首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An equal concentration (100 μM) of Cr(III)- and Cr(VI)-induced changes in activities of antioxidative enzymes and metabolites of ascorbate-glutathione cycle was studied in 7-d-old black gram (Vigna mungo L Hepper cv. Co4) seedlings for 5-d after infliction of Cr stress. Seeds were germinated and grown in the presence or absence of Cr under controlled environmental conditions. Uptake and translocation of Cr rate was relatively higher during first 12 h of treatment with both speciation of Cr, Cr(III)- and Cr(VI)-treated black gram roots retained 15 times more Cr than the shoots. Significantly increased lipid peroxidation was observed in the form of accumulation of malondialdehyde (MDA) and production of hydrogen peroxide (H2O2) molecule and superoxide (O2 ) radical after 6 h of infliction with Cr(VI) and after 12 h in Cr(III)-treated black gram roots. Superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities were significantly increased under Cr(VI)-treatment after 12 and 6 h, respectively. However, catalase (CAT) and monodehydroascorbate reductase (MDHAR) activities were not significantly increased under Cr(Ill)-treatment. There was a steep increase of 2.71 μmol g-1 FW in ascorbic acid (AA) content was observed between 6 and 24 h of Cr(VI)-treatment. Oxidized glutathione (GSSG) content was steadily increased through the course of Cr(III)- and Cr(VI)-treatments, where as reduced glutathione (GSH) level was decreased after 24 h of treatment. GSH/GSSG ratio was rapidly decreased in treatment with Cr(III) than the Cr(VI). There was significant increase of 99 nmol g-1 FW in non-protein thiol (NPT) content was recorded between 6 and 24 h of Cr(VI)-treatment. The present results showed differential response to AA and H2O2 signaling by Cr(III) and Cr(VI), AA in combination with APX was more effective in mitigating oxidative stress as against the role of GSH as an antioxidant.  相似文献   

2.
Glutathione-Mediated Alleviation of Chromium Toxicity in Rice Plants   总被引:1,自引:0,他引:1  
A hydroponic experiment was conducted to determine the possible effect of exogenous glutathione (GSH) in alleviating chromium (Cr) stress through examining plant growth, chlorophyll contents, antioxidant enzyme activity, and lipid peroxidation in rice seedlings exposed to Cr toxicity. The results showed that plant growth and chlorophyll content were dramatically reduced when rice plants were exposed to 100 μM Cr. Addition of GSH in the culture solution obviously alleviated the reduction of plant growth and chlorophyll content. The activities of some antioxidant enzymes, including superoxide dismutase, catalase (CAT) and glutathione reductase in leaves, and CAT and glutathione peroxidase in roots showed obvious increase under Cr stress. Addition of GSH reduced malondialdehyde accumulation and increased the activities of these antioxidant enzymes in both leaves and roots, suggesting that GSH may enhance antioxidant capacity in Cr-stressed plants. Furthermore, exogenous GSH caused significant decrease of Cr uptake and root-to-shoot transport in the Cr-stressed rice plants. It can be assumed that GSH is involved in Cr compartmentalization in root cells.  相似文献   

3.
In order to determine the toxic effect of chromium Cr(VI) on the seed germination, the root and shoot length, the root-cotyledonary leaves, the fresh and dry weight in eight-day-old seedlings Brassica oleracea L. var. acephala DC (kale) were treated with various concentrations of Cr in the growth medium. The accumulation of chromium in the tissues was determined in the cotyledons and the roots of the kale seedlings. High rate of Cr uptake was observed in the roots. But the organs could not accumulate large amount Cr. The effect of Cr on B. oleracea var. acephala was evaluated by changes in chlorophyll a, b, lipid peroxidation, proline, ascorbate, protein carbonyl groups, non-protein thiols and peroxidase activity. There were significant decreases in chlorophylls a, b content of the plants treated with Cr. Chromium treated kale seedlings had higher lipid peroxidation and the protein carbonyl groups in cotyledonary leaves than the roots. The changes refer to toxic effects of Cr. There were increases in the non-protein thiol, the total ascorbate, and proline content in the cotyledons and the roots of the seedlings grown on the media containing 0.1 and 0.15 mM Cr. The guaiacol peroxidase activity was higher in the roots of the seedlings than their cotyledons.  相似文献   

4.
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 ?–) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP?+?GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 ?–, H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP?+?GSH was more efficient than SNP alone.  相似文献   

5.
In plants, investigation on heavy metal toxicity and its mitigation by nutrient elements have gained much attention. However, mechanism(s) associated with nutrients-mediated mitigation of metal toxicity remain elusive. In this study, we have investigated the role and interrelation of glutathione (GSH) and hydrogen sulfide (H2S) in the regulation of hexavalent chromium [Cr(VI)] toxicity in tomato (Solanum lycopersicum), pea (Pisum sativum) and brinjal (Solanum melongena) seedlings, supplemented with additional sulfur (S). The results show that Cr(VI) significantly reduced growth, total chlorophyll and photosynthetic quantum yield of tomato, pea and brinjal seedlings which was accompanied by enhanced intracellular accumulation of Cr(VI) in roots. Moreover, Cr(VI) enhanced the generation of reactive oxygen species in the studied vegetables, while antioxidant defense system exhibited differential responses. However, additional supply of S alleviated Cr(VI) toxicity. Interestingly, addition of l-buthionine sulfoximine (BSO, a glutathione biosynthesis inhibitor) further increased Cr(VI) toxicity even in the presence of additional S but GSH addition reverses the effect of BSO. Under similar condition, endogenous H2S, l-cysteine desulfhydrase (DES) activity and cysteine content did not significantly differ when compared to controls. Hydroxylamine (HA, an inhibitor of DES) also increased Cr(VI) toxicity even in the presence of additional S but sodium hydrosulfide (NaHS, an H2S donor) reverses the effect of HA. Moreover, Cr(VI) toxicity amelioration by NaHS was reversed by the addition of hypotaurine (HT, an H2S scavenger). Taken together, the results show that GSH which might be derived from supplied S is involved in the mitigation of Cr(VI) toxicity in which H2S signaling preceded GSH biosynthesis.  相似文献   

6.
The role of glutathione (GSH) and chromium (V) in chromium (VI)-induced nephrotoxicity in mice was investigated at 24 h after K2Cr(VI)2O7 ip injection. Nephrotoxicity was assessed by measurements of relative kidney weight and serum urea nitrogen. Cr(VI) nephrotoxicity was accompanied by decreased renal GSH and glutathione reductase (GSSG-R) levels. Pretreatment with buthionine sulfoximine, an inhibitor of GSH biosynthesis, enhanced Cr(VI)-induced nephrotoxicity, and remarkably diminished kidney GSH and GSSG-R levels. In contrast, pretreatment with glutathione methyl ester, a GSH-supplying agent, prevented Cr(VI) from exerting a harmful effect on mouse kidney and restored kidney GSH level. Administration of a Cr(V) compound, K3Cr(V)O8, induced much higher toxicity in mouse kidney than Cr(VI), but it failed to diminish renal GSH level. Another Cr(V) compound, Cr(V)-GSH complex, and Cr(III) nitrate did not cause a nephrotoxic effect in mice. The mechanism of Cr(VI)-induced nephrotoxicity was explained using GSH and Cr(V).  相似文献   

7.
N+离子注入对大豆种子活力及其幼苗的抗氧化酶活性影响   总被引:8,自引:0,他引:8  
本文研究了用25keV N+注入丰豆103的种子后,N+离子对其种子的活力及子叶伸展后48小时和96小时的幼苗内蛋白质含量、谷胱甘肽巯基转移酶(GSH-Ts)、谷胱甘肽过氧化酶(GSH-Px)、抗坏血酸过氧化物酶(ASA-POD)活性的影响.结果表明当N+注量在2.6×1016N+/cm2~5.2×1016N+/cm2时,种子的发芽率、发芽指数、活力指数都明显提高;幼苗的可溶性蛋白含量高于对照.在6.5×1016N+/cm2~10.4×1016N+/cm2注量时,幼苗的可溶性蛋白含量低于对照,96小时幼苗可溶性蛋白的含量高于48小时,说明辐射引起的损伤可随生长时间的增加而有所恢复.高注量可引起幼苗内一些抗氧化酶活性的升高,且随注量的增加酶的活性升高也越明显,96小时幼苗的GSH-Px和ASA-POD活性高于48小时幼苗,GSH-Ts活性略有下降.而低注量(1.3×1016N+/cm2~5.2×1016N+/cm2)的上述酶指标升幅不大.说明经N+离子处理后可通过诱导这些抗氧化酶活性的升高起到减轻伤害的作用.  相似文献   

8.
This study was undertaken to investigate the possible involvement of the antioxidant defense and glyoxalase systems in protecting rice seedlings from heat-induced damage in the presence of spermidine (Spd). Hydroponically grown 14-day-old seedlings were subjected to foliar spray with Spd (1 mM, 24 h) prior to heat stress (42 °C, 48 h) followed by subsequent recovery (27 °C, 48 h). Lipoxygenase activity, malondialdehyde (MDA), hydrogen peroxide (H2O2) and proline (Pro) content increased significantly whereas fresh weight (FW) and chlorophyll (Chl) content decreased during heat stress and after recovery, indicating unrecoverable damage to rice seedlings. Heat-induced damage was also evident in decreased levels of ascorbate (AsA), glutathione (GSH), and AsA and GSH redox ratios. Superoxide dismutase (SOD) and catalase (CAT) activities increased during heat stress but declined after recovery. Activities of glutathione peroxidase (GPX), ascorbate peroxidase (APX), monodehydroascorbate reductase, dehydroascorbate reductase (DHAR) and glutathione reductase (GR) decreased during heat stress but an opposite trend for most of these enzymes was observed after recovery. Heat stress also resulted in significant increases in the activities of glyoxalase enzymes (Gly I and Gly II). In contrast, exogenous Spd protected rice seedlings from heat-induced damage as marked by lower levels of MDA, H2O2, and Pro content coupled with increased levels of AsA, GSH, FW, Chl, and AsA and GSH redox status. After recovery, Spd-pretreated heat-exposed seedlings displayed higher activities of SOD, CAT, GPX, GST APX, DHAR and GR as well as of Gly I and Gly II. In addition, polyamine analysis revealed that exogenously applied Spd significantly elevated the levels of free and soluble conjugated Spd. Therefore, we conclude from our results that heat exposure provoked an oxidative burden while enhancement of the antioxidative and glyoxalase systems by Spd rendered rice seedlings more tolerant to heat stress. Further, co-induction of the antioxidative and glyoxalase systems was closely associated with Spd mediated enhanced level of GSH.  相似文献   

9.
Chromium (VI) is an environmental and occupational carcinogen, and it is accepted that intracellular reduction is necessary for DNA damage and cytotoxicity. We have investigated the interaction of Cr(VI) with hepatocytes in vitro to determine the contribution of various hepatic enzymes to the reduction of Cr(VI). Cr(VI) caused a dose-dependent decrease in cell viability and intracellular reduced glutathione (GSH) levels between 100 and 500 microM within 3 h exposure of hepatocytes. Both DT-diaphorase and cytochrome P450 play only a minor role in detoxifying Cr(VI) and/or its metabolites. (GSH) appears to act as a non-enzymatic reductant, reducing Cr(VI) to a toxic form. The evidence for this is two-fold. Firstly, GSH was depleted during the metabolism of Cr(VI) and, secondly, pretreatment of the cells with diethylmaleate to deplete GSH levels, partially protected the cells from Cr(VI) toxicity. Glutathione reductase appears to play an important role in the enzymatic reduction of Cr(VI) as inhibition of this enzyme by carmustine (BCNU) markedly protected the cells from cytotoxicity.  相似文献   

10.
The tripeptide antioxidant glutathione (γ-l-glutamyl-l-cysteinyl-glycine; GSH) essentially contributes to thiol-disulphide conversions, which are involved in the control of seed development, germination, and seedling establishment. However, the relative contribution of GSH metabolism in different seed structures is not fully understood. We studied the GSH/glutathione disulphide (GSSG) redox couple and associated low-molecular-weight (LMW) thiols and disulphides related to GSH metabolism in bread wheat (Triticum aestivum L.) seeds, focussing on redox changes in the embryo and endosperm during germination. In dry seeds, GSH was the predominant LMW thiol and, 15?h after the onset of imbibition, embryos of non-germinated seeds contained 12 times more LMW thiols than the endosperm. In germinated seeds, the embryo contained 17 and 11 times more LMW thiols than the endosperm after 15 and 48?h, respectively. This resulted in the embryo having significantly more reducing half-cell reduction potentials of GSH/GSSG and cysteine (Cys)/cystine (CySS) redox couples (EGSSG/2GSH and ECySS/2Cys, respectively). Upon seed germination and early seedling growth, Cys and CySS concentrations significantly increased in both embryo and endosperm, progressively contributing to the cellular LMW thiol-disulphide redox environment (Ethiol-disulphide). The changes in ECySS/2Cys could be related to the mobilisation of storage proteins in the endosperm during early seedling growth. We suggest that EGSSG/2GSH and ECySS/2Cys can be used as markers of the physiological and developmental stage of embryo and endosperm. We also present a model of interaction between LMW thiols and disulphides with hydrogen peroxide (H2O2) in redox regulation of bread wheat germination and early seedling growth.  相似文献   

11.
Impact of four chromium resistant bacterial strains (S3, S4, S6, and S7) was studied on the different growth parameters of sunflower (Helianthus annuus var SF-187) in chromium free or under chromium stress. Strains used exhibited very high-level resistance to chromate (up to 50 mg ml-1 on nutrient agar and 1-2 mg ml-1 in minimal medium). Application of Cr(VI) salt adversely affected the seed germination, root and shoot length, and fresh weight of seedlings. Bacterial inoculations improved the growth parameters. The effects of Cr(VI) on the different biochemical parameters were also very severe but seedlings inoculated with bacteria showed much improvements as compared to non-inoculated controls. Uptake of Cr(VI) was higher than Cr(III) by the seedlings. Inoculated seedlings contained less chromium than non-inoculated seedlings. Much improvement in the internal region of root and shoot was observed in inoculated plants especially in guard cells.  相似文献   

12.
采用水培方法,研究高浓度镉(0.1 mmol·L-1 Cd2+)、锌(0.15 mmol·L-1 Zn2+)及其复合作用(0.1 mmol·L-1 Cd2++0.15 mmol·L-1Zn2+)对烟草种子的萌发率、幼苗叶片活性氧(ROS)水平、抗氧化物浓度、抗氧化酶活性及膜脂过氧化程度的影响.结果表明: 单因子条件下,与对照相比,高浓度镉、锌处理烟草种子萌发率降低;叶片超氧自由基(O2 )产生速率与过氧化氢(H2O2)含量升高;过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、脱氢抗化血酸还原酶(DHAR)、单脱氢抗坏血酸还原酶(MDAR)和谷胱甘肽还原酶(GR)活性升高;谷胱甘肽(GSH)含量及其与氧化型谷胱甘肽比值(GSH/GSSG)下降;丙二醛(MDA)含量升高.与镉、锌单因子处理相比,镉、锌复合处理的烟草种子萌发率显著升高;O2 产生速率、H2O2和MDA含量降低;CAT、APX、MDAR活性在处理末期升高.镉、锌胁迫对烟草可造成生理水平上的损伤,且毒性效应随着处理时间的延长而增强.镉、锌复合作用可缓解镉、锌单因子胁迫对烟草幼苗的毒害.  相似文献   

13.
以津春2号黄瓜为材料,采用营养液水培的方法,研究了外源一氧化氮(NO)对黄瓜幼苗生长和根系谷胱甘肽抗氧化酶系统的影响.结果表明,(1)正常生长条件下添加NO能促进黄瓜幼苗生长,而添加亚甲基蓝(MB-1)显著抑制黄瓜幼苗的生长;(2)添加NO显著缓解了NaCl胁迫对黄瓜幼苗生长的抑制,提高根系还原型谷胱甘肽(GSH)含量、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,而氧化型谷胱甘肽(GSSG)含量略有下降,同时缓解了NaCl胁迫下抗坏血酸(ASA)含量的下降幅度;(3)NaCl胁迫下添加NO的同时添加MB-1可部分解除NO的作用,与NaCl胁迫下单独添加NO处理比较,GR活性、GSH和ASA含量均降低,GSSG含量提高,APX先升高后下降.研究发现,外源NO可能通过鸟苷酸环化酶(cGC)介导来调节NaCl胁迫下黄瓜幼苗根系GR活性和GSH、GSSG、ASA含量,提高抗氧化酶活性和非酶抗氧化物质含量,增强植株对活性氧的清除能力,减少膜脂过氧化,缓解NaCl胁迫对黄瓜幼苗造成的伤害.  相似文献   

14.
Growth, lipid peroxidation, H2O2 produciton and the response of the antioxidant enzymes and metabolites of the ascorbate glutathione pathway to oxidative stress caused by two concentrations (50 and 100 µM) of Cr(III) and Cr(VI) was studied in 15 day old seedlings of sorghum (Sorghum bicolor (L.) Moench cv CO 27) after 10 days of treatment. Cr accumulation in sorghum plants was concentration and organ dependant. There was no significant growth retardation of plants under 50 µM Cr(III) stress. 100 µM Cr(VI) was most toxic of all the treatments in terms of root and leaf growth and oxidative stress. 50 µM Cr(VI) treated roots exhibited high significant increase in superoxide dismutase (SOD), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) (p < 0.01) and significant increases in catalse (CAT), ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) (p < 0.05). A high increase in ascorbic acid (AA) level was seen in roots of 50 µM Cr(VI) treated plants in comparison with control. Levels of reduced glutathione (GSH) showed a varied and complex response in all the treatments in both plant parts. GSH/GSSG ratio was not affected by Cr(III) treatment in leaves, in contrast, roots exhibited significant reduction in the ratio. Results indicate that GSH depletion increased sensitivity to oxidative stress (Cr(VI) roots and leaves and Cr(III) 100 µM roots) and AA in tandem with APX compensated for GSH depletion by acting directly on H2O2 and the mechanism of defensive response in roots as well as leaves varied in its degree and effectiveness due to the concentration dependant differences observed in translocation of the element itself, reactive oxygen species (ROS) generation and enzyme inhibition based on the oxidation state supplied to the plants.  相似文献   

15.
Effects of exogenous gibberellic acid (GA; 10 and 100 μM) application on growth, protein and nitrogen contents, ammonium (NH4 +) content, enzymes of nitrogen assimilation and antioxidant system in pea seedlings were investigated under chromium (VI) phytotoxicity (Cr VI; 50, 100 and 250 μM). Exposure of pea seedlings to Cr and 100 μM GA resulted in decreased seed germination, fresh and dry weight and length of root and shoot, and protein and nitrogen contents compared to control. Compared to control, Cr and 100 μM GA led to the significant alteration in nitrogen assimilation in pea. These treatments decreased root and shoot nitrate reductase (NR), glutamine synthetase (GS) and glutamine 2-oxoglutarate aminotransferase (GOGAT) activities (except 50 μM Cr alone for GOGAT) while glutamate dehydrogenase (GDH) activity and NH4 + content increased. Compared to control, the root and shoot activities of superoxide dismutase (SOD) and ascorbate peroxidase (APX) increased (except APX activity at 250 μM Cr + 100 μM GA) while catalase (CAT), glutathione reductase (GR) and dehydroascorbate reductase (DHAR) activities were decreased (except GR at 100 μM GA alone) following exposure of Cr and 100 μM GA. Total ascorbate and total glutathione in root and shoot decreased by the treatments of Cr and 100 μM GA while their levels were increased by the application of 10 μM GA compared to Cr treatments alone. It has been reported that application of 10 μM GA together with Cr alleviated inhibited levels of growth, nitrogen assimilation and antioxidant system compared to Cr treatments alone. This study showed that application of 10 μM GA counteracts some of the adverse effects of Cr phytotoxicity with the increased levels of antioxidants and sustained activities of enzymes of nitrogen assimilation; however, 100 μM GA showed apparently reverse effect under Cr phytotoxicity.  相似文献   

16.
Treating plants with abiotic or biotic factors can lead to the establishment of a unique primed state of defense. Primed plants display enhanced defense reactions upon further challenge with environmental stressors. Here, we report that trivalent chromium (Cr(III)) pretreatment can alleviate hexavalent chromium (Cr(VI)) toxicity in 2-week-old wheat plants. The data indicate that Cr(III)-pretreated wheat displayed longer survival times and less heavy metal toxicity symptoms under Cr(VI) exposure than the control. To investigate the possible mechanism from an antioxidant defense perspective, we determined the H2O2 and lipid peroxide content (TBARS), the activities of antioxidant enzymes (SOD, CAT, APX and GR) and the antioxidant metabolite content (ascorbate and glutathione content, AsA/DHA and GSH/GSSG ratios) in pretreated wheat roots. The results showed that 0.5 μM Cr(III) pretreatment can alleviate oxidative damage, such as H2O2 and TBARS accumulation, in root tissues compared to the control during the first 3 days of Cr(VI) exposure. Furthermore, we determined that this pretreatment can significantly increase the antioxidant enzyme activities and total ascorbate and glutathione contents compared to the control treatment. In addition, redox homeostasis declined slightly in pretreated wheat compared to the control in the presence of Cr(VI). We discuss a possible mechanism for Cr(III)-mediated protection of wheat.  相似文献   

17.
旱-盐复合胁迫对玉米种子萌发和生理特性的影响   总被引:1,自引:0,他引:1  
分别用15% PEG、100 mmol·L-1 NaCl及其混合溶液模拟干旱(D)、盐(S)及旱-盐复合胁迫(D+S)对玉米种子萌发及幼苗生长的影响.结果表明: 3种胁迫处理均明显抑制了种子萌发、幼芽、幼根的伸长及生物量的积累,且影响程度为D>D+S>S;幼芽及幼根中过氧化氢(H2O2)、超氧阴离子(O2)等活性氧含量及丙二醛(MDA)含量明显升高,质膜相对透性增大,脯氨酸、可溶性糖和可溶性蛋白等生理渗透调节物质含量显著增加,且幼芽中含量高于幼根,积累程度均为D>D+S>S.3种胁迫处理均使幼芽、幼根中的超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)及抗坏血酸过氧化物酶(APX) 等抗氧化酶活性增强;其中,SOD和APX活性表现为复合胁迫介于单一胁迫之间,而POD和CAT活性表现为复合胁迫大于单一胁迫;说明旱-盐复合逆境胁迫对玉米种子萌发及幼苗生理特性的影响并不是单一胁迫的简单叠加,与单一干旱胁迫相比,旱-盐复合胁迫在一定程度上能够缓解干旱胁迫对玉米种子萌发及幼苗生长的影响.  相似文献   

18.
The present study investigates the possible regulatory role of exogenous nitric oxide (NO) in antioxidant defense and methylglyoxal (MG) detoxification systems of wheat seedlings exposed to salt stress (150 and 300 mM NaCl, 4 days). Seedlings were pre-treated for 24 h with 1 mM sodium nitroprusside, a NO donor, and then subjected to salt stress. The ascorbate (AsA) content decreased significantly with increased salt stress. The amount of reduced glutathione (GSH) and glutathione disulfide (GSSG) and the GSH/GSSG ratio increased with an increase in the level of salt stress. The glutathione S-transferase (GST) activity increased significantly with severe salt stress (300 mM). The ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), catalase (CAT) and glutathione peroxidase (GPX) activities did not show significant changes in response to salt stress. The glutathione reductase (GR), glyoxalase I (Gly I), and glyoxalase II (Gly II) activities decreased upon the imposition of salt stress, especially at 300 mM NaCl, with a concomitant increase in the H2O2 and lipid peroxidation levels. Exogenous NO pre-treatment of the seedlings had little influence on the non-enzymatic and enzymatic components compared to the seedlings of the untreated control. Further investigation revealed that NO pre-treatment had a synergistic effect; that is, the pre-treatment increased the AsA and GSH content and the GSH/GSSG ratio, as well as the activities of MDHAR, DHAR, GR, GST, GPX, Gly I, and Gly II in most of the seedlings subjected to salt stress. These results suggest that the exogenous application of NO rendered the plants more tolerant to salinity-induced oxidative damage by enhancing their antioxidant defense and MG detoxification systems.  相似文献   

19.
Both carbon monoxide (CO) and nitric oxide (NO) play fundamental roles in plant responses to environmental stress. Glutathione (GSH) homeostasis through the glutathione-ascorbate cycle regulates the cellular redox status and protects the plant from damage due to reactive oxygen species (ROS) or reactive nitrogen species (RNS). Most recalcitrant seeds are sensitive to chilling stress, but the roles of and cross talk among CO, NO, ROS, and GSH in recalcitrant seeds under low temperature are not well understood. Here, we report that the germination of recalcitrant Baccaurea ramiflora seeds shows sensitivity to chilling stress, but application of exogenous CO or NO markedly increased GSH accumulation, enhanced the activities of antioxidant enzymes involved in the glutathione-ascorbate cycle, decreased the content of H(2)O(2) and RNS, and improved the tolerance of seeds to low-temperature stress. Compared to orthodox seeds such as maize, only transient accumulation of CO and NO was induced and only a moderate increase in GSH was shown in the recalcitrant B. ramiflora seeds. Exogenous CO or NO treatment further increased the GSH accumulation and S-nitrosoglutathione reductase (GSNOR) activity in B. ramiflora seeds under chilling stress. In contrast, suppressing CO or NO generation, removing GSH, or blocking GSNOR activity resulted in increases in ROS and RNS and impaired the germination of CO- or NO-induced seeds under chilling stress. Based on these results, we propose that CO acts as a novel regulator to improve the tolerance of recalcitrant seeds to low temperatures through NO-mediated glutathione homeostasis.  相似文献   

20.
We investigated the protective role of selenium (Se) in minimizing high temperature-induced damages to rapeseed (Brassica napus L. cv. BINA Sarisha 3) seedlings. Ten-day-old seedlings which had been supplemented with Se (25 μM Na2SeO4) or not were grown separately under control temperature (25 °C) or high temperature (38 °C) for a period of 24 or 48 h in nutrient solution. Heat stress caused decrease in chlorophyll and leaf relative water content (RWC) and increased malondialdehyde (MDA), hydrogen peroxide (H2O2), proline (Pro), and methylglyoxal (MG) contents. Ascorbate (AsA) content decreased at any duration of heat treatment. The content of reduced glutathione (GSH) increased only at 24 h of stress, while glutathione disulfide (GSSG) markedly increased at both duration of heat exposure with associated decrease in GSH/GSSG ratio. Upon heat treatment the activities of ascorbate peroxidase (APX), glutathione S-transferase (GST) and glyoxalase I (Gly I) were increased, while the activities of monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and catalase (CAT) were decreased. The activities of glutathione reductase (GR) and glutathione peroxidase (GPX) remained unchanged under heat stress. However, heat-treated seedlings which were supplemented with Se significantly decreased the lipid peroxidation, H2O2, and MG content and enhanced the content of chlorophyll, Pro, RWC, AsA, and GSH as well as the GSH/GSSG ratio. Selenium supplemented heat-treated seedlings also showed enhanced activities of MDHAR, DHAR, GR, GPX, CAT, Gly I, and Gly II as compared to heat-treated seedlings without Se supplementation. This study concludes that exogenous Se application confers heat stress tolerance in rapeseed seedlings by upregulating the antioxidant defense mechanism and methylglyoxal detoxification system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号