首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A white-wine grape, Pinot Blanc, is thought to be a white-skinned mutant of a red-wine grape, Pinot Noir. Pinot Noir was heterozygous for VvmybA1. One allele was the non-functional VvmybA1a, and the other was the functional VvmybA1c. In Pinot Blanc, however, only VvmybA1a was observed, and the amount of VvmybA1 DNA in Pinot Blanc was half that in Pinot Noir. These findings suggest that deletion of VvmybA1c from Pinot Noir resulted in Pinot Blanc.  相似文献   

2.
In both plants and animals, programmed cell death (PCD) is an indispensable process that removes redundant cells. In seedless grapes (Vitis vinifera), abnormal PCD in ovule cells and subsequent ovule abortion play key roles in stenospermocarpy. Metacaspase, a type of cysteine-dependent protease, plays an essential role in PCD. To reveal the characteristics of the metacaspase (MC) gene family and the relationship between metacaspases and the seedless trait, we identified the 6 V. vinifera metacaspases VvMC1VvMC6, from the grape genome, using BLASTN against the 9 known Arabidopsis metacaspases. We also obtained full-length cDNAs by RT-PCR. Each of the 6 grape metacaspases contains small (p10-like) and a large (p20-like) conserved structural domains. Phylogenetic analysis of 6 grape and 9 Arabidopsis metacaspases showed that all metacaspases could be grouped into two classes: Type I and Type II. Each phylogenetic branch shares a similar exon/intron structure. Furthermore, the putative promoters of the grape metacaspases contained cis-elements that are involved in grape endosperm development. Moreover, expression analysis of metacaspases using real-time quantitative PCR demonstrated that VvMC1 and VvMC2 were able to be detected in any tissue, and VvMC3, VvMC4, VvMC5 and VvMC6 exhibited tissue-specific expression. Lastly, in cv. Thompson seedless grapes VvMC1, VvMC3, and VvMC4 were significantly up-regulated at the 35 DAF during ovule development, roughly same stage as endosperm abortion. In addition, the expression trend of VvMC2 and VvMC5 was similar between cv. Pinot Noir and cv. Thompson grape ovule development and that of VvMC6 was sustained in a relatively low level except the expression of cv. Pinot Noir significantly up-regulated in 25 DAF. Our data provided new insights into PCD by identifying the grape metacaspase gene family and provide a useful reference for further functional analysis of metacaspases in grape.  相似文献   

3.
4.
Soybean (Glycine max L.) is a typical short-day crop, and its flowering is strictly restricted by specific photoperiod conditions. CONSTANS (CO) plays a pivotal role in the photoperiod pathway of flowering regulation. CO-like genes are present in many plant species. Here we describe the isolation of the CO homologue GmCOL11 (Glycine max CO-like 11) from the soybean cv. Kennong 18. Sequence comparisons show that GmCOL11 is a group II CO-like gene with some similarity to AtCOL6 and AtCOL16. Its sequence includes a conserved B box and a CCT domain. The study of GmCOL11 expression using quantitative real time RT-PCR demonstrated that this gene was regulated in a diurnal rather than in a circadian manner. The gene was expressed throughout the plant, but mainly in adult leaves and maturing seeds; its expression was enhanced following flowering. Apparently GmCOL11 is involved in several aspects of soybean development.  相似文献   

5.
Several studies have described quantitative trait loci (QTL) for seed size in wheat, but the relevant genes and molecular mechanisms remain largely unknown. Here we report the functional characterization of the wheat TaCYP78A3 gene and its effect on seed size. TaCYP78A3 encoded wheat cytochrome P450 CYP78A3, and was specifically expressed in wheat reproductive organs. TaCYP78A3 activity was positively correlated with the final seed size. Its silencing caused a reduction of cell number in the seed coat, resulting in an 11% decrease in wheat seed size, whereas TaCYP78A3 over‐expression induced production of more cells in the seed coat, leading to an 11–48% increase in Arabidopsis seed size. In addition, the cell number in the final seed coat was determined by the TaCYP78A3 expression level, which affected the extent of integument cell proliferation in the developing ovule and seed. Unfortunately, TaCYP78A3 over‐expression in Arabidopsis caused a reduced seed set due to an ovule developmental defect. Moreover, TaCYP78A3 over‐expression affected embryo development by promoting embryo integument cell proliferation during seed development, which also ultimately affected the final seed size in Arabidopsis. In summary, our results indicated that TaCYP78A3 plays critical roles in influencing seed size by affecting the extent of integument cell proliferation. The present study provides direct evidence that TaCYP78A3 affects seed size in wheat, and contributes to an understanding of the cellular basis of the gene influencing seed development.  相似文献   

6.
The effects of the two botryticides, fludioxonil (fdx) and fenhexamid (fhd), were investigated on grapevine leaves (Vitis vinifera L. cv. Pinot noir) following photosynthesis and defense mechanisms. Treatments were carried out in vineyard at the end of flowering. Phytotoxicity of both fungicides was evaluated by measuring variations of leaf photosynthetic parameters and correlated expression of photosynthesis-related genes. Results demonstrated that similar decrease in photosynthesis was caused by fdx and fhd applications. Moreover, the mechanism leading to photosynthesis alteration seems to be the same for both fungicides. Stomatal limitation to photosynthetic gas exchange did not change following treatments indicating that inhibition of photosynthesis was mostly attributed to non-stomatal factors. Nevertheless, fungicides-induced depression of photosynthesis was related neither to a decrease in Rubisco carboxylation efficiency and in the capacity for regeneration of ribulose 1,5-bisphosphate nor to loss in PSII activity. However, fdx and fhd treatments generated repression of genes encoding proteins involved in the photosynthetic process. Indeed, decreased photosynthesis was coupled with repression of PsbP subunit of photosystem II (psbP1), chlorophyll a/b binding protein of photosystem I (cab) and Rubisco small subunit (rbcS) genes. A repression of these genes may participate in the photosynthesis alteration. To our knowledge, this is the first study of photosynthesis-related gene expression following fungicide stress. In the meantime, defense responses were followed by measuring chitinase activity and expression of varied defense-related genes encoding proteins involved in phenylpropanoid synthesis (PAL) or octadecanoid synthesis (LOX), as well as pathogenesis-related protein (Chi4C). No induction of defense was observed in botryticides-treated leaves. To conclude, the photosynthesis is affected without any triggering of plant defense responses.  相似文献   

7.
8.
Autophagy degrades toxic materials and old organelles, and recycles nutrients in eukaryotic cells. Whereas the studies on autophagy have been reported in other eukaryotic cells, its functioning in plants has not been well elucidated. We analyzed the roles of OsATG10 genes, which are autophagy-related. Two rice ATG10 genes - OsATG10a and OsATG10b - share significant sequence homology (about 75%), and were ubiquitously expressed in all organs examined here. GUS assay indicated that OsATG10b was highly expressed in the mesophyll cells and vascular tissue of younger leaves, but its level of expression decreased in older leaves. We identified T-DNA insertional mutants in that gene. Those osatg10b mutants were sensitive to treatments with high salt and methyl viologen (MV). Monodansylcadaverine-staining experiments showed that the number of autophagosomes was significantly decreased in the mutants compared with the WT. Furthermore, the amount of oxidized proteins increased in MV-treated mutant seedlings. These results demonstrate that OsATG10b plays an important role in the survival of rice cells against oxidative stresses.  相似文献   

9.
Seed-specific,developmentally regulated genes of peanut   总被引:6,自引:0,他引:6  
Four cDNAs of seed-specific and developmentally regulated peanut (Arachis hypogaea L.) genes were identified by differential screening of a peanut-seed cDNA library using cDNA probes constructed from mRNAs isolated from immature and mature stages of the seed. Northern analysis, probed with the four cloned cDNAs, indicated that the genes represented by two cDNAs were expressed abundantly early in seed development, while another two were abundantly expressed later at the cell-expansion stages of seed development. These four genes did not show expression in roots, pegs or leaves. However, one of the early expressed genes was seed coat-specific. One of the clones, Psc11, had significant sequence similarity to subtilisin-like genes in Arabidopsis and soybean. Clones Psc32 and Psc33 had significant similarity to the peanut allergen genes Ara h II and Ara h 6, respectively. The sequence of clone Psc12 was unique and did not show significant similarity to any sequence in the databases. One of the four seed-specific clones showed restriction fragment length polymorphism (RFLP) among peanut lines representing the four peanut botanical varieties. These findings indicate that polymorphism exists in peanut seed-storage genes. This contrasts with other genes previously used for genetic mapping of cultivated peanut. Received: 1 September 2000 / Accepted: 4 May 2001  相似文献   

10.
The ipiB and ipiO genes of the potato late blight fungus Phytophthora infestans (Mont.) de Bary were isolated from a genomic library in a screen for genes induced in planta. Expression of these genes was studied during pathogenesis on various host tissues and different host plants, some of which show specific resistance against P. infestans infection. During pathogenesis on leaves and tubers of the fully susceptible potato cultivar (cv.) Ajax and on leaves of the fully susceptible tomato cv. Moneymaker, the P. infestans ipiB and ipiO genes show a transient expression pattern with highest mRNA levels in the early stages of infection. During the interaction with leaves of the partially resistant potato cv. Pimpernel, the expression is also transient but accumulation and disappearance of the mRNAs is delayed. Also in P. infestans inoculated onto a race-specific resistant potato cultivar and onto the nonhost Solanum nigrum, ipiB and ipiO mRNA is detectable during the initial stages of infection. Apparently, the expression of the ipiB and the ipiO genes is activated in compatible, incompatible and nonhost interactions. In encysted zoospores, ipiB and ipiO mRNA accumulation was not detectable, but during cyst germination and appressorium formation on an artificial surface the genes are highly expressed. Expression studies in mycelium grown in vitro revealed that during nutrient starvation the expression of the ipiB and ipiO genes is induced. For ipiO gene expression, carbon deprivation appeared to be sufficient. The ipiO gene promoters contain a sequence motif that functions as a glucose repression element in yeast and this motif might be involved in the regulation of ipiO gene expression.  相似文献   

11.
During the work on the project on the identification of proteinkinases that phosphorylate protein microtubules of plants, we revealed with the help of bioinformatics the genes of assumed homologues of proteinkinase MAST2 that is associated with microtubules in animal cells. Respectively, the gene of the closest homologue of MAST2, the assumed protein that we have named GMLK (Grape MAST2-Like Kinase, A7NTE9_VITVI) was identified in the genome of grape Vitis vinifera. This study presents the results of the successful cloning of protein GMLK (A7NTE9_VITVI) cDNA from the leaves of the Pinot Noir grape.  相似文献   

12.
13.
14.
磷酸蔗糖合酶(sucrose phosphate synthase,SPS)是植物中蔗糖合成的主要限速酶,影响植物的生长发育和果实中蔗糖的含量。为探明苹果中SPS基因家族特性及其在蔗糖合成中的作用,该研究从苹果基因组中分离了MdSPS家族基因,分析了它们的进化关系以及mRNA表达特性与酶活性和蔗糖含量的关系。结果显示:(1)在苹果基因组中有8个SPS家族基因表达,它们分别属于双子叶植物的3个SPS亚家族。(2)荧光定量PCR分析显示,苹果C类的MdSPS6基因和A类的MdSPS1a/b基因是苹果中表达丰度最高的SPS基因成员,其中MdSPS6在苹果成熟果中表达丰度最高,其次是成熟叶片,而MdSPS1a/b在不积累蔗糖的幼果中表达丰度最高。(3)在果实发育过程中,除MdSPS1a/b之外,其它5个苹果MdSPS家族基因均随果实的生长表达丰度增加,与SPS活性和蔗糖含量明显呈正相关关系。研究表明,C类家族MdSPS6是苹果果实发育后期和叶片中蔗糖合成的主要SPS基因。  相似文献   

15.
16.
17.
A white-wine grape, Pinot Blanc, is thought to be a white-skinned mutant of a red-wine grape, Pinot Noir. Pinot Noir was heterozygous for VvmybA1. One allele was the non-functional VvmybA1a, and the other was the functional VvmybA1c. In Pinot Blanc, however, only VvmybA1a was observed, and the amount of VvmybA1 DNA in Pinot Blanc was half that in Pinot Noir. These findings suggest that deletion of VvmybA1c from Pinot Noir resulted in Pinot Blanc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号