首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The interactive effects of salinity stress (40, 80, 120 and 160 mM NaCl) and ascorbic acid (0.6 mM), thiamin (0.3 mM) or sodium salicylate (0.6 mM) were studied in wheat (Triticum aestivum L.). The contents of cellulose, lignin of either shoots or roots, pectin of root and soluble sugars of shoots were lowered with the rise of NaCl concentration. On the other hand, the contents of hemicellulose and soluble sugars of roots, starch and soluble proteins of shoots, proline of either shoots or roots, and amino acids of roots were raised. Also, increasing NaCl concentration in the culture media increased Na+ and Ca2+ accumulation and gradually lowered K+ and Mg2+ concentration in different organs of wheat plant. Grain soaking in ascorbic acid, thiamin or sodium salicylate could counteract the adverse effects of NaCl salinity on the seedlings of wheat plant by suppression of salt stress induced accumulation of proline.  相似文献   

2.
3.
The effect of sudden salinity increases on the kinetics of growth and carotenogenesis was studied in three geographically diverse isolates of Dunaliella saliva. A sudden increase in salinity results in a lag phase in growth and the length of this lag phase is dependent on the final salinity and the magnitude of the salinity change (no lag at 10–15% w/v NaCl, 4-day lag at 30% NaCl). There is also a lag before an increase in the total carotenoid content can be measured following the salinity up-shock, and the length of the lag depends largely on the initial salinity and the magnitude of the salinity up-shock, whereas the rate of carotenogenesis and the final carotenoid content reached depend on the final salinity. The increase in total carotenoid content is mainly due to β-carotene. Following the salinity up-shock (especially from 10% to 20% NaCl) the proportion of lutein as a percentage of total carotenoids decreases, whereas zeaxanthin increases. This suggests that the pathway synthesising lutein is more sensitive to salt or osmotic stress and is inhibited at higher salinities, thus leading to β-carotene formation. The proportion of α-carotene does not change.  相似文献   

4.
The effect of acclimation salinity and salinity changes on the concentration of high-energy phosphate metabolites and arginine kinase (AK) flux was examined in vivo in juvenile blue crabs using 31P-nuclear magnetic resonance (NMR). Crabs were acclimated for 7 days to a salinity of 5 or 35 per thousand and then placed in a flow apparatus that could sustain the animals while NMR spectra were acquired. Crabs were subjected to either hyperosmotic salinity changes, where an animal acclimated to 5 per thousand was exposed to a salinity of 35 per thousand, or hyposmotic changes, which involved the reciprocal exchange. Neither acclimation salinity nor salinity change had a significant effect on the concentrations of arginine phosphate, inorganic phosphate or ATP. 31P-NMR saturation transfer experiments were used to determine the effect of salinity on the forward and reverse flux of the AK reaction. There was no significant effect of acclimation salinity or salinity change on the flux rate through this reaction. This is in contrast to previous results, which showed that AK flux in isolated muscle was sensitive to prevailing osmotic conditions (Holt and Kinsey, J. Exp. Biol. 205 (2002) 1775-1785). The present study indicates that the integrated osmoregulatory capacity of the intact animal is sufficient to preserve cellular energy status and enzyme function during acute salinity changes.  相似文献   

5.
目的探索裸项栉鰕虎鱼繁殖和育苗的适宜盐度。方法比较不同盐度梯度条件下裸项栉鰕虎鱼的产卵率、孵化率和生长存活情况。结果裸项栉鰕虎鱼性腺成熟、产卵和孵化的适宜盐度为10‰-20‰,过低或过高盐度该鱼产卵量少,孵化率极低;适宜的盐度有利于裸项栉鰕虎鱼的生长。结论裸项栉鰕虎鱼适盐范围广,适宜的繁殖、生长盐度较低。  相似文献   

6.
Reintroduction of fresh water to coastal systems with altered hydrologic regimes is a management option for restoring degraded wetland habitats. Plant production in these systems is believed to be enhanced by increased nutrient availability and reduced salinity. Although studies have documented nutrient limitation and salinity stress in coastal marshes, interpreting the effects of freshwater reintroduction on plant production is difficult because high nutrient availability often is confounded with low salinity. We tested the hypothesis that plant growth response to nutrients does not vary with salinity in a greenhouse study. Treatments consisted of four nutrient concentrations and four non-lethal salinity levels; plant response was measured as biomass accumulation after 144 days of exposure. The significant interaction between salinity and nutrient concentrations indicates that response of Spartina patens marshes to freshwater inflows would vary by site-specific soil conditions. Biomass decreased with increased salinity at all four nutrient concentrations with variation among the nutrient concentrations decreasing as salinity increased. We demonstrate the importance of considering ambient salinity and nutrient soil conditions in restoration planning involving freshwater inflow. We propose salinity should remain a primary concern in restoration plans targeted at improving degraded S. patens-dominated marsh habitat.  相似文献   

7.
8.
高盐废水来源广泛,在利用生物脱氮法处理高盐含氮废水时,盐分会对生物脱氮产生抑制作用.硝化反应是生物脱氮工艺中的关键过程,研究盐分对硝化反应的影响机理具有重要意义.本文概述了盐分对废水生物脱氮过程中硝化反应影响的研究进展,总结了盐胁迫对好氧氨氧化过程、亚硝酸盐氧化过程中硝化效率和反应特性的影响规律,并分析了盐分对硝化微生物细胞形态、生物絮体结构和胞外聚合物特性变化以及菌群结构的影响,系统阐述了盐胁迫下的硝化反应机理,为高盐分高铵氮废水生物脱氮工艺设计提供理论指导.
  相似文献   

9.
高盐条件下废水生物脱氮除磷及其工艺研究进展   总被引:1,自引:0,他引:1  
高盐废水是指总含盐量至少为1%的废水,是目前很难处理的废水之一。国内外学者针对高盐废水做了很多研究,我们简要综述了高盐条件下废水的脱氮除磷及工艺进展,希望对高盐条件下废水的同步脱氮除磷研究提供有益的资料。  相似文献   

10.
通过调查不同盐度(12~36)环境下养殖的哈氏仿对虾(Parapenaeopsis hardwickii)肌肉一般营养成分和氨基酸组成及含量,研究了盐度对该虾肌肉营养品质的影响。结果显示,肌肉的水分随环境盐度升高出现显著的直线下降,而粗蛋白含量随环境盐度升高而直线升高;各盐度组的粗脂肪含量虽然没有明显差异,但其含量随盐度升高有一定的线性下降趋势;36盐度组的粗灰分含量比12、16、20和28盐度组的明显高,32盐度组的灰分含量比20和24盐度组的也明显高;所检测的肌肉干样16种氨基酸中,只有3种氨基酸的含量随盐度升高而升高,而其他13种氨基酸的含量随盐度升高明显降低,其中有10种氨基酸的含量在盐度12~24条件下的比盐度28~36条件下的明显高,而这些氨基酸含量在盐度12~24之间没有明显差异。各盐度组间氨基酸总量和鲜味氨基酸含量均没有明显差异;必需氨基酸和半必需氨基酸含量在盐度12~24条件下的均比盐度28~36条件下的明显高,而在12~24盐度组之间以及28~36盐度组之间均没有明显差异。必需氨基酸/氨基酸总量的比值和必需氨基酸/非必需氨基酸比值随盐度升高均明显线性降低;盐度12~24组的必需氨基酸指数(66.13~67.42)高于盐度28~36组的(62.56~64.46)。综上所述,盐度12~24环境下养殖的哈氏仿对虾肌肉营养价值相对较高,表现为低盐趋向,考虑到肌肉的水分含量和生长性能,哈氏仿对虾在养殖期间选择16~24盐度范围比较合适,同时也说明哈氏仿对虾适合大多数沿海地区环境的盐度条件。  相似文献   

11.
The use of saline water as secondary quality water in urban environments for sanitation is a promising alternative towards mitigating fresh water scarcity. However, this alternative will increase the salinity in the wastewater generated that may affect the biological wastewater treatment processes, such as biological phosphorus removal. In addition to the production of saline wastewater by the direct use of saline water in urban environments, saline wastewater is also generated by some industries. Intrusion of saline water into the sewers is another source of salinity entering the wastewater treatment plant. In this study, the short-term effects of salinity on the anaerobic metabolism of phosphate-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO) were investigated to assess the impact of salinity on enhanced biological phosphorus removal. Hereto, PAO and GAO cultures enriched at a relatively low salinity level (0.02 % W/V) were exposed to salinity concentrations of up to 6 % (as NaCl) in anaerobic batch tests. It was demonstrated that both PAO and GAO are affected by higher salinity levels, with PAO being the more sensitive organisms to the increasing salinity. The maximum acetate uptake rate of PAO decreased by 71 % when the salinity increased from 0 to 1 %, while that of GAO decreased by 41 % for the same salinity increase. Regarding the stoichiometry of PAO, a decrease in the P-release/HAc uptake ratio accompanied with an increase in the glycogen consumption/HAc uptake ratio was observed for PAO when the salinity increased from 0 to 2 % salinity, indicating a metabolic shift from a poly-P-dependent to a glycogen-dependent metabolism. The anaerobic maintenance requirements of PAO and GAO increased as the salinity concentrations risen up to 4 % salinity.  相似文献   

12.
Combined effect of salinity and excess boron on plant growth and yield   总被引:1,自引:0,他引:1  
Plants are likely to be affected by simultaneous salinity and boron (B) toxicity stresses due to exposure to soils with high levels of naturally occurring salinity and B, or due to irrigation with water containing high levels of salts, including B. Inadequate information regarding the response of plants to the combination of excess B and salinity on plant growth and yield is available, and there is no consensus concerning mutual relations between salinity stress and B toxicity. Growth and yield of bell pepper (Capsicum annuum L.) were measured at different B and salinity levels in two greenhouse experiments. The results from these experiments and from published data for wheat, tomato and chickpea were analyzed according to the Abbott method to define the combined effect of B and salinity on plant growth and yield. Application of the Abbott method for the experiments on peppers generally implied an antagonistic relationship for excess B and salinity. In other words, toxic effects on growth and yield were less severe for combined B toxicity and salinity than what would be expected if effects of the individual factors were additive. Similar antagonistic characteristics were found using data from three of the five studies reported in the literature. The mechanism of relationships between B and salinity in plants is not clear and several options are discussed. Prominent among the possible explanations are reduced uptake of B in the presence of Cl and reduced uptake of Cl in the presence of B.  相似文献   

13.
一种用于盐度测量的光纤传感器   总被引:3,自引:0,他引:3  
制作了智能水凝胶PDA—C12。根据凝胶的溶胀性质设计制作了一种盐度光纤传感器探头,并实测了在不同盐度溶液中的输出光强,可测范围达到了1.0mol/L以上,为在一般要求下的盐度测量提供了一种新的方法。  相似文献   

14.
每日盐度波动对真盐生植物盐地碱蓬种内相互作用沿盐度梯度的影响 土壤盐度的异质性是河口潮间带的一个突出的环境特征,影响植物的生长和盐沼中生物相互作用的转变。本研究旨在探究盐度梯度和盐度波动对一种真盐生植物的种内相互作用的交互影响。  相似文献   

15.
The effect of chloride and sulphate types of salinity on respiratorymechanism of pea roots was studied. Both types of salinity depressedthe absorption of external glucose and the rate of respirationand changed the relative part of the metabolic pathways. Thepercentage of the pentosephosphate pathway was increased byincreasing levels of NaCl salinity while NaaSOi salinity practicallydid not affect it. Chloride salinity depressed CO2 evolutionfrom C-6 but did not affect the CO2 evolution from C-1. Sulphatesalinity depressed both. Most of the glycolytic enzymes studiedwere depressed in roots grown in saline medium except glucosephosphateisomerase which was not affected by sulphate salinity but wasincreased more than ten fold by chloride salinity. Phosphogluconatedehydrogenase was not affected by salinity. Glucose-6-phosphatedehydrogenase was found in the mitochondria as well as in thesupernatant and both the mitochondrial and the supernatant enzymeswere active with NADP and NAD. Salinity of both types increasedthe NADP linked activity in the soluble fraction. The informationgained however is still not sufficient to explain adequatelythe effect of salinity on plant metabolism. (Received July 31, 1967; )  相似文献   

16.
ABSTRACT

Although the false mussel Mytilopsis sallei Recluz, 1849 is recognised as an aggressive invasive species, its populations in several estuaries in Thailand are restricted to small areas. A salinity gradient is a major characteristic of its habitat, hence the effect of various salinity levels (0–40?ppt) on the mortality of larvae, juveniles and adults of M. sallei was investigated. Condition Indices of adults reared at different salinity levels for two months were measured. Spatial and temporal variations of salinity and false mussel abundance in a canal with a salinity gradient were also monitored. After an acute (48?h) test, survival of larvae was highest at salinity levels of 12.5 and 16.25?ppt and decreased at lower and higher levels. Juveniles survived at all salinity levels, but most adults died in the first 24?h at a salinity of 40?ppt, while condition indices were lowest at salinity levels of 30 and 35?ppt. In the field survey, highest false mussel abundance was consistently found at the middle part of the canal with mid-range salinity. The results suggested that salinity is a determinant of survival in M. sallei larvae and potentially regulates the dispersal success of false mussels. However, the importance of salinity was marginal in the later stages of its life history.  相似文献   

17.
The study is based on multi-year monthly and yearly averaged time series of the Neva River discharge, monthly salinity observations from near-shore hydrographic and hydrometeorological stations in the Gulf of Finland, and several years of data from international seasonal salinity observations in the open region of NE Baltic Sea. There is a good coherence between seasonal variations of the Neva River flow and the salinity regime in the upper layer of the Baltic Sea. Near the shores periods of low, normal and high salinity correspond to the periods of high, normal and low river runoff, and the same trends are observed with some time lag in the open parts of the Sea as well. The impacts of the Neva River discharge oscillations on salinity of the Gulf of Finland surface waters are analyzed in terms of time regression probability models. The obtained river flow-marine salinity transfer functions summarize well the observation data on both multiannual and seasonal scales of variability. Some seasonal periods with different anomalies of the influence are distinguished.  相似文献   

18.
陈一  严杰  杨蕾  张佳谊  战欣 《动物学杂志》2022,57(3):422-428
企鹅珍珠贝(Pteria penguin)是生产附壳珍珠的大型海水经济贝类,其依靠强壮的足丝将自身固定在硬质基底上,抵抗水流的冲击和抵御被捕食等。足丝分泌和足丝的形状很容易受到环境的影响,本实验采用盐度30为低盐度组、盐度35为中盐度组和盐度40为高盐度组,研究这3种盐度对企鹅珍珠贝足丝分泌、足丝直径和足丝拉力的影响,通过单因素方差分析法(LSD法)分析这三个足丝相关指标在3种盐度组间是否存在显著性差异。结果显示,3种盐度下企鹅珍珠贝足丝附着率无显著差异,但在整个实验周期72 h内,中盐度组的足丝分泌总数为(48.7 ± 15.1)根,显著高于低盐度组的(24.7 ± 5.0)根和高盐度组的(13.3 ± 1.5)根。在实验的前6 h内,中盐度组的足丝首次附着率显著高于低盐度组和高盐度组(P < 0.05),但在后续的12 h、18 h、30 h、42 h、54 h和66 h这6个时间点,3个盐度组的足丝首次附着率均无显著性差异。足丝直径未受盐度变化的影响,但盐度对足丝拉力具有显著影响,中盐度组的足丝拉力显著高于低盐度组和高盐度组(P < 0.05)。上述结果表明,企鹅珍珠贝为适应一定范围内盐度的改变,会在短时间内通过抑制足丝分泌来减少能量消耗,随着对环境的适应足丝分泌会恢复。盐度影响足丝分泌且对足丝拉力影响显著,但对足丝直径无明显影响。本研究可以为企鹅珍珠贝养殖及珍珠插核培育提供理论基础。  相似文献   

19.
Salinity reduces substrate water potential, thereby restricting water and nutrient uptake by plants; salinity may also cause ionic imbalance and toxicity. Because substrate salinity fluctuates through the growing season, a plant may be exposed to different salinity levels, at various stages of development, with potentially significant consequences on population dynamics. Here, we present the results of a study of the effect of substrate salinity on seed germination, seedling emergence, and growth of Aster laurentianus, an annual marsh plant, endemic to the Gulf of St. Lawrence and potentially threatened. Seed germination was reduced in low salt concentration (10 g sea salt/L) and completely inhibited by salinity levels >/=20 g sea salt/L. However, this inhibiting effect was reversible: seeds from the salt treatments germinated readily after being washed in distilled water. Though seedling emergence was diminished at low salinity levels, postemergence survival was little affected. Plant growth was reduced, but net carbon assimilation rate was not affected by high salinity levels. Increased root respiration and respiratory costs associated with salt tolerance might have contributed to lower C accumulation at higher salinity levels. All developmental processes considered are thus negatively affected by substrate salinity, with potentially significant consequences on population abundance and distribution in salt marshes. Yet, the tolerance of this species to high salinity levels after seedling emergence is remarkable. Seed germination represents a major bottleneck in the species life cycle, potentially controlling local distribution and abundance in the natural habitat.  相似文献   

20.
During the spawning season of the estuarine prawn Metapenaeus bennettae (Racek & Dall), laboratory and field experiments were conducted to examine the combined effects of temperature and salinity on hatching success of eggs and the survival, growth and development of larvae. Response surface analysis showed that optimal levels of temperature and salinity for maximum hatching success varied depending on conditions during spawning. Similarly, temperature and salinity conditions that produced maximum survival and growth of larvae depended on conditions during rearing prior to experimental temperature/salinity treatments. At the onset of feeding, larvae showed the lowest tolerance to changes in temperature and salinity. Supplementary feeding experiments in the laboratory, and survival rates in field experiments indicated that starvation was a more potent factor than the effects of temperature and salinity in determining survival through the protozoeal larval stages. Late larval stages were relatively indifferent to the effects of temperature and salinity. It is suggested that, during early development, adaptive response to the prevailing physical conditions enhances survival in an estuarine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号