首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Strains BSK12Z-3T and BSK12Z-4, two Gram-stain-positive, aerobic, non-spore-forming strains, were isolated from Shankou Mangrove Nature Reserve, Guangxi Zhuang Autonomous Region, China. The diagnostic diamino acid in the cell-wall peptidoglycan of strain BSK12Z-3T was LL-diaminopimelic acid and MK-8(H4) was the predominant menaquinone. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phospholipid (PL). The major fatty acids was iso-C16:0. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Nocardioides, appearing most closely related to Nocardioides ginkgobilobae KCTC 39594T (97.5–97.6 % sequence similarity) and Nocardioides marinus DSM 18248T (97.4–97.6 %). Genome-based phylogenetic analysis confirmed that strains BSK12Z-3T and BSK12Z-4 formed a distinct phylogenetic cluster within the genus Nocardioides. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains BSK12Z-3T, BSK12Z-4 with their most related species N. marinus DSM18248T were within the ranges of 77.2–77.3 % and 21.3–21.4 %, respectively, clearly indicated that strains BSK12Z-3T, BSK12Z-4 represented novel species. Strains BSK12Z-3T and BSK12Z-4 exhibited 99.9 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 97.8 % and 81.1 %, respectively, suggesting that they belong to the same species. However, DNA fingerprinting discriminated that they were not from one clonal origin. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizatons, strains BSK12Z-3T and BSK12Z-4 could be classified as a novel species of the genus Nocardioides, for which the name Nocardioides bruguierae sp. nov., is proposed. The type strain is BSK12Z-3T (=CGMCC 4.7709T = JCM 34554T).  相似文献   

2.
A short coccoid-rod-shaped, nonmotile actinobacteria strain MSL-11T was isolated from soil in Bigeum Island, Korea. A polyphasic study was undertaken to establish the taxonomic position of this strain. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain MSL-11T forms an evolutionary lineage within the radiation of the genus Nocardioides. The cell wall peptidoglycan of strain MSL-11T contained ll-diaminopimelic acid, indicating wall chemotype I. The predominant menaquinone was MK-8(H4). Strain MSL-11T had a cellular fatty acid profile containing straight-chain, branched, unsaturated, and 10-methyl fatty acids, with iso-C16:0 as a major fatty acid component detected. The DNA G + C content of the strain was 71.8 mol%. Comparative 16S rRNA gene sequencing revealed that the strains constituted a distinct subclade within the genus Nocardioides, displaying a 16S rRNA gene sequence similarity of about 95.68% with Nocardioides jensenii DSM 20641T. On the basis of both phenotypic and phylogenetic evidence, the strain is separated from previously described Nocardioides species and should be assigned to represent a novel species of the genus Nocardioides, for which the name Nocardioides dilutes sp. nov. is proposed. The type strain is strain MSL-11T (= KCTC 19288T = DSM 19318T).  相似文献   

3.
A Gram-positive, rod-shaped, non-spore-forming bacterium (Gsoil 485T) was isolated from the soil of a ginseng field located in Pocheon province in South Korea. This bacterium was characterized in order to determine its taxonomic position by using the polyphasic approach. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 485T was shown to belong to the family Nocardioidaceae and related to Nocardioides koreensis (96.8% 16S rRNA gene sequence similarity), Nocardioides basaltis (96.7%), Nocardioides salarius (96.7%), and Nocardioides sediminis (96.5%). The sequence similarity with other species that had validly published names within the genus Nocardioides was less than 96.4%. Strain Gsoil 485T was characterized chemotaxonomically as having LL-2,6-diaminopimelic acid in a cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone, and iso-C16:0, C18:1 ω9c as the major fatty acids. The G+C content of genomic DNA was 71.6 mol%. The chemotaxonomic properties and phenotypic characteristics supported the affiliation of strain Gsoil 485T to the genus Nocardioides. The results of both physiological and biochemical tests allowed for genotypic differentiation of strain Gsoil 485T from the recognized Nocardioides species. Therefore, strain Gsoil 485T is considered to represent the novel species, for which the name Nocardioides ginsengisegetis sp. nov. is proposed, with the type strain Gsoil 485T (KACC 14269T =KCTC 19469T =DSM 21349T).  相似文献   

4.
A bacterial strain PBT33-2T was isolated from the air environment in an indoor pig farm. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain PBT33-2T belonged to the genus Nocardioides in the phylum Actinobacteria, and was most closely related to Nocardioides daphnia D287T in a maximum-likelihood and neighbor-joining phylogenetic trees. Strain PBT33-2T shared 95.3% sequence identity with N. daphnia D287T. However, the highest sequence similarity was shown with N. sediminis MSL-01T (96.0%). It had less than 96.0% sequence identities with other type species of the genus Nocardioides. Strain PBT-33-2T grew at 15–45°C (optimum 20–35°C), pH 5.0–11.0 (optimum pH 7.0) and 0–4.0% (w/v) NaCl (optimum 0%). The major fatty acid and quinone were iso-C16:0 and MK-8, and the DNA G+C content of strain PBT33-2T was 69.3 mol%. On the basis of poly-phasic results, strain PBT33-2T represents a novel species of the genus Nocardioides, for which the name Nocardioides suum sp. nov. is proposed. Its type strain is PBT33-2T (=KCTC 39558T =DSM 102833T).  相似文献   

5.
A Gram-positive, coccoid to rod-shaped, non-spore-forming bacterium, designated Gsoil 958T, was isolated from soil of a ginseng field located in Pocheon province in South Korea. This bacterium was characterized in order to determine its taxonomic position by using a polyphasic approach. Strain Gsoil 958T was observed to grow well at 25–30 °C and at pH 7.0 on R2A and nutrient agar without NaCl supplementation. Strain Gsoil 958T was determined to have β-glucosidase activity and the ability to transform ginsenoside Rb1 (one of the dominant active components of ginseng) to F2 via gypenoside XVII and Rd. On the basis of 16S rRNA gene sequence similarity, strain Gsoil 958T was shown to belong to the family Nocardioidaceae and related most closely to Nocardioides koreensis MSL-09T (97.6 % 16S rRNA gene sequence similarity), Nocardioides aquiterrae GW-9T (97.0 %), and Nocardioides sediminis MSL-01T (97.0 %). The sequence similarities with other validly named species within the genus Nocardioides were less than 96.8 %. Strain Gsoil 958T was characterized chemotaxonomically as having LL-2,6-diaminopimelic acid in the cell-wall peptidoglycan, MK-8(H4) as the predominant menaquinone, and iso-C16:0, iso-C16:1 H, iso-C14:0, iso-C15:0 were identified as the major fatty acids. The G + C content of genomic DNA was determined to be 70.8 mol %. The chemotaxonomic properties and phenotypic characteristics supported the affiliation of strain Gsoil 958T to the genus Nocardioides. The results of both physiological and biochemical tests allowed for differentiation of strain Gsoil 958T from the recognized Nocardioides species. Therefore, strain Gsoil 958T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides panaciterrulae sp. nov. is proposed, with the type strain Gsoil 958T (KACC 14271T = KCTC 19471T = DSM 21350T).  相似文献   

6.
A novel actinobacterium designated as MSL-26T was isolated from soil in Bigeum Island Korea. A polyphasic study was undertaken to establish the taxonomic position of isolate MSL-26T. Strain MSL-26T was found to have chemical and morphological characteristics similar to Nocardioides. The strain grew optimally at pH 7·5 and 28°C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain MSL-26T forms a distinct line of descent within the radiation enclosed by the genus Nocardioides. The cell wall of strain MSL-26T contained LL-2, 6-diaminopimelic acid. The principal menaquinone was MK-8 (H4). The phospholipids detected were diphosphatidylglycerol, phosphatidylglycerol and some unidentified lipids. C18:1 w7c (50.38%) was the major fatty acid. The DNA G + C content of strain MSL-26T was 71.4 mol%. The 16S rRNA gene sequence of strain MSL-26T shares the highest sequence similarity with Nocardioides kribbensis KCTC 19038T (95.78%) and Nocardioides aquaticus DSM 11439T (95.52%). Based on the morphological, physiological, biochemical and chemotaxonomical data presented in this study, strain MSL-26T should be classified as a novel species, for which the name Nocardioides islandiensis sp. nov. is proposed. The type strain is MSL-26T (=KCTC 19275T =DSM 19321T)  相似文献   

7.
A novel Gram-positive, aerobic, rod-shaped and mycelia-producing bacterial strain, designated KLBMP 1050T, was isolated from the stem of the oil-seed plant Jatropha curcas L. collected from Sichuan Province, south-west China. Phylogenetic analysis based on the 16S rRNA gene sequence revealed that the isolate KLBMP 1050T belonged to the genus Nocardioides, with the highest sequence similarity to Nocardioides albus KCTC 9186T (99.38 %) and Nocardioides luteus KCTC 9575T (99.03 %). However, the DNA–DNA relatedness of isolate KLBMP 1050T to these two type strains were 37.5 ± 3.5 and 33 ± 2.3 %, respectively. Strain KLBMP 1050T grew at the pH range 6–11, temperature range 10–32 °C and with 0–12 % NaCl. The physiological properties of strain KLBMP 1050T differ from those of N. albus KCTC 9186T and N. luteus KCTC 9575T. The cell-wall peptidoglycan contained ll-diaminopimelic acid and MK-8(H4) was the major respiratory quinone. The predominant cellular fatty acid of strain KLBMP 1050T was iso-C16:0 (23.3 %). The total DNA G+C content was 70.1 mol%. On the basis of the phenotypic, chemotaxonomic and phylogenetic data, strain KLBMP 1050T represents a novel species of the genus Nocardioides, for which the name Nocardioides panzhihuaensis sp. nov. is proposed. The type strain is KLBMP 1050T (= KCTC 19888T = NBRC 108680T).  相似文献   

8.
A rod-shaped actinobacterium, designated Sco-A25T, was isolated from a red-coloured layer of scoria (volcanic ash) in the Republic of Korea and subjected to a polyphasic taxonomic characterization. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain Sco-A25T is a member of the genus Nocardioides and formed a tight monophyletic unit with the type strain of Nocardioides plantarum (98.7 % gene similarity). LL-Diaminopimelic acid was detected in the cell wall. The predominant menaquinone is MK-8(H4). The polar lipids found were phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, and an unknown phospholipid. The fatty acid profile was represented by large amounts of saturated, unsaturated and iso-branched fatty acids. The DNA G+C content was 71.6 mol %. Genomic DNA similarity between strain Sco-A25T and N. plantarum KCTC 9577T was 47.8 %. On the basis of the results of phenotypic, genetic and phylogenetic analyses presented here, strain Sco-A25T is considered to represent a novel species of the genus Nocardioides, for which the name Nocardioides rubroscoriae sp. nov. is proposed. The type strain is Sco-A25T (=KCTC 19805T = DSM 23986T = NBRC 107916T).  相似文献   

9.
Strain SR-1T, a Gram-positive, strictly-aerobic, short-rod shaped, non-motile bacterium, was isolated from a mountain soil collected in Seoul Women’s University in South Korea. Growth occurred between 15 and 37 °C (optimum, 30 °C), at pH 6.0–9.0 (optimum, pH 7.0) and with 0–2 % NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain SR-1T belongs to the genus Nocardioides and is closely related to Nocardioides simplex KCTC 9106T (96.8 %), Nocardioides caeni MN8T (96.7 %), Nocardioides aromaticivorans H-1T (96.6 %), and Nocardioides kongijuensis A2-4T (96.6 %). Chemotaxonomic data revealed that strain SR-1T possesses MK-8(H4) as predominant menaquinone, ll-2,6-diaminopimelic acid as the diagnostic diamino acid, phosphatidylglycerol and diphosphatidylglycerol as predominant polar lipids and iso-C16:0, 10-methyl-C18:0, and C18:1 ω9c are major fatty acids. The DNA G+C content of the strain SR-1T was 72.4 mol%. Based on polyphasic evidence, strain SR-1T (= KEMC 9004-134T = JCM 19684T) should be classified as the type strain of a novel Nocardioides species, for which the name Nocardioides soli sp. nov. is proposed.  相似文献   

10.
Strain Marseille-P1302 was isolated from the stool of a 2-year-old Nigerian boy suffering from Kwashiorkor, a form of severe acute malnutrition. The strain grows in aerobic atmosphere and bacterial cells are Gram-positive cocci ranging in diameter from 0.8 to 1 μm. Among species with standing in nomenclature, strain Marseille-P1302 exhibited a highest 16S rRNA sequence similarity of 94.97% with Brevilactibacter flavus strain VG341T, but was phylogenetically-closest to Brevilactibacter sinopodophylli strains KCTC 33808T. The draft genome of strain Marseille-P1302 was 2,934,258-bp-long with a 70.38% G + C content, and contained 2704 protein-coding genes and 55 RNAs that included 9 rRNA genes. On the basis of these data, we propose the creation of the new genus Nigeribacterium gen. nov., with strain Marseille-P1302T (= CSUR P1302 = DSM 29084) being the type strain of the new species Nigeribacterium. massiliense gen. nov., sp. nov.  相似文献   

11.
The study provides a taxonomic characterization of three bacterial strains isolated from high-oxygen modified-atmosphere packaged beef from Germany. The strains of the novel species shared identical 16S rRNA gene sequence to the closely related type strain of Dellaglioa algida. However, the in-silico DNA-DNA hybridization (DDH) values indicate that they belong to a different genomic species. The in silico DDH estimate value between TMW 2.2523T and the type strain of Dellaglioa algida DSM 15638T was only 63.2 %. The whole genome average nucleotide identity blast (ANIb) value of 95.1 % between TMW 2.2523T and the closely related type strain of D. algida was within the recommended threshold value of 95–96 % for bacterial species delineation. Additionally, the phylogenomic analyses based on multi locus sequence alignment (MLSA) showed that strain TMW 2.2523T and additional strains TMW 2.2444 and TMW 2.2533 formed a monophyletic group separate from D. algida strains. Furthermore, tyrosine decarboxylase activity could be attributed to strains of the new proposed species. The results of this polyphasic approach support the affiliation of these strains to a novel species within the genus Dellaglioa for which we propose the name Dellaglioa carnosa sp. nov. The designated respective type strain is TMW 2.2523T (DSM 114968T = LMG 32819T).  相似文献   

12.
A group of isolates of the genus Luteimonas was characterised, which represented a specific component of the healthy core microbiome of Fraxinus excelsior in forest districts with a high infection rate of H. fraxineus, the causal agent of ash dieback. Based on phylogenomic and phenotypic analyses, a clear differentiation from related Luteimonas species was shown. Comparisons of the overall genome relatedness indices with the closest phylogenetic neighbours resulted in values below the recommended species cut-off levels. In addition, differences in several physiological and chemotaxonomic traits allowed a clear demarcation from the type strains of closely related species. Conclusively, the strain group was considered to represent a novel species in the genus Luteimonas, for which the name Luteimonas fraxinea sp. nov. is proposed, with strain D4P002T (=DSM 113273T = LMG 32455T) as the type strain. A functional analysis of the genome revealed features particularly associated with attachment, biofilm production and motility, indicating the ability of D4P002T to effectively colonise ash leaves. In nursery trials, ash seedlings inoculated with this strain showed suppression of the pathogen over a period of three years. This effect was accompanied by a significant shift in the bacterial microbiome of the plants. Altogether, the exclusive occurrence in the microbiome of tolerant ash trees, the genetic background and the results of the inoculation experiment suggest that strain D4P002T may suppress the penetration and spreading of H. fraxineus in or on ash leaves via colonisation resistance or trigger a priming effect of plant defences against the pathogen.  相似文献   

13.
Strain 28bB2TT is a sulfate-reducing bacterium isolated in a previous study, obtained from a p-xylene-degrading enrichment culture. Physiological, phylogenetic and genomic characterizations of strain 28bB2TT were performed to establish the taxonomic status of the strain. Cells of strain 28bB2TT were short oval-shaped (0.8–1.2 × 1.2–2.7 μm), motile, and Gram-negative. For growth, the optimum pH was pH 6.5–7.0 and the optimum temperature was 28–32 °C. Strain 28bB2TT oxidized toluene but could not utilize p-xylene. Sulfate and thiosulfate were used as electron acceptors. The G + C content of the genomic DNA was 53.8 mol%. The genome consisted of an approximately 8.3 Mb of chromosome and two extrachromosomal elements. On the basis of 16S rRNA gene analysis, strain 28bB2TT was revealed to belong to the genus Desulfosarcina, with high sequence identities to Desulfosarcina ovata oXyS1T (99.5%) and Desulfosarcina cetonica DSM 7267T (98.7%). Results of Average Nucleotide Identity (ANI) calculation and digital DNA–DNA hybridization (dDDH) analysis showed that the strain 28bB2TT should be classified as a subspecies under D. ovata. Based on physiological and phylogenetic data, strain 28bB2TT (=NBRC 106234 =DSM 23484) is proposed as the type strain of a novel species in genus Desulfosarcina, Desulfosarcina ovata subsp. sediminis subsp. nov.  相似文献   

14.
Bacteria within the phylum Planctomycetota are biologically relevant due to unique characteristics among prokaryotes. Members of the genus Rhodopirellula can be abundant in marine habitats, however, only six species are currently validly described. In this study, we expand the explored genus diversity by formally describing a novel species. The pink-coloured strain ICT_H3.1T was isolated from brackish sediments collected in the Tagus estuary (Portugal) and a 16S rRNA gene sequence-based analysis placed this strain into the genus Rhodopirellula (family Pirellulaceae). The closest type strain is Rhodopirellula rubra LF2T, suggested by a similarity of 98.4% of the 16S rRNA gene sequence. Strain ICT_H3.1T is heterotrophic, aerobic and able to grow under microaerobic conditions. The strain grows between 15 and 37 °C, over a range of pH 6.5 to 11.0 and from 1 to 8% (w/v) NaCl. Several nitrogen and carbon sources were utilized by the novel isolate. Cells have an elongated pear-shape with 2.0 ± 0.3 × 0.9 ± 0.2 µm in size. Cells of strain ICT_H3.1T cluster in rosettes through a holdfast structure and divide by budding. Younger cells are motile. Ultrathin cell sections show cytoplasmic membrane invaginations and polar fimbriae. The genome size is 9,072,081 base pairs with a DNA G + C content of 56.1 mol%. Genomic, physiological and morphological comparison of strain ICT_H3.1T with its relatives suggest that it belongs to a novel species within the genus Rhodopirellula. Hence, we propose the name Rhodopirellula aestuarii sp. nov., represented by ICT_H3.1T (=CECT30431T = LMG32464T) as the type strain of this novel species.16S rRNA gene accession number: GenBank = OK001858.Genome accession number: The Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession JAMQBK000000000. The version described in this paper is version JAMQBK010000000.  相似文献   

15.
moderately halophilic spore forming, motile, Gram-positive, rod-shaped bacterial strain designated as KGW1T was isolated from water sample of Chilika Lake and characterized taxonomically using polyphasic approach. The strain grew in the presence of 0–25% (w/v) NaCl in marine salt agar media, hydrolyzes casein, and gelatin and shows presence of alkaline proteases. The major cell wall menaquinone was MK7 and major cellular fatty acids were anteiso-C15:0 (44.89%), anteiso-C17:0 (6.18%), isoC15:0 (19.38%), and iso-C16:0 (7.39%). Several chemotaxonomic features conform the isolate be a member of genus Halobacillus. The isolate KGW1T contained A1γ meso-Dpm-direct type of peptidoglycan which is different from its phylogenetically closest neighbours. The 16S rRNA gene sequence based phylogenetic analysis also revealed the strain KGW1T was affiliated to the genus Halobacillus and sequence similarity between the isolated strain and the type strains of Halobacillus species were found closest to, H. dabanensis D-8 DSM 18199T (99.08%) and H. faecis IGA7-4 DSM 21559T (99.01%), H. trueperi SL-5 DSM 10404T (98.94%). The in silico DDH showed that the values in a range of 14.2–17.5% with the most closest strain H. dabanensis D-8 DSM 18199T and other type strains of the genus Halobacillus for which whole genome sequence is reported. DNA-DNA relatedness between strain KGW1T and the closest type strain Halobacillus trueperi DSM 10404T was 11.75% (± 1.15). The draft genome sequence includes 3,683,819 bases and comprises of 3898 predicted coding sequences with a G + C content of 46.98%. Thus, the significant distinctiveness supported by phenotypic and genotypic data with its closest neighbors and other closely related species confirm the strain KGW1T to be classified as a novel species within the genus Halobacillus, for which the name Halobacillus marinus sp. nov. is proposed. The type strain is KGW1T (= DSM 29522 = JCM 30443).  相似文献   

16.
Xiao  Yao  Wang  Le  Wang  Xin  Chen  Min  Chen  Jian  Tian  Bao-Yu  Zhang  Bing-Huo 《Antonie van Leeuwenhoek》2022,115(1):141-153

Attached bacteria of Microcystis play important roles in the occurence, outbreak and decline of Microcystis water blooms. In this study, a novel actinobacterium, designated strain JXJ CY 38 T, was isolated from the culture mass of Microcystis aeruginosa FACHB-905 (MAF), collected from Lake Dianchi, south-west, China. The strain was found to be a Gram-stain positive, short rod, catalase positive and oxidase negative. The isolate was found to be able to grow at 5.0–38.0 °C (optimum, 28.0 °C), pH 4.0–11.0 (optimum, 7.0–8.0) and 0–3.0% (w/v, optimum, 0%) NaCl. Based on 16S rRNA gene sequences, strain JXJ CY 38 T shows high similarities to Nocardioides furvisabuli JCM 13813 T (99.0%) and Nocardioides alpinus JCM 18960 T (98.7%), and less than 98.2% similarities to other members of the genus. The major cellular fatty acids (>?10.0%) were identified as iso-C16:0 (23.6%), C18:1ω9c (18.2%) and C17:1ω8c (16.4%), while the predominant menaquinone was found to be MK-8 (H4). The diagnostic diamino acids in the cell wall peptidoglycan were identified as aspartic acid, glutamic acid, glycine and alanine, with mannose, ribose and arabinose as whole cell sugars. The polar lipids were found to be diphosphatidylglycerol, phosphatidylglycerol, a phospholipid, phosphatidylcholine and an unidentified lipid. The DNA G?+?C content was determined to be 71.3%. The digital DNA-DNA hybridization and average nucleotide identity values between strain JXJ CY 38 T and the type strains N. furvisabuli JCM 13813 T and N. alpinus JCM 18960 T were 49.4% and 37.7%, and 92.0% and 83.4%, respectively. On the basis of the above taxonomic data and differences in physiological characteristics from the closely related type strains, strain JXJ CY 38 T was determined to represent a novel species of genus Nocardioides, for which the name Nocardioides lacusdianchii sp. nov. is proposed. The type strain is JXJ CY 38 T (=?KCTC 49381 T?=?CGMCC 4.7665 T). Strain JXJ CY 38 T apparently exhibits complex effects on the interactions between MAF and other attached bacteria, including the promotion or inhibition of the growth of MAF and bacteria, and the synthesis and release of microcystins by MAF.

  相似文献   

17.
Strain LMG 31809 T was isolated from a top soil sample of a temperate, mixed deciduous forest in Belgium. Comparison of its 16S rRNA gene sequence with that of type strains of bacteria with validly published names positioned it in the class Alphaproteobacteria and highlighted a major evolutionary divergence from its near neighbor species which represented species of the orders Emcibacterales and Sphingomonadales. 16S rRNA amplicon sequencing of the same soil sample revealed a highly diverse community in which Acidobacteria and Alphaproteobacteria predominated, but failed to yield amplicon sequence variants highly similar to that of strain LMG 31809 T. There were no metagenome assembled genomes that corresponded to the same species and a comprehensive analysis of public 16S rRNA amplicon sequencing data sets demonstrated that strain LMG 31809 T represents a rare biosphere bacterium that occurs at very low abundances in multiple soil and water-related ecosystems. The genome analysis suggested that this strain is a strictly aerobic heterotroph that is asaccharolytic and uses organic acids and possibly aromatic compounds as growth substrates. We propose to classify LMG 31809 T as a novel species within a novel genus, Govania unica gen. nov., sp. nov, within the novel family Govaniaceae of the class Alphaproteobacteria. Its type strain is LMG 31809 T (=CECT 30155 T). The whole-genome sequence of strain LMG 31809 T has a size of 3.21 Mbp. The G + C content is 58.99 mol%. The 16S rRNA gene and whole-genome sequences of strain LMG 31809 T are publicly available under accession numbers OQ161091 and JANWOI000000000, respectively.  相似文献   

18.
A bacterial isolate (SCU-B244T) was obtained in China from crickets (Teleogryllus occipitalis) living in cropland deserted for approximately 10 years. The isolated bacteria were Gram-negative, facultatively anaerobic, oxidase-negative rods. A preliminary analysis of the 16S rRNA gene sequence indicated that the strain belongs to either the genus Erwinia or Pantoea. Analysis of multilocus sequence typing based on concatenated partial atpD, gyrB and infB gene sequences and physiological and biochemical characteristics indicated that the strain belonged to the genus Erwinia, as member of a new species as it was distinct from other known Erwinia species. Further analysis of the 16S rRNA gene showed SCU-B244T to have 94.71% identity to the closest species of that genus, Erwinia oleae (DSM 23398T), which is below the threshold of 97% used to discriminate bacterial species. DNA-DNA hybridization results (5.78±2.52%) between SCU-B244T and Erwinia oleae (DSM 23398T) confirmed that SCU-B244T and Erwinia oleae (DSM 23398T) represent different species combined with average nucleotide identity values which range from 72.42% to 74.41. The DNA G+C content of SCU-B244T was 55.32 mol%, which also differs from that of Erwinia oleae (54.7 to 54.9 mol%). The polyphasic taxonomic approach used here confirmed that the strain belongs to the Erwinia group and represents a novel species. The name Erwinia teleogrylli sp. nov. is proposed for this novel taxon, for which the type strain is SCU-B244T (= CGMCC 1.12772T = DSM 28222T = KCTC 42022T).  相似文献   

19.
A novel haloalkaliphilic, facultative anaerobic and Gram-negative Salinivibrio-like microorganism (designated strain BAGT) was recovered from a saline lake in Ras Mohammed Park (Egypt). Cells were motile, curved rods, not spore-forming and occurred singly. Strain BAGT grew optimally at 35°C (temperature growth range 25–40°C) with 10.0% (w/v) NaCl [NaCl growth range 6.0–16.0% (w/v)] and at pH 9.0 (pH growth range 6.0–10.0). Strain BAGT had phosphatidylethanolamine (PEA) and phosphatidylglycerol (PG) as the main polar lipids, C16:0 (54.0%) and C16:1 (26.0%) as the predominant cellular fatty acids and Q-8 as the major respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain BAGT was a member of Salinivibrio genus, with the highest sequence similarities of 99.1, 98.4 and 98.1% to Salinivibrio siamensis JCM 14472T, Salinivibrio proteolyticus DSM 19052T and Salinivibrio costicola subsp. alcaliphilus DSM 16359T, respectively. DNA–DNA hybridization values of strain BAGT with members of Salinivibrio genus were lower than 55.0%. DNA G + C content was 51.0 mol%. On the basis of the polyphasic taxonomic results revealed in this study, strain BAGT should be classified as a novel species of Salinivibrio genus, for which the name Salinivibrio sharmensis sp. nov. is proposed, with the type strain BAGT (=ATCC BAA-1319T = DSM 18182T).  相似文献   

20.
Ten bacterial isolates belonging to the genus Vagococcus were obtained from Malian sour milk fènè produced from spontaneously fermented cow milk. However, these isolates could not be assigned to a species upon initial comparative 16S rRNA gene sequence analysis and were therefore further characterized. Rep-PCR fingerprinting of the isolates yielded four strain clusters represented by strains CG-21T (=DSM 21459T), 24CA, CM21 and 9H. Sequence identity of the 16S rRNA gene of DSM 21459T to its closest relative species Vagococcus penaei was 97.9%. Among the four rep strain clusters, DSM 21459T and 24CA shared highest 16S rRNA gene sequence identity of 99.6% while CM21 and 9H shared 98.6–98.8% with DSM 21459T and V. penaei CD276T. DSM 21459T and 24CA were thus subjected to a polyphasic typing approach. The genome of DSM 21459T featured a G + C content of 34.1 mol% for a 2.17-bp chromosome and a 15-kbp plasmid. Average nucleotide identity (ANI) of DSM 21459T to Vagococcus fluvialis bH819, V. penaei CD276T were 72.88%, 72.63%, respectively. DNA–DNA hybridization (DDH) similarities of strain DSM 21459T to other Vagococcus species were <42.0%. ANI and DDH findings strongly supported the 16S rRNA gene phylogenetic tree delineations. The fatty acid patterns of DSM 21459T was palmitic acid (C 16:0, 24.5%), oleic acid (C 18:1-ω9c, 32.8%), stearic acid (C 18:0, 18.9%). General physiological characterization of DSM 21459T and 24CA were consistent with those of the genus Vagococcus. Strain DSM 21459T and further strains are therefore considered to belong to a novel species, for which the nomenclature Vagococcus teuberi sp. nov. is proposed. The type strain is named CG-21T (=DSM 21459T and LMG 24695T).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号