5/8 and AmphiSmad4 showed a typical domain structure of Smad proteins consisting of conserved MH1 and MH2 domains. Phylogenetic analysis placed AmphiSmad1/5/8 in the Smad1, 5 and 8 subgroup of the R-Smad subfamily, and AmphiSmad4 in the Co-Smad subfamily. The spatial and temporal gene expression patterns of AmphiSmad1/5/8 and AmphiSmad4 showed that they may be involved in the embryonic development of notochord, myotome and alimentary canal, and may help to establish the specification of dorsal-ventral axis of amphioxus. Moreover, AmphiSmad1/5/8 and AmphiSmad4 showed extensive distribution in all adult tissues examined, suggesting that these two genes may play important roles in the morphogenesis of a variety of tissues especially notochord and gonad.  相似文献   

17.
18.
We describe here a novel plant-specific gene, Lefsm1 (fruit SANT/MYB-like 1) harboring a single SANT/MYB domain. The expression of Lefsm1 is specific to the very early stages of tomato (Lycopersicon esculentum) fruit development. Ectopic expression of Lefsm1 results in severe developmental alterations manifested in retarded growth, and reduced apical dominance during tomato and Arabidopsis seedling development. A promoter sequence residing 1.0 kb upstream to the translation initiation codon confers the organ-specific expression of the gene. Lefsm1 belongs to a novel small gene family consisting of five to six members in tomato, Arabidopsis and rice. The SANT/MYB domain of LeFSM1 and its orthologs in Arabidopsis and rice differs from that of all other plant or animal MYB proteins and from the SANT domains found in part of the chromatin remodeling proteins. Together, our results indicate that Lefsm1 is a founding member of a small family of proteins containing a novel MYB/SANT domain which is likely to participate in the regulation of a plant-specific developmental program.  相似文献   

19.
20.
The maize ??-glucosidase (ZmGLU1) hydrolyzes cytokinin-conjugates for releasing active cytokinins and thus plays important roles in cytokinin regulatory processes. ZmGLU1 belongs to glycosyl hydrolases 1 (GH1) gene family with a large number of members, and the gene function of other homologs remains to be investigated. In this study, 47 Arabidopsis, 34 rice, 31 brachypodium, 28 sorghum and 26 maize GH1 protein sequences were collected and subsequently used to construct a phylogenetic tree by Neighbor-Joining method. ZmGLU1 together with its 7 paralogs and 4 sorghum homologs were assigned into a distinct group (named GLU subfamily) with far evolutionary distance to other GH1 members. None of the Arabidopsis, rice and brachypodium gene falling into this group indicated a recent evolutionary emergence of GLU subfamily in some Poaceae plants after the divergence of Poaceae species. Phylogeny and comparative genome analysis revealed that GLU subfamily members of maize and sorghum evolved from a common ancestor, and expanded independently in each species by several duplications after maize-sorghum split. Ka/Ks analysis showed that purifying selection played important roles in maintenance of similar functions among the maize GLU paralogs. In addition, the similar protein properties and cytokinin-dependent gene expressions further suggested the similar functions of ZmGLUs in cytokinin activation. However, the organ-dependent expression of ZmGLUs exhibited diverse patterns, which might contribute to their diverse roles in cytokinin homeostasis. Taken together, this work put new insights into the evolution and expression of ZmGLU genes, and provided the foundation for future functional investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号