首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chickpea is the third major cool season grain legume crop in the world after dry bean and field pea. Chilling and freezing range temperatures in many of its production regions adversely affect chickpea production. This review provides a comprehensive account of the current information regarding the tolerance of chickpea to freezing and chilling range temperatures. The effect of freezing and chilling at the major phenological stages of chickpea growth are discussed, and its ability for acclimation and winter hardiness is reviewed. Response mechanisms to chilling and freezing are considered at the molecular, cellular, whole plant, and canopy levels. The genetics of tolerance to freezing in chickpea are outlined. Sources of resistance to both freezing and chilling from within the cultivated and wild Cicer genepools are compared and novel breeding technologies for the improvement of tolerance in chickpea are suggested. We also suggest future research be directed toward understanding the mechanisms involved in cold tolerance of chickpea at the physiological, biochemical, and molecular level. Further screening of both the cultivated and wild Cicer species is required in order to identify superior sources of tolerance, especially to chilling at the reproductive stages.  相似文献   

2.
Combining ability, components of genetic variance and graphic analysis revealed that nodulation in the cultivars of Chickpea (Cicer arietinum L.) under study, was predominantly under the control of non-additive gene action although substantial additive effect was also present. The crosses giving high specific combining ability effects also manifested highly significant positive heterosis. The parents F-61, Giza and Annegiri possessed mostly dominant alleles while Phule G-5, NEC-249 and N-31 possessed mostly recessive alleles having positive effect on nodule weight.  相似文献   

3.
Plant Molecular Biology Reporter - Chickpea (Cicer arietinum L.) is a pulse crop valued for its high protein content, grown in semi-arid tropics and Mediterranean regions. Its yield remains...  相似文献   

4.
Chickpea seedlings show diminished survival and reduction ingrowth when kept under anoxia for more than 48 h. Treatmentwith L-ascorbic acid before re-exposure to air after varyingperiods of anoxia shows that this anti-oxidant can improve seedlinggrowth and survival during the post-anoxic recovery period.Comparisons of growth during the recovery period with and withoutascorbic acid treatments, as well as observing the effects ofascorbic acid on K+ leakage from roots, suggest that post-anoxicinjury is a significant component of the damage that is causedto chickpea seedlings as a result of prolonged anaerobic incubation. Key words: L-ascorbic acid, anoxia, post-anoxia, growth  相似文献   

5.
Vicilin, one of the major storage proteins of chickpea (Cicer arietinum L.) was purified and characterized during seed development. Vicilin was purified by zonal isoelectric precipitation followed by chromatography on DEAE-cellulose column. Vicilin on SDS-PAGE resolved into 5 major bands ranging in mol wt from 14 to 66 kD. More heterogenous pattern emerged on isoelectric focussing. This protein had high amount of amides and low amount of sulphur containing amino acids.  相似文献   

6.
During late vegetative growth chickpea leaves and stems canbe covered with aqueous glandular droplets. If these dropletspersist at low humidities there may be substantial water lossvia the glandular trichomes Four solution culture experimentsin growth chambers tested for glandular water loss at differenthumidities. In the daytime, exudate persisted between relativehumidities of 55% and 95%, and the exudate water potential variedbetween - 2.0 M Pa and - 8.0 M Pa. Even by night, chickpea leaves,like wetted alfalfa leaves, were cooler than non-wetted alfalfaleaves or the ambient air. Daytime leaf temperatures were significantlyhigher in a mutant that produced fewer droplets than in itsnormal parent. It was concluded that water loss via the glandulartrichomes can be enough to lower leaf temperature by severaldegrees C within a wide range of atmospheric conditions. The exudate solutes, analysed to confirm the osmotic potentialmeasurements, were primarily malic, hydrochloric and oxalicacid. Without the strong acids a chickpea leaf, wet even ondry days, would be ripe for parasitic attack. Key words: Add exudate, leaf hairs, transpiration, leaf temperature  相似文献   

7.
Three genotypes of chickpea ICCV-1, ICCV-6 and a Desi (local) variety were tested for plant regeneration through multiple shoot production. The embryo axis was removed from mature seeds, the root meristem and the shoot apex were discarded. These explants were cultured on medium containing MS macro salts, 4X MS micro salts, I35 vitamins, 3.0 mg/1 BAP, 0.004 mg/1 NAA, 3% (w/v) sucrose and incubated at 260C. The explants were transformed withAgrobacterium tumefaciens strain LBA4404 with binary vector pBI121 containing theuidA andnptIl genes. Multiple shoots were repeatedly selected with kanamycin. The selected kanamycin resistant shoots were rooted on MS medium supplemented with 0.05 mg/1 113A. The presumptive transformants histochemically stained positive for GUS. Additionally, nptll assay confirmed the expression ofnptII in kanamycin resistant plants. Transgenic plants were transferred to soil and grown in the green house.Abbreviations BAP 6-benzylamino purine - 2,4-D 2,4dichlorophenoxy acetic acid - IAA Indole acetic acid - IBA Indole butaric acid - NAA Naphthalene acetic acid  相似文献   

8.
Controversy exists as to whether ethanol ever accumulates totoxic levels in anaerobic tissues of higher plants. In orderto manipulate the internal concentrations of ethanol and relatethese to anaerobic injury, seedlings of chickpea (Cicer arietinumL.) were incubated under strict anoxia in vessels in which theanaerobic atmosphere either remained static or else was circulatedwith that of a large anaerobic incubator. Incubation with acirculating, as compared with a static, anaerobic atmospheredoubled the time that the seedlings could be kept under anoxiaand emerge in subsequent survival testing in the glasshouse.Circulating the anaerobic atmosphere gave a 13-fold reductionin the accumulation of ethanol in the seedlings. Parallel experimentswhich varied the ratio of head space relative to seedling numberconfirmed that the dilution of the volatile products of anoxia.increasedsurvival. These products included carbon dioxide, ethanol andtraces of acetaldehyde. While carbon dioxide may play a rolein modifying glycolytic activity under anoxia, it is suggestedthat it is not directly toxic and that it is the reduction inethanol concentration in the seedlings as a result of head spacedilution that contributes to their increased longevity in circulatinganaerobic atmospheres. Key words: Cicer arietinum L., Ethanol, Anaerobic conditions  相似文献   

9.
In the present investigation changes in polyribosomes and RNAs in the developing seeds of chickpea (Cicer arietinum L.) have been studied. The total polysome yield was higher in the early stages of development and declined at the later stages. The maximum level of polyribosomes was obtained at 18 days after flowering and a drastic decrease was noticed at maturity. The total RNA yield correlated with the polysomal yield. Northern hybridization with a heterologous probe (pea legumin cDNA) gave distinct hybridization with the mRNA coding for legumin proteins at different stages of seed development. Hybridization showed a direct relation between mRNA levels and seed weight accumulation.  相似文献   

10.
Fifteen AFLP and eighteen STMS primer pairs were employed to reveal genetic diversity and relationship in twenty-one cultivars of chickpea (Cicer arietinum L). Fifteen AFLP primer pairs generated 1804 amplicons, out of which 1732 amplicons (96%) were polymorphic and 600 amplicons (∼33%) were genotype specific. Eighteen polymorphic STMS primer pairs generated 64 amplicons with an average of 3.55 amplicons per primer pair. Polymorphic information content (PIC) varied from 0.52 to 1.0 for STMS markers. The genetic similarity between cultivars varied from 0.30 to 0.85 for AFLP and 0.22 to 0.83 for STMS markers. Dendrogram constructed after combining both AFLP and STMS markers data with Bootstrap analysis, grouped all the cultivars into four clusters. Association of varietal type and flower colour was observed as cultivars E 100Ymu and Nabin (Both Desi type and pink flower) clustered together in the dendrogram.  相似文献   

11.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

12.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

13.
Salinity causes osmotic stress and negatively impacts plant growth and productivity. Proline is one of the most important osmoprotectants synthesized under stressed conditions. Accumulation of free proline occurs due to enhanced biosynthesis and repressed degradation, and both processes are controlled by feedback regulatory mechanisms. Arbuscular mycorrhizal (AM) fungi are considered to be bioameliorators of salinity stress due to their wide-ranging presence in contaminated soils and their role in modulation of biochemical processes. Chickpea is considered sensitive to salinity. However, reports on AM-induced osmoprotection through regulation of proline biosynthesis in chickpea genotypes are scant. The present study investigated the influence of AM symbiosis on proline metabolism in two chickpea (Cicer arietinum L.) genotypes (PBG-5 and CSG-9505) under salt stress and correlated the same with sodium (Na+) ion uptake. Salinity reduced plant biomass (roots and shoots), with roots being more negatively affected than shoots. Mycorrhizal colonization with Glomus mosseae was much stronger in PBG-5 and was correlated with reduced Na+ ion uptake and higher growth when compared with CSG-9505 under stressed and unstressed conditions. Mycorrhizal symbiosis with chickpea roots boosted proline biosynthesis by significantly increasing pyrroline-5-carboxylate synthetase (P-5-CS) and glutamate dehydrogenase (GDH) activities with a concomitant decline in proline dehydrogenase (ProDH) activity under salt stress. The enhancement of the activity of these enzymes was higher in PBG-5 than in CSG-9505 and could be directly correlated with the percent mycorrhizal colonization and Na+ uptake. The study indicated a strong role of AM symbiosis in enhancing stress tolerance in chickpea by significantly modulating proline metabolism and Na+ uptake.  相似文献   

14.
Thidiazuron (TDZ), a substituted urea with cytokinin-like activity stimulated shoot proliferation in chickpea (Cicer arietinum L). Embryonic axis with half portion of both cotyledons was more responsive explant, producing ~22 shootslexplant at 1.0 µM TDZ concentration but higher concentration of TDZ (5.0 µM) reduced both the shoot proliferation and growth. An incubation time of 12 h at 1.0 µM TDZ was sufficient for induction of multiple shoot formation.TD2 induced high frequency of shoot formation as compared to BAP and also minor salts of MS medium played an important role in increasing the number of shoots. Roots could be induced in these shoots in MS medium supplemented with 0.5 µM IBA.  相似文献   

15.
The present study reports the large-scale discovery of genome-wide single-nucleotide polymorphisms (SNPs) in chickpea, identified mainly through the next generation sequencing of two genotypes, i.e. Cicer arietinum ICC4958 and its wild progenitor C. reticulatum PI489777, parents of an inter-specific reference mapping population of chickpea. Development and validation of a high-throughput SNP genotyping assay based on Illumina''s GoldenGate Genotyping Technology and its application in building a high-resolution genetic linkage map of chickpea is described for the first time. In this study, 1022 SNPs were identified, of which 768 high-confidence SNPs were selected for designing the custom Oligo Pool All (CpOPA-I) for genotyping. Of these, 697 SNPs could be successfully used for genotyping, demonstrating a high success rate of 90.75%. Genotyping data of the 697 SNPs were compiled along with those of 368 co-dominant markers mapped in an earlier study, and a saturated genetic linkage map of chickpea was constructed. One thousand and sixty-three markers were mapped onto eight linkage groups spanning 1808.7 cM (centiMorgans) with an average inter-marker distance of 1.70 cM, thereby representing one of the most advanced maps of chickpea. The map was used for the synteny analysis of chickpea, which revealed a higher degree of synteny with the phylogenetically close Medicago than with soybean. The first set of validated SNPs and map resources developed in this study will not only facilitate QTL mapping, genome-wide association analysis and comparative mapping in legumes but also help anchor scaffolds arising out of the whole-genome sequencing of chickpea.  相似文献   

16.
Gupta VK  Singh R 《Plant physiology》1988,87(3):741-744
NADP+-isocitrate dehydrogenase (threo-DS-isocitrate: NADP+ oxidoreductase [decarboxylating]; EC 1.1.1.42) (IDH) from pod walls of chickpea (Cicer arietinum L.) was purified 192-fold using ammonium sulfate fractionation, ion exchange chromatography on DEAE-Sephadex A-50, and gel filtration through Sephadex G-200. The purified enzyme, having a molecular weight of about 126,000, exhibited a broad pH optima from 8.0 to 8.6. It was quite stable at 4°C and had an absolute requirement for a divalent cation, either Mg2+ or Mn2+, for its activity. Typical hyperbolic kinetics was obtained with increasing concentrations of NADP+, dl-isocitrate, Mn2+, and Mg2+. Their Km values were 15, 110, 15, and 192 micromolar, respectively. The enzyme activity was inhibited by sulfhydryl reagents. Various amino acids, amides, organic acids, nucleotides, each at a concentration of 5 millimolar, had no effect on the activity of the enzyme. The activity was not influenced by adenylate energy charge but decreased linearly with increasing ratio of NADPH to NADP+. Initial velocity studies indicated kinetic mechanism to be sequential. NADPH inhibited the forward reaction competitively with respect to NADP+ at fixed saturating concentration of isocitrate, whereas 2-oxoglutarate inhibited the enzyme noncompetitively at saturating concentrations of both NADP+ and isocitrate, indicating the reaction mechanism to be random sequential. Results suggest that the activity of NADP+-IDH in situ is likely to be controlled by intracellular NADPH to NADP+ ratio as well as by the concentration of various substrates and products.  相似文献   

17.
International Journal of Peptide Research and Therapeutics - Chickpea (Cicer arietinum L.) is the second most widely cultivated leguminous plant in the world. In this study, the chickpea sprout...  相似文献   

18.
Callus cultures established on MS medium containing 2.0 mg l-1 2, 4-D were inoculated on the regeneration medium supplemented with different concentrations (0.5, 1.0, 1.5, 2.0, 2.5 and 3%, v/v) of culture filtrate (CF) of Ascochyta rabiei infesting chickpea. Out of 486 callus pieces and 270 regenerants obtained from immature embryo derived callus screened, 50 callus lines and 74 regenerants were found resistant. Further, these resistant callus lines and regenerants were subjected to stability test by growing them on a medium containing 3% CF. Seventeen callus lines and 28 regenerants of the selected lines showed normal growth on the selection medium. The regenerated plants were tested in pots under artificial epiphytotic conditions where they showed normal growth behaviour and high degree of resistance.  相似文献   

19.
20.
Chickpea (Cicer arietinum L.) is particularly sensitive to water stress at its reproductive phase and, under conditions of water stress, will abort flowers and pods, thus reducing yield potential. There are two types of chickpea: (i) Macrocarpa (“Kabuli”), which has large, rams head‐shaped, light brown seeds; and (ii) Microcarpa (“Desi”), which has small, angular and dark‐brown seeds. Relatively speaking, “Kabuli” has been reported to be more sensitive to water stress than “Desi”. The underlying mechanisms associated with contrasting sensitivity to water stress at the metabolic level are not well understood. We hypothesized that one of the reasons for contrasting water stress sensitivity in the two types of chickpea may be a variation in oxidative injury. In the present study, plants of both types were water stressed at the reproductive stage for 14 d. As a result of the stress, the “Kabuli” type exhibited an 80% reduction in seed yield over control compared with a 64% reduction observed for the “Desi” type. The decrease in leaf water potential (Ψw) was faster in the “Kabuli” compared with the “Desi” type. At the end of the water stress period, Ψw was reduced to ?2.9 and ?3.1 MPa in the “Desi” and “Kabuli” types, respectively, without any significant difference between them. On the last day of stress, “Kabuli” experienced 20% more membrane injury than “Desi”. The chlorophyll content and photosynthetic rate were significantly greater in “Desi” compared with “Kabuli”. The malondialdehyde and H2O2 content were markedly higher at the end of the water stress in “Kabuli” compared with “Desi”, indicating greater oxidative stress in the former. Levels of anti‐oxidants, such as ascorbic acid and glutathione, were significantly higher in “Desi” than “Kabuli”. Superoxide dismutase and catalase activity did not differ significantly between the two types of chickpea, whereas on the 10th day, the activities of ascorbate peroxidase, dehydroascorbate reductase, and glutathione reductase were higher in “Desi”. These findings indicate that the greater stress tolerance in the “Desi” type may be ascribed to its superior ability to maintain better water status, which results in less oxidative damage. In addition, laboratory studies conducted by subjecting both types of chickpea to similar levels of polyethylene glycol‐induced water stress and to 10 μ.mol/L abscisic acid indicated a greater capacity of the “Desi” type to deal with oxidative stress than the “Kabuli” type. (Managing editor: Ping He)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号