首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

2.
The mitochondrial F(1)F(0)-ATP synthase is a multimeric enzyme complex composed of at least 16 unique peptides with an overall molecular mass of approximately 600 kDa. F(1)-ATPase is composed of alpha(3)beta(3)gammadeltaepsilon with an overall molecular mass of 370 kDa. The genes encoding bovine F(1)-ATPase have been expressed in a quintuple yeast Saccharomyces cerevisiae deletion mutant (DeltaalphaDeltabetaDeltagammaDeltadeltaDeltaepsilon). This strain expressing bovine F(1) is unable to grow on medium containing a non-fermentable carbon source (YPG), indicating that the enzyme is non-functional. However, daughter strains were easily selected for growth on YPG medium and these were evolved for improved growth on YPG medium. The evolution of the strains was presumably due to mutations, but mutations in the genes encoding the subunits of the bovine F(1)-ATPase were not required for the ability of the cell to grow on YPG medium. The bovine enzyme expressed in yeast was partially purified to a specific activity of about half of that of the enzyme purified from bovine heart mitochondria. These results indicate that the molecular machinery required for the assembly of the mitochondrial ATP synthase is conserved from bovine and yeast and suggest that yeast may be useful for the expression, mutagenesis, and analysis of the mammalian F(1)- or F(1)F(0)-ATP synthase.  相似文献   

3.
The effect of increased expression or reconstitution of the mitochondrial inhibitor protein (IF1) on the dimer/monomer ratio (D/M) of the rat liver and bovine heart F1F0-ATP synthase was studied. The 2-fold increased expression of IF1 in AS-30D hepatoma mitochondria correlated with a 1.4-fold increase in the D/M ratio of the ATP synthase extracted with digitonin as determined by blue native electrophoresis and averaged densitometry analyses. Removal of IF1 from rat liver or bovine heart submitochondrial particles increased the F1F0-ATPase activity and decreased the D/M ratio of the ATP synthase. Reconstitution of recombinant IF1 into submitochondrial particles devoid of IF1 inhibited the F1F0-ATPase activity by 90% and restored partially the D/M ratio of the whole F1F0 complex as revealed by blue native electrophoresis and subsequent SDS-PAGE or glycerol density gradient centrifugation. Thus, the inhibitor protein promotes or stabilizes the dimeric form of the intact F1F0-ATP synthase. A possible location of the IF1 protein in the dimeric structure of the rat liver F1F0 complex is proposed. According to crystallographic and electron microscopy analyses, dimeric IF1 could bridge the F1-F1 part of the dimeric F1F0-ATP synthase in the inner mitochondrial membrane.  相似文献   

4.
The first part of this paper is a brief review of works concerned with the mechanisms of functioning of F0F1-ATP synthases. F0F1-ATP syntheses operate as rotating molecular machines that provide the synthesis of ATP from ADP and inorganic phosphate (Pi) in mitochondria, chloroplasts, and bacteria at the expense of the energy of electrochemical gradient of hydrogen ions generated across energy-transducing mitochondrial, chloroplast or, bacterial membranes. A distinguishing feature of these enzymes is that they operate as rotary molecular motors. In the second part of the work, we calculated the contribution of electrostatic interactions between charged groups of a substrate (MgATP), reaction products (MgADP and Pi), and charged amino acid residues of the F1-ATPase molecule to energy changes associated with the binding of ATP and its chemical transformations in the catalytic centers located at the interface of the alpha- and beta-subunits of the enzyme (oligomer complex alpha 3 beta 3 gamma of bovine mitochondrial ATPase). The catalytic cycle of ATP hydrolysis considered in the work includes conformational changes of alpha- and beta-subunits caused by unidirectional rotations of the central gamma-subunit. The results of our calculations are consistent with the idea that the energetically favorable process of ATP binding to the "open" catalytic center of F1-ATPase initiates the rotation of the gamma-subunit followed by ATP hydrolysis in another ("closed") catalytic center of the enzyme.  相似文献   

5.
The yeast F1F0-ATP synthase forms dimeric complexes in the mitochondrial inner membrane and in a manner that is supported by the F0-sector subunits, Su e and Su g. Furthermore, it has recently been demonstrated that the binding of the F1F0-ATPase natural inhibitor protein to purified bovine F1-sectors can promote their dimerization in solution (Cabezon, E., Arechaga, I., Jonathan P., Butler, G., and Walker J. E. (2000) J. Biol. Chem. 275, 28353-28355). It was unclear until now whether the binding of the inhibitor protein to the F1 domains contributes to the process of F1F0-ATP synthase dimerization in intact mitochondria. Here we have directly addressed the involvement of the yeast inhibitor protein, Inh1, and its known accessory proteins, Stf1 and Stf2, in the formation of the yeast F1F0-ATP synthase dimer. Using mitochondria isolated from null mutants deficient in Inh1, Stf1, and Stf2, we demonstrate that formation of the F(1)F(0)-ATP synthase dimers is not adversely affected by the absence of these proteins. Furthermore, we demonstrate that the F1F0-ATPase monomers present in su e null mutant mitochondria can be as effectively inhibited by Inh1, as its dimeric counterpart in wild-type mitochondria. We conclude that dimerization of the F1F0-ATP synthase complexes involves a physical interaction of the membrane-embedded F0 sectors from two monomeric complexes and in a manner that is independent of inhibitory activity of the Inh1 and accessory proteins.  相似文献   

6.
The F1 portion of the H+-ATPase from Clostridium thermoaceticum was purified to homogeneity by solubilization at low ionic strength, ion-exchange chromatography, and gel filtration. The last indicated the Mr to be 370,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the pure enzyme revealed four bands with Mr corresponding to 60,000, 55,000, 37,000, and 17,000 in an apparent molar ratio of 3:3:1:1. The purified enzyme would bind to stripped membranes to reconstitute dicyclohexylcarbodiimide-sensitive ATPase activity. Phosphohydrolase activity, measured at 58 degrees C, was optimal at pH 8.5. In the presence of a 1 mM excess of Mg2+ over the concentration of ATP, the Km for ATP was 0.4 mM, and the Vmax was 6.7 mumol min-1 mg-1. Unlike the membrane-bound F1F0 complex, the F1-ATPase was relatively insensitive to the inhibitors dicyclohexylcarbodiimide and tributyltin chloride. Both the complex and the F1-ATPase were inhibited by quercetin, azide, 7-chloro-4-nitro-benz-2-oxa-1,3-diazole, and free magnesium, and both were stimulated by primary alcohols and sulfite. In whole cells, the F1F0-ATPase catalyzed the synthesis of ATP in response to a pH gradient.  相似文献   

7.
The ATP-hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X-100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1 F0 type. The ATPase was specifically activated by Na+ ions yielding a 15-fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X-100 caused a further 1.5-fold activation. In the absence of Na+ Triton stimulated the ATPase about 13-fold. The Triton-stimulated ATPase was further activated about 1.5-2-fold by Na+ addition. The ATPase extracted by the low-ionic-strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1-ATPase subunit structure with Mr values of 58,000 (alpha), 56,000 (beta), 37,600 (gamma), 22,700 (delta), and 14,000 (epsilon). The F1-ATPase was not stimulated by Na+ ions. The membrane-bound ATPase was reconstituted from the purified F1 part and F1-depleted membranes, thus further indicating an F1 F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane-bound F0 part of the enzyme complex.  相似文献   

8.
F(0).F(1)-ATP synthase in tightly coupled inside-out vesicles derived from Paracoccus denitrificans catalyzes rapid respiration-supported ATP synthesis, whereas their ATPase activity is very low. In the present study, the conditions required to reveal the Deltamu(H+)-generating ATP hydrolase activity of the bacterial enzyme have been elucidated. Energization of the membranes by respiration results in strong activation of the venturicidin-sensitive ATP hydrolysis, which is coupled with generation of Deltam?(H+). Partial uncoupling stimulates the proton-translocating ATP hydrolysis, whereas complete uncoupling results in inhibition of the ATPase activity. The presence of inorganic phosphate is indispensable for the steady-state turnover of the Deltam?(H+)-activated ATPase. The collapse of Deltam?(H+) brings about rapid deactivation of the enzyme, which has been subjected to pre-energization. The rate and extent of the deactivation depend on protein concentration, i.e. the more vesicles are present in the assay mixture, the higher the rate and extent of the deactivation is seen. Sulfite and the ADP-trapping system protect ATPase against the Deltam?(H+) collapse-induced deactivation, whereas phosphate delays the rate of deactivation. A low concentration of ADP (<1 microm) increases the rate of deactivation. Taken together, the results suggest that latent proton-translocating ATPase in P. denitrificans is kinetically equivalent to the previously characterized ADP(Mg2+)-inhibited, azide-trapped bovine heart mitochondrial F(0).F(1)-ATPase (Galkin, M. A., and Vinogradov, A. D. (1999) FEBS Lett. 448, 123-126). A Deltam?(H+)-sensitive mechanism operates in P. denitrificans that prevents physiologically wasteful consumption of ATP by F(0).F(1)-ATPase (synthase) complex when the latter is unable to maintain certain value of Deltam?(H+).  相似文献   

9.
The synthesis of an ATP derivative is described, in which a spin-label is attached to the 3'-position of the ribose moiety and an azido group to C8 of the adenine ring (SL-N3-ATP). Irradiation of this compound at 350 nm generates a nitrene, which will react with any functional group in its vicinity. SL-N3-ATP exhibits a strongly immobilized ESR spectrum in a complex with F1-ATPase from beef heart mitochondria. It was covalently incorporated into this enzyme. SL-N3-ATP may be employed in ESR investigations under conditions in which non-covalent interactions are too weak for motionally restricted species to be easily observed.  相似文献   

10.
Lysosomal H+-translocating ATPase (H+-ATPase) was solubilized with lysophosphatidylcholine and reconstituted into liposomes (Moriyama, Y., Takano, T. and Ohkuma, S. (1984) J. Biochem. (Tokyo) 96, 927-930). In this study, the sensitivities of membrane-bound, solubilized and liposome-incorporated ATPase to various anions and drugs were measured in comparison with those of similar forms of mitochondrial H+-ATPase (mitochondrial F0F1-ATPase) with the following results. (1) Bicarbonate and sulfite activated solubilized lysosomal H+-ATPase, but not the membrane-bound ATPase or ATPase incorporated into liposomes. All three forms of mitochondrial F0F1-ATPase were activated by these anions. (2) All three forms of both lysosomal H+-ATPase and mitochondrial F0F1-ATPase were strongly inhibited by SCN-, NO3- and F-, but scarcely affected by Cl-, Br- and SO2-4. (3) The solubilized lysosomal H+-ATPase was strongly inhibited by azide, quercetin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl), 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic acid (SITS), 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) and oligomycin. Its sensitivity was almost the same as that of mitochondrial F0F1-ATPase. Neither membrane-bound ATPase nor ATPase incorporated into liposomes was affected appreciably by these drugs. These results indicate that the sensitivity to anions and drugs of lysosomal H+-ATPase depends on the form of the enzyme and that the sensitivity of the solubilized lysosomal H+-ATPase is very similar to that of mitochondrial F0F1-ATPase. On the other hand, the two ATPases differ in their sensitivity to N-ethylmaleimide and pyridoxal phosphate: only the mitochondrial ATPase is inhibited by pyridoxal phosphate whereas only the lysosomal ATPase is inhibited by N-ethylmaleimide.  相似文献   

11.
The effect of polyamines on F1-ATPase catalyzed reactions has been studied through the use of submitochondrial particles and F1-ATPase. ATP degradation catalyzed by submitochondrial particles and F1-ATPase was inhibited by spermine and spermidine. Spermine's inhibition was much greater than spermidine's effect. In contrast, P1-ATP exchange and succinate dependent ATP synthesis catalyzed by submitochondrial particles were both stimulated by spermine. The inhibition of ATPase activity by polyamines probably occurs through polyamine's replacement of Mg2+ on ATP, for the following reasons. (a) The ATPase activity inhibited by spermine was partially recovered when Mg2+ was added. (b) Spermine bound to ATP and phospholipids but not to F1-ATPase; yet spermine inhibited the ATPase reaction catalyzed by F1-ATPase, a protein free of phospholipid. (c) The binding of spermine to ATP was inhibited by Mg2+. The ATP content in polyamine-deficient cells definitely was lower than that in normal cells. On the basis of these results, the possible role of spermine in keeping the ATP concentration at a high level is discussed.  相似文献   

12.
Nucleotide-depleted mitochondrial F1-ATPase binds 3'-(2')-O-(2-nitro-4-azidobenzoyl)-derivatives of ATP (NAB-ATP) and GTP (NAB-GTP) when these nucleotide analogues are added to the enzyme in equimolar quantities in the presence of Mg2+ (uni-site catalysis conditions). The binding of NAB-ATP is accompanied by its hydrolysis and inorganic phosphate dissociation from the enzyme; NAB-ADP remains bound to F1-ATPase. The F1-ATPase X NAB-ADP complex has no ATPase activity and its reactivation in the presence of an excess of ATP is accompanied by NAB-ADP release. The illumination of the F1-ATPase complexes with NAB-ADP or NAB-GDP leads to the covalent binding of one nucleotide analogue molecule to the enzyme and to the irreversible inactivation of F1-ATPase. It follows from the results obtained that the modification of just one of the F1-ATPase catalytic sites is sufficient to complete the inhibition of ATPase activity.  相似文献   

13.
At low concentrations, diethylstilbestrol (DES) is shown to be a potent F0-directed inhibitor of the F0F1-ATPase of rat liver mitochondria. In analogy to other F0-directed inhibitors, DES inhibits both the ATPase and ATP-dependent proton-translocation activities of the purified and membrane bound enzyme. When added at low concentrations with dicyclohexylcarbodiimide (DCCD), a covalent inhibitor, DES acts synergistically to inhibit ATPase activity of the complex. At higher concentrations, DES restores DCCD-inhibited ATPase activity. However, there is no restoration of ATP-dependent proton translocation. Under these conditions DCCD remains covalently bound to the F0F1-ATPase complex and F1 remains bound to Fo. Significantly, when the F0F1-ATPase is inhibited by the Fo-directed inhibitor venturicidin rather than DCCD, DES is also able to restore ATPase activity. In contrast, DES is unable to restore ATPase activity to F0F1 preparations inhibited by the Fo-directed inhibitors oligomycin or tricyclohexyltin. However, combinations of [DES + DCCD] or [DES + venturicidin] can restore ATPase activity to F0F1 preparations inhibited by either oligomycin or tricyclohexyltin. Results presented here indicate that the F0 moiety of the rat liver mitochondrial proton ATPase contains a distinct binding site for DES. In addition, they suggest that at saturating concentrations simultaneous occupancy of the DES binding site and sites for either DCCD or venturicidin promote "uncoupled" ATP hydrolysis.  相似文献   

14.
Characterisation of 35 Kluyveromyces lactis strains lacking mitochondrial DNA has shown that mutations suppressing rho(0)-lethality are limited to the ATP1, 2 and 3 genes coding for the alpha-, beta- and gamma- subunits of mitochondrial F(1)-ATPase. All atp mutations reduce growth on glucose and three alleles, atp1-2, 1-3 and atp3-1, produce a respiratory deficient phenotype that indicates a drop in efficiency of the F(1)F(0)-ATP synthase complex. ATPase activity is needed for suppression as a double mutant containing an atp allele, together with a mutation abolishing catalytic activity, does not suppress rho(0)-lethality. Positioning of the seven amino acids subject to mutation on the bovine F(1)-ATPase structure shows that two residues are found in a membrane proximal region while five amino acids occur at a region suggested to be a molecular bearing. The intriguing juxtaposition of mutable amino acids to other residues subject to change suggests that mutations affect subunit interactions and alter the properties of F(1) in a manner yet to be determined. An explanation for suppressor activity of atp mutations is discussed in the context of a possible role for F(1)-ATPase in the maintenance of mitochondrial inner membrane potential.  相似文献   

15.
F0F1-ATPase of plant mitochondria: isolation and polypeptide composition   总被引:1,自引:0,他引:1  
A simple and high yield purification procedure for the isolation of F0F1-ATPase from spinach leaf mitochondria has been developed. This is the first report concerning purification and composition of the plant mitochondrial F0F1-ATPase. The enzyme is selectively extracted from inner membrane vesicles with the zwitterionic detergent, 3-[(3-cholamidopropyl) dimethyl ammonio]-1- propane sulfonate (CHAPS). The purified enzyme exhibits a high oligomycin-sensitive ATPase activity (3,6 mumol.min-1.mg-1). SDS-PAGE of the purified F0F1-ATPase complex reveals protein bands of molecular masses of 54 kDa (F1 alpha,beta), 33 kDa (F1 gamma), 28 kDa, 23 kDa, 21 kDa (F1 delta), 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa (F1 epsilon) and 8.5 kDa. All polypeptides migrate as one complex in a polyacrylamide gradient gel under non-denaturing conditions in the presence of 0.1% Triton X-100. Five polypeptides could be identified as subunits of F1. Polypeptides of molecular masses 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa constitute the F0 part of the complex. Our results show that polypeptide composition of the plant mitochondrial F0 differs from other eukaryotic F0 of yeast, mammals and chloroplasts.  相似文献   

16.
ATP hydrolysis by F1-ATPase is strongly inhibited by cationic rhodamines; neutral rhodamines are very poor inhibitors. Rhodamine 6G is a noncompetitive inhibitor of purified F0F1-ATPase and submitochondrial particles, however, an uncompetitive inhibitor of F1-ATPase (KI approximately equal to 2.4 microM for all three enzyme forms). Ethidium bromide is a noncompetitive inhibitor of F0F1-ATPase, submitochondrial particles and also F1-ATPase (KI approximately equal to 270 microM). Neither of the inhibitors affects the negative cooperativity (nH approximately equal to 0.7). The non-identical binding sites for rhodamine 6G and ethidium bromide are located on the F1-moiety and are topologically distinct from the catalytic site. Binding of the inhibitors prevents the conformational changes essential for energy transduction. It is concluded that the inhibitor binding sites are involved in proton translocation. In F1-ATPase, binding of MgATP at a catalytic site causes conformational changes, which allosterically induce the correct structure of the rhodamine 6G binding site. In F0F1-ATPase, this conformation of the F1-moiety exists a priori, due to allosteric interactions with F0-subunits. The binding site for ethidium bromide on F1-ATPase does not require substrate binding at the catalytic site and is not affected by F0F1-subunit interactions.  相似文献   

17.
H+-translocating, Mg2+-ATPase was solubilized from vacuolar membranes of Saccharomyces cerevisiae with the zwitterionic detergent N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and purified by glycerol density gradient centrifugation. Partially purified vacuolar membrane H+-ATPase, which had a specific activity of 18 units/mg of protein, was separated almost completely from acid phosphatase and alkaline phosphatase. The purified enzyme required phospholipids for maximal activity and hydrolyzed ATP, GTP, UTP, and CTP, with this order of preference. Its Km value for Mg2+-ATP was determined to be 0.21 mM and its optimal pH was 6.9. ADP inhibited the enzyme activity competitively, with a Ki value of 0.31 mM. The activity of purified ATPase was strongly inhibited by N,N'-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, tributyltin, 7-chloro-4-nitrobenzoxazole, diethylstilbestrol, and quercetin, but was not affected by oligomycin, sodium azide, sodium vanadate, or miconazole. It was not inhibited at all by antiserum against mitochondrial F1-ATPase or mitochondrial F1-ATPase inhibitor protein. These results indicated that vacuolar membrane H+-ATPase is different from either yeast plasma membrane H+-ATPase or mitochondrial F1-ATPase. The vacuolar membrane H+-ATPase was found to be composed of two major polypeptides a and b of Mr = 89,000 and 64,000, respectively, and a N,N'-dicyclohexylcarbodiimide binding polypeptide c of Mr = 19,500, whose polypeptide composition was also different from those of either plasma membrane H+-ATPase or mitochondrial F1-ATPase of S. cerevisiae.  相似文献   

18.
Probing conformations of the beta subunit of F0F1-ATP synthase in catalysis   总被引:1,自引:0,他引:1  
A subcomplex of F0F1-ATP synthase (F0F1), alpha3beta3gamma, was shown to undergo the conformation(s) during ATP hydrolysis in which two of the three beta subunits have the "Closed" conformation simultaneously (CC conformation) [S.P. Tsunoda, E. Muneyuki, T. Amano, M. Yoshida, H. Noji, Cross-linking of two beta subunits in the closed conformation in F1-ATPase, J. Biol. Chem. 274 (1999) 5701-5706]. This was examined by the inter-subunit disulfide cross-linking between two mutant beta(I386C)s that was formed readily only when the enzyme was in the CC conformation. Here, we adopted the same method for the holoenzyme F0F1 from Bacillus PS3 and found that the CC conformation was generated during ATP hydrolysis but barely during ATP synthesis. The experiments using F0F1 with the epsilon subunit lacking C-terminal helices further suggest that this difference is related to dynamic nature of the epsilon subunit and that ATP synthesis is accelerated when it takes the pathway involving the CC conformation.  相似文献   

19.
Mitochondrial F(1)F(0)-ATPase normally synthesizes ATP in the heart, but under ischemic conditions this enzyme paradoxically causes ATP hydrolysis. Nonselective inhibitors of this enzyme (aurovertin, oligomycin) inhibit ATP synthesis in normal tissue but also inhibit ATP hydrolysis in ischemic myocardium. We characterized the profile of aurovertin and oligomycin in ischemic and nonischemic rat myocardium and compared this with the profile of BMS-199264, which only inhibits F(1)F(0)-ATP hydrolase activity. In isolated rat hearts, aurovertin (1-10 microM) and oligomycin (10 microM), at concentrations inhibiting ATPase activity, reduced ATP concentration and contractile function in the nonischemic heart but significantly reduced the rate of ATP depletion during ischemia. They also inhibited recovery of reperfusion ATP and contractile function, consistent with nonselective F(1)F(0)-ATPase inhibitory activity, which suggests that upon reperfusion, the hydrolase activity switches back to ATP synthesis. BMS-199264 inhibits F(1)F(0) hydrolase activity in submitochondrial particles with no effect on ATP synthase activity. BMS-199264 (1-10 microM) conserved ATP in rat hearts during ischemia while having no effect on preischemic contractile function or ATP concentration. Reperfusion ATP levels were replenished faster and necrosis was reduced by BMS-199264. ATP hydrolase activity ex vivo was selectively inhibited by BMS-199264. Therefore, excessive ATP hydrolysis by F(1)F(0)-ATPase contributes to the decline in cardiac energy reserve during ischemia and selective inhibition of ATP hydrolase activity can protect ischemic myocardium.  相似文献   

20.
The binding of calmodulin to the mitochondrial F1.F0-ATPase has been studied. [125I]Iodoazidocalmodulin binds to the epsilon-subunit and to the endogeneous ATPase inhibitor peptide in a Ca2+-dependent reaction. The effect of the mitochondrial ATPase inhibitor peptide on the purified Ca2+-ATPase of erythrocytes has also been analyzed. The inhibitor peptide stimulates the ATPase when pre-incubated with the enzyme. The activation of the Ca2+-ATPase by calmodulin is not influenced by the inhibitor peptide, indicating that the two mechanisms of activation are different. These in vitro effects of the two regulatory proteins may reflect a common origin of the two ATPases considered and/or of the regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号