首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mustard (Brassica juncea L.) cultivars Alankar (salt-tolerant) and PBM16 (salt-sensitive) plants were grown with 50 mM NaCl and were sprayed with 0.1, 0.5, and 1.0 mM salicylic acid (SA) to study the physiological processes determining salt tolerance and to observe the influence of SA application on the alleviation of NaCl-induced adverse effects. The content of leaf Na+, Cl, H2O2, TBARS, and electrolyte leakage and the activity of SOD were higher in PBM16 than Alankar. In contrast, nutrients content, activity of APX and GR, glutathione content, photosynthetic and growth characteristics were higher in Alankar. Treatment of 50 mM NaCl resulted in increase of Na+ and Cl, oxidative stress, activity of antioxidant enzymes and glutathione content, while nutrients content, photosynthetic, and growth characteristics decreased in both the cultivars. Application of 0.5 mM SA alleviated the negative effects of 50 mM NaCl maximally, but 1.0 mM SA proved inhibitory. The effect of SA was more conspicuous in Alankar than PBM16. It is concluded that the higher tolerance of Alankar was due to its lower leaf Na+ and Cl content, higher nutrients content, and efficient antioxidant metabolism. The application of 0.5 mM SA substantially alleviated salt-induced adverse effects in Alankar.  相似文献   

2.

Alfalfa (Medicago sativa L.) is a moderately salt-tolerant plant. This study was conducted to evaluate responses of two contrasting alfalfa genotypes (OMA-84-salt sensitive and OMA-285-salt-tolerant) to components (Na+, and/or Cl?) of salt stress. Alfalfa genotypes were exposed to Na+???salts (without chloride), Cl????salts (without sodium), and NaCl (sodium chloride) stresses with two concentrations (30 and 150 mM). The treatments, involving macronutrients, with the same osmotic potentials, were taken as control. Salt stress, irrespective of type and intensity, caused a significant reduction in plant biomass, physiological (net photosynthetic rate, photosystem II efficiency, chlorophyll fluorescence, water use efficiency, maximum yield of primary photochemistry, and electron transport rate), and shoot mineral (calcium, magnesium, phosphorus, and potassium) contents compared to control; however, this reduction was in the order of NaCl (150 mM)?>?Na+ (150 mM)?>?Cl? (150 mM). The alfalfa genotype OMA-285 sustained growth under both types of salt stresses than the genotype OMA-84 due to less accumulation of Na+ and Cl? ions, maintenance of higher K+/Na+ ratio, and better photosynthetic activities. In conclusion, salt stress caused a significant reduction in alfalfa growth, this reduction was more under NaCl stress and the effect was mainly additive. The alfalfa genotype OMA-285 sustained growth under salt stresses than the genotype OMA-84 due to ionic homeostasis. However, the tested genotypes were more sensitive to Na+ toxicity than the Cl? toxicity, and the contrasting genotypes differed in tissue tolerance of high Na+ and Cl?. Further research is needed to evaluate tissue tolerance in a diverse and large group of alfalfa genotypes to elucidate the general salt tolerance mechanism in alfalfa.

  相似文献   

3.
Salt-induced changes in growth, photosynthetic pigments, various gas exchange characteristics, relative membrane permeability (RMP), relative water content (RWC) and ion accumulation were examined in a greenhouse experiment on eight sunflower (Helianthus annuus L.) cultivars. Sunflower cultivars, namely Hysun-33, Hysun-38, M-3260, S-278, Alstar-Rm, Nstt-160, Mehran-II and Brocar were subjected to non-stress (0 mM NaCl) or salt stress (150 mM NaCl) in sand culture. On the basis of percent reduction in shoot biomass, cvs. Hysun-38 and Nstt-160 were found to be salt tolerant, cvs. Hysun-33, M-3260, S-278 and Mehran-II moderately tolerant and Alstar-Rm and Brocar salt sensitive. Salt stress markedly reduced growth, different gas exchange characteristics such as photosynthetic rate (A), water-use efficiency (WUE) calculated as A/E, transpiration rate (E), internal CO2 concentration (C i) and stomatal conductance (g s) in all cultivars. The effect of 150 mM NaCl stress was non-significant on chlorophyll a and b contents, chlorophyll a/b ratio, RWC, RMP and leaf and root Cl, K+ and P contents; however, salt stress markedly enhanced C i /C a ratio, free proline content and leaf and root Na+ concentrations in all sunflower cultivars. Of all cultivars, cv. Hysun-38 was higher in gas exchange characteristics, RWC and proline contents as compared with the other cultivars. Overall, none of the earlier-mentioned physiological attributes except leaf K+/Na+ ratio was found to be effective in discriminating the eight sunflower cultivars as the response of each cultivar to salt stress appraised using various physiological attributes was cultivar-specific.  相似文献   

4.
The effects of salinity on growth, leaf nutrient content, water relations, gas exchange parameters and chlorophyll fluorescence were studied in six-month-old seedlings of citrus (Citrus limonia Osbeck) and rooted cuttings of olive (Olea europaea L. cv. Arbequina). Citrus and olive were grown in a greenhouse and watered with half strength Hoagland’s solution plus 0 or 50 mM NaCl for citrus, or plus 0 or 100 mM NaCl for olive. Salinity increased Cl and Na+ content in leaves and roots in both species and reduced total plant dry mass, net photosynthetic rate and stomatal conductance. Decreased growth and gas exchange was apparently due to a toxic effect of Cl and/or Na+ and not due to osmotic stress since both species were able to osmotically adjust to maintain pressure potential higher than in non-salinized leaves. Internal CO2 concentration in the mesophyll was not reduced in either species. Salinity decreased leaf chlorophyll a content only in citrus.  相似文献   

5.
孙德智  杨恒山  彭靖  范富  马玉露  韩晓日 《生态学报》2014,34(13):3519-3528
以番茄(Lycopersicon esculentum Mill.)品种‘秦丰保冠’为试材,采用营养液培养法,研究单独和复配施用外源水杨酸(SA)、一氧化氮(NO)供体硝普钠(SNP)对100mmol/L NaCl胁迫下番茄幼苗生长、光合及离子分布的影响。结果表明:(1)单独和复配外施SA、SNP均能有效抑制NaCl胁迫下番茄幼苗叶片光合色素(Chla、Chlb、Chla+b和Car)含量、Chla/b值、净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、瞬时水分利用效率(WUEt)、表观光能利用效率(LUEapp)和表观CO2利用效率(CUEapp)的下降及Car/Chla+b值和胞间CO2浓度(Ci)的升高,并以SA和SNP复配处理效果最明显。(2)NaCl胁迫下,外源SA、SNP单独和复配处理的番茄幼苗各器官(叶、茎和根)中Cl-、Na+含量和Na+/K+、Na+/Ca2+、Na+/Mg2+值显著降低,而K+、Ca2+和Mg2+的含量却不同程度提高,其中以SA和SNP复配处理效果最好。(3)单独和复配外施SA、SNP均能有效减轻NaCl胁迫对番茄幼苗生长的抑制作用,并促进各器官生物量的积累和壮苗的形成,且以SA和SNP复配处理效果更佳。研究表明,复配外施SA和SNP在诱导番茄幼苗提高抗(耐)盐能力方面具有协同增效作用。  相似文献   

6.
The antioxidative defense mechanism to salinity was assessed by monitoring the activities of some antioxidative enzymes and levels of antioxidants in an obligate halophyte, Salicornia brachiata, subjected to varying levels of NaCl (0, 200, 400, and 600 mM) under hydroponic culture. In the shoots of S. brachiata, salt treatment preferentially enhanced the activities of ascorbate peroxidase (APX), guaiacol peroxidase (POX), glutathione reductase (GR), and superoxide dismutase (SOD), whereas it induced the decrease of catalase (CAT) activity. Similarly, salinity caused an increase in total glutathione content (GSH + GSSG) and a decrease in total ascorbate content. Growth of S. brachiata was optimum at 200 mM NaCl and decreased with further increase in salinity. Salinity caused an increase in Na+ content and a decrease in K+ content of shoots. Proline levels did not change at low (0-200 mM NaCl) or moderate (400 mM NaCl) salinities, whereas a significant increase in proline level was observed at high salinity (600 mM NaCl). Accumulation of Na+ may have a certain role in osmotic homeostasis under low and moderate salinities in S. brachiata. Parameters of oxidative stress such as malondialdehyde (MDA), a product of lipid peroxidation, and H2O2 concentrations decreased at low salinity (200 mM NaCl) and increased at moderate (400 mM NaCl) and high salinities (600 mM NaCl). As a whole, our results suggest that the capacity to limit ionic and oxidative damage by the elevated levels of certain antioxidative enzymes and antioxidant molecules is important for salt tolerance of S. brachiata.  相似文献   

7.
This paper concerns tolerance to 50–200 mM NaCl of submerged rice (Oryza sativa cv. Amaroo) during germination and the first 138–186 h of development in aerated solution. Rice was able to germinate and the seedlings even tolerated exposure to 200 mM NaCl, albeit with severe growth restrictions. After return to 0.3 mM NaCl, growth increased, indicating that even at 200 mM NaCl there was no irreparable injury. Osmotic adjustment was achieved by using Na+ and Cl as the major osmotica. At 200 mM NaCl commenced at sowing, the shoot Na+ and Cl concentrations between 50–110 h were about 210 and 260 mM, respectively, i.e. above the external concentration. Thus, there was a high tissue tolerance to NaCl. The internal concentrations declined subsequently, concurrent with a decline in growth. At 50–200 mM NaCl, the contributions from ions to πsap were 81–92% in roots and 62–74% in shoots. The assessed turgor pressures at 200 mM NaCl were 0.33 MPa in shoots and 0.15 MPa in roots, compared to 0.62 and 0.43 MPa at 0.3 mM NaCl. In the General Discussion section, we compare the different responses of submerged seedlings to the responses of transpiring rice plants, reported in the literature, and suggest that the submerged system is useful to evaluate effects of NaCl on turgor pressure and particularly to establish whether there are specific effects of Na+ and Cl in tissues.  相似文献   

8.
Plants of two wheat (Triticum aestivum L.) cultivars differing in salt tolerance were grown in sand with nutrient solutions. 35-d-old plants were subjected to 5 levels of salinity created by adding NaCl, CaCl2 and Na2SO4. Growth reduction caused by salinity was accompanied by increased Na+ and Cl- concentrations, Na+/K+ ratio, and decreased concentration of K+. The salt tolerant cv. Kharchia 65 showed better ionic regulation. Salinity up to 15.7 dS m-1 induced increased uptake of Na+ and Cl- but higher levels of salinity were not accompanied by further increase in uptake of these ions. Observed increases in Na+ and Cl- concentrations at higher salinities seemed to be the consequence of reduction in growth. Uptake of K+ was decreased; more in salt sensitive cultivar. This was also accompanied by differences in its distribution.  相似文献   

9.
The physiological ability to adapt for various environmental changes is known as acclimation. When exposed to sublethal level of stress, plants develop the ability to withstand severe stress, as acquired tolerance. The present study was conducted to explicate the physiological basis of acquired tolerance in rice. Rice seedlings (variety IR 20) were grown in half strength Hoagland solution, and after 22nd day, they were kept in half strength Hoagland solution containing 50 mM NaCl (sublethal dose) for 7 days followed by half strength Hoagland solution containing 100 mM NaCl (lethal dose) for another 7 days. The non-pretreated 29 days old rice seedlings maintained in half strength Hoagland solution were directly transferred to half strength Hoagland solution containing 100 mM NaCl (lethal dose) solution for 7 days. The control plants were maintained in half strength Hoagland solution without NaCl. Various morphological and physiological parameters were recorded on 29th and 36th days old seedlings from control, pretreated and non-pretreated plants. The results revealed significant reduction in growth parameters (shoot length, root length, leaf area and total dry matter production) of non-pretreated plants below that of pretreated plants. The pretreated plants showed increased values to the extreme of 19.8 per cent in leaf water potential (ψw), 9 per cent in relative water content (RWC), 26 per cent in photosynthetic rate (P N), 28 per cent in leaf stomatal conductance, and 47 per cent in chlorophyll a over non-pretreated plants. The same trend was also observed in chlorophyll a/b ratio (6.6%) and F v/F m ratio (19.3%). However, a reverse trend was seen in F o value. The pretreated plants showed improved ionic regulation as evident from low Na+, Cl and high K+ contents, which is attributed to enhanced plant water status and photosynthesis. Both pretreated and non-pretreated plants had higher contents of osmolytes viz., sucrose, leaf soluble sugars and proline contents than control plants. However, starch content revealed an inverse trend. Therefore, the present study reveals that rice can acclimate to lethal dose of salinity stress by pretreatment with sublethal dose of NaCl. Section Editor: J. M. Cheeseman  相似文献   

10.
In the present study, Na+ manipulating genes could contribute not only to ion homeostasis but also to growth stimulation with exposing the halophyte Atriplex halimus L. to moderate NaCl concentration. The stimulation of growth was attributed to Na+ accumulation inside the vacuole leading to increase leaf cell size as well as accelerate leaf cell division. Increasing the assimilatory surface could result in enhancing the photosynthetic rate. The reduction of A. halimus growth compared to optimum growth at 50 and 200 mM NaCl could be attributed to osmotic effect rather than the ionic one of salt stress. The inhibition of photosynthesis seemed to be resulted from limitation of CO2 due to the osmotic effect on stomatal conductance rather than the activity loss of photosynthetic machinery. The depletion of starch content along with the increase in sucrose content could imply that photosynthesis may be a limiting for A. halimus growth. The fast coordinate induction of Na+ manipulating genes could reveal that the tolerance of A. halimus to high concentrations evolved from its ability to regulate and control Na+ influx and efflux. V-H +-PPase may play a vital role in A. halimus tolerance to osmotic and/or ionic stress due to its kinetics of induction. It seemed that H+-ATPase plays a pivotal role in A. halimus tolerance to stress due to the increase in its protein level was detected with all NaCl concentrations as well as with PEG treatments. Both of these genes might be useful in improving stress tolerance in transgenic crops.  相似文献   

11.
The effects of NaCl (0, 50, 100, 150 and 200 mM) on growth, water relations, glycinebetaine, free proline, ion contents, stomata number and size of Kochia prostrata (L.) Schard were determined. Shoot and root fresh and dry matter, root and shoot length, relative growth rate, net assimilation rate, relative water content, water use efficiency, soluble sugars and glycinebetaine contents were not changed at low NaCl concentrations, but they were significantly decreased at 200 mM NaCl. The K+, Mg2+ and Ca2+ contents, water potential, chlorophyll a+b and carotenoides contents, and stomata number and size were reduced already at low concentrations of NaCl. In contrast, the Na+, Cl and proline contents increased several times with increasing NaCl concentration. Kochia prostrata is a salt tolerant species, the optimal growth of this plant occurred up to 150 mM NaCl. The mechanisms of salt tolerance in the plant may be balance among ion accumulation and production of glycinebetaine, proline, soluble sugars for maintenance of pressure potential.  相似文献   

12.
Responses of males and females to salinity were studied in order to reveal sex‐specific adaptation and evolution in Populus cathayana Rehd cuttings. This dioecious tree species plays an important role in maintaining ecological stability and providing commercial raw material in southwest China. Female and male cuttings of P. cathayana were treated for about 1 month with 0, 75 and 150 mM NaCl. Plant growth traits, gas exchange parameters, chlorophyll pigments, intrinsic water use efficiency (WUEi), membrane system injuries, ion transport and ultrastructural morphology were assessed and compared between sexes. Salt stress caused less negative effects on the dry matter accumulation, growth rate of height, growth rate of stem base diameter, total number of leaves and photosynthetic abilities in males than in females. Relative electrolyte leakage increased more in females than in males under salinity stress. Soil salinity reduced the amounts of leaf chlorophyll a, chlorophyll b and total chlorophyll, and the chlorophyll a/b ratio more in females than in males. WUEi decreased in both sexes under salinity. Regarding the ultrastructural morphology, thylakoid swelling in chloroplasts and degrading structures in mitochondria were more frequent in females than in males. Moreover, females exhibited significantly higher Na+ and Cl? concentrations in leaves and stems, but lower concentrations in roots than did males under salinity. In all, female cuttings of P. cathayana are more sensitive to salinity stress than males, which could be partially due to males having a better ability to restrain Na+ transport from roots to shoots than do females.  相似文献   

13.
Nitraria retusa and Atriplex halimus (xero-halophytes) plants were grown in the range 0–800 mM NaCl while Medicago arborea (glycophyte) in 0–300 mM NaCl. Salt stress caused a marked decrease in osmotic potential and a significant accumulation of Na+ and Cl in leaves of both species. Moderate salinity had a stimulating effect on growth rate, net CO2 assimilation, transpiration and stomatal conductance for the xero-halophytic species. At higher salinities, these physiological parameters decreased significantly, and their percentages of reduction were higher in A. halimus than in N. retusa whereas, in M. arborea they decreased linearly with salinity. Nitraria retusa PSII photochemistry and carotenoid content were unaffected by salinity, but a reduction in chlorophyll content was observed at 800 mM NaCl. Similar results were found in A. halimus, but with a decrease in the efficiency of PSII (F′v/F′m) occurred at 800 mM. Conversely, in M. arborea plants we observed a significant reduction in pigment concentrations and chlorophyll fluorescence parameters. The marked toxic effect of Na+ and/or Cl observed in M. arborea indicates that salt damage effect could be attributed to ions’ toxicity, and that the reduction in photosynthesis is most probably due to damages in the photosynthetic apparatus rather than factors affecting stomatal closure. For the two halophyte species, it appears that there is occurrence of co-limitation of photosynthesis by stomatal and non-stomatal factors. Our results suggest that both N. retusa and A. halimus show high tolerance to both high salinity and photoinhibition while M. arborea was considered as a slightly salt tolerant species.  相似文献   

14.
To understand the mechanisms of salt tolerance in a halophyte, sea aster (Aster tripolium L.), we studied the changes of water relation and the factors of photosynthetic limitation under water stress and 300 mM NaCl stress. The contents of Na+ and Cl- were highest in NaCl-stressed leaves. Leaf osmotic potentials (Ψ s) were decreased by both stress treatments, whereas leaf turgor pressure (Ψ t) was maintained under NaCl stress. Decrease inΨ s without any loss ofΨ t accounted for osmotic adjustment using Na+ and Cl- accumulated under NaCl stress. Stress treatments affected photosynthesis, and stomatal limitation was higher under water stress than under NaCl stress. Additionally, maximum CO2 fixation rate and O2 evolution rate decreased only under water stress, indicating irreversible damage to photosynthetic systems, mainly by dehydration. Water stress severely affected the water relation and photosynthetic capacity. On the other hand, turgid leaves under NaCl stress have dehydration tolerance due to maintenance of Ψ t and photosynthetic activity. These results show that sea aster might not suffer from tissue dehydration in highly salinized environments. We conclude that the adaptation of sea aster to salinity may be accomplished by osmotic adjustment using accumulated Na+ and Cl-, and that this plant has typical halophyte characteristics, but not drought tolerance. Electronic Publication  相似文献   

15.
Basil (Ocimum basilicum L., cultivar Genovese) plants were grown in Hoagland solution with or without 50 mM NaCl or 25 mM Na2SO4. After 15 days of treatment, Na2SO4 slowed growth of plants as indicated by root, stem and leaf dry weight, root length, shoot height and leaf area, and the effects were major of those induced by NaCl. Photosynthetic response was decreased more by chloride salinity than by sulphate. No effects in both treatments on leaf chlorophyll content, maximal efficiency of PSII photochemistry (F v/F m) and electron transport rate (ETR) were recorded. Therefore, an excess of energy following the limitation to CO2 photoassimilation and a down regulation of PSII photochemistry was monitored under NaCl, which displays mechanisms that play a role in avoiding PSII photodamage able to dissipate this excess energy. Ionic composition (Na+, K+, Ca2+, and Mg2+) was affected to the same extent under both types of salinity, thus together with an increase in leaves Cl, and roots SO4 2− in NaCl and Na2SO4-treated plants, respectively, may have resulted in the observed growth retardation (for Na2SO4 treatment) and photosynthesis activity inhibition (for NaCl treatment), suggesting that those effects seem to have been due to the anionic component of the salts.  相似文献   

16.
Solution culture-grown, six-month old jack pine (Pinus banksiana Lamb.) seedlings were treated with naphthenic acids (NAs) (150 mg l–1) and sodium chloride (45 mM NaCl) which were applied together or separately to roots for four weeks. NAs aggravated the effects of NaCl in inhibiting stomatal conductance (g s) and root hydraulic conductance (Kr). Naphthenic acids did not affect needle and root electrolyte leakage in the absence of NaCl. However, in plants treated with NaCl, NAs further increased electrolyte leakage from needles and NaCl induced electrolyte leakage from needles, but not from roots. Both NaCl and NAs treatments resulted in a reduction in root respiration. The measured Na+ and Cl concentrations in the shoots for combined NaCl + NAs treatments were lower than in NaCl-only treatments. These decreases were correlated with a reduction in water conductance. The accumulation of Na+ and Cl in shoots was accompanied by an increased in needle electrolyte leakage. However, greater concentrations of Cl compared with Na+ were present in shoots and in the xylem sap suggesting that roots had relatively lower capacity for Cl storage compared with Na+.  相似文献   

17.
Tolerance of Populus euphratica suspended cells to ionic and osmotic stresses implemented respectively by NaCl and PEG (6000) was characterized by monitoring cell growth, morphological features, ion compartmentation and polypeptide patterns. The cells grew and proliferated when submitted to stresses of 137 mM NaCl or 250 g l−1 PEG, and survived at 308 mM of NaCl, showing tolerance to saline and particularly osmotic stress. They were resistant to plasmolysis and had dense cytoplasms, large nuclei and nucleoli, and evident cytoplasmic strands under high saline and osmotic stress. The sequestration of Cl into the vacuoles was observed in the cells stressed with 137 and 223 mM NaCl. The cellular protein profile was modified by high salt and osmotic stress and showed 28 kDa polypeptides up-regulated by both NaCl and PEG, and 66 and 25 kDa polypeptides up-regulated only by high NaCl stress. The salt tolerance of P. euphratica cells might be related to their capacity of adapting to higher osmotic stress by maintaining cell integrity, sequestrating Cl into vacuoles and modulating polypeptides that reflect cellular metabolic adaptations.  相似文献   

18.
B. Demmig  K. Winter 《Planta》1986,168(3):421-426
Concentrations of four major solutes (Na+, K+, Cl-, proline) were determined in isolated, intact chloroplasts from the halophyte Mesembryanthemum crystallinum L. following long-term exposure of plants to three levels of NaCl salinity in the rooting medium. Chloroplasts were obtained by gentle rupture of leaf protoplasts. There was either no or only small leakage of inorganic ions from the chloroplasts to the medium during three rapidly performed washing steps involving precipitation and re-suspension of chloroplast pellets. Increasing NaCl salinity of the rooting medium resulted in a rise of Na+ und Cl- in the total leaf sap, up to approximately 500 and 400 mM, respectively, for plants grown at 400 mM NaCl. However, chloroplast levels of Na+ und Cl- did not exceed 160–230 and 40–60 mM, respectively, based upon a chloroplast osmotic volume of 20–30 l per mg chlorophyll. At 20 mM NaCl in the rooting medium, the Na+/K+ ratio of the chloroplasts was about 1; at 400 mM NaCl the ratio was about 5. Growth at 400 mM NaCl led to markedly increased concentrations of proline in the leaf sap (8 mM) compared with the leaf sap of plants grown in culture solution without added NaCl (proline 0.25 mM). Although proline was fivefold more concentrated in the chloroplasts than in the total leaf sap of plants treated with 400 mM NaCl, the overall contribution of proline to the osmotic adjustment of chloroplasts was small. The capacity to limit chloroplast Cl- concentrations under conditions of high external salinity was in contrast to an apparent affinity of chloroplasts for Cl- under conditions of low Cl- availability.Abbreviation Chl chlorophyll  相似文献   

19.
We investigated individual and combined effects of salinity, soil boron (B), silicon (Si) and salicylic acid (SA) on the activities of major antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT and ascorbate peroxidase, APX) and non-enzymatic antioxidants (AA), proline, chlorophyll, anthocyanin, H2O2 concentration, stomatal resistance (SR), lipid peroxidation (MDA), membrane permeability (MP), and the uptake of sodium (Na), chloride (Cl), boron and Si of spinach plants. In general, salinity significantly increased H2O2 and proline concentrations, antioxidant activity, membrane permeability, lipid peroxidation and SR of the spinach plants, indicating that they were stressed, whereas application of B only increased proline concentration. However, plant fresh weights did not decline with either treatment. The application of Si decreased H2O2 and increased the activity of SOD and CAT. The application of SA increased SOD activity. Neither SA nor Si had any effect on the proline concentration, or MP. However, application of Si increased chlorophyll concentration and decreased lipid peroxidation (MDA concentration). Si treatment had no effect on SR. The concentration of B in the tissues, which was strongly increased by B treatment, was decreased by NaCl. As a result of salinity, concentrations of Na+ and Cl ions were increased in the plant tissues, and application of Si slightly increased these concentrations. These results indicate that exogenous Si application increases stress tolerance of spinach, a plant that is naturally reasonably resistant to combined salinity and B toxicity, by the enhancement of antioxidant mechanisms that reduce membrane damage. Exogenous SA has a less obvious effect, although the levels of salinity and boron stress applied were not sufficient in this experiment to reduce plant fresh weight.  相似文献   

20.
It has been shown that abscisic acid (ABA) and salicylic acid (SA) act as endogenous signal molecules responsible for inducing abiotic stress tolerance in plants. However, our knowledge on the role of both phytohormones in response to environmental conditions in halophytic plants is still limited. In this study endogenous ABA and SA levels, growth parameters and chlorophylls content were determined in leaves and roots of the halophyte Prosopis strombulifera cultivated under increasing NaCl and Na2SO4 concentrations, at 30 and 70 % relative humidity (RH) conditions. Endogenous ABA and SA content differed depending on the salt type and concentration, RH, plant age and the organ analyzed. Under low RH conditions P. strombulifera growth was strongly inhibited and chlorophyll a and b content were decreased. In leaves of Na2SO4-treated plants at 30 % RH, high ABA levels were correlated with protection against dehydration and ion toxicity. Instead, high SA levels were correlated with the damaging effect of sulfate anion and low RH on plant growth. NaCl-treated plants growth was also inhibited at 30 % RH although levels of both hormones were not significantly increased. Taken together, the salt toxic effects on growth parameters and photosynthetic pigments were accentuated by low RH conditions and these responses were reflected on ABA and SA content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号