首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The role of feruloyl esterases in plant wall development, in gut health, and in the breakdown of plant biomass for the production of bioactive phytochemicals and biofuel is covered in this review. These enzymes have potential roles in stomatal cell function and the phenolic substitutions and cross-linkages between plant cell wall components. As more plant genomes are sequenced, the role of ferulic acid and feruloyl esterases in planta may be better understood. In human and ruminal digestion, these enzymes are important to de-esterify dietary fibre, releasing hydroxycinnamates and derivatives which have been shown to have positive health effects, such as antioxidant, anti-inflammatory and anti-microbial activities. They are also involved in colonic fermentation where their extracellular and intracellular activities in the microbiota improve the breakdown of polysaccharides and increase microbial production of short chain fatty acids. Their specificity can also be employed to synthesize bioactive compounds for cosmetic and health applications. The enzymatic disassembly of cereal straws is greatly enhanced when feruloyl esterase activity is present, although the substrate specificity of the esterase appears to have some bearing on its optimal application. The involvement of feruloyl esterases in the improved enzymatic and microbial saccharification of cereal-derived material demonstrates a high importance for these enzymes in animal feed preparation and bioalcohol production.  相似文献   

2.
Microbial biosynthesis of fatty acid-like chemicals from renewable carbon sources has attracted significant attention in recent years. Free fatty acids can be used as precursors for the production of fuels or chemicals. Free fatty acids can be produced by introducing an acyl–acyl carrier protein thioesterase gene into Escherichia coli. The presence of the acyl-ACP thioesterase will break the fatty acid elongation cycle and release free fatty acid. Depending on their sequence similarity and substrate specificity, class FatA thioesterase is active on unsaturated acyl-ACPs and class FatB prefers saturated acyl group. Different acyl-ACP thioesterases have different degrees of chain length specificity. Although some of these enzymes have been characterized from a number of sources, information on their ability to produce free fatty acid in microbial cells has not been extensively examined until recently. In this study, we examined the effect of the overexpression of acyl-ACP thioesterase genes from Diploknema butyracea, Gossypium hirsutum, Ricinus communis and Jatropha curcas on free fatty acid production. In particular, we are interested in studying the effect of different acyl-ACP thioesterase on the quantities and compositions of free fatty acid produced by an E. coli strain ML103 carrying these constructs. It is shown that the accumulation of free fatty acid depends on the acyl-ACP thioesterase used. The strain carrying the acyl-ACP thioesterase gene from D. butyracea produced approximately 0.2 g/L of free fatty acid while the strains carrying the acyl-ACP thioesterase genes from R. communis and J. curcas produced the most free fatty acid at a high level of more than 2.0 g/L at 48 h. These two strains accumulated three major straight chain free fatty acids, C14, C16:1 and C16 at levels about 40%, 35% and 20%, respectively.  相似文献   

3.
The fatty acid specificity of the B-lipase derived from Candida antarctica was investigated in the synthesis of esters of ethyl D-glucopyranoside. The specificity was almost identical with respect to straight-chain fatty acids with 10 to 18 carbon atoms. However, lower fatty acids such as hexanoic and octanoic acid and the unsaturated 9-cis-octadecenoic acid were found to be poor substrates of the enzyme. As a consequence of this selectivity, these fatty acids were accumulated in the unconverted fraction when ethyl D-glucopyranoside was esterified with an excess of a mixture of fatty acids. This accumulation can reduce the overall effectiveness of the process as the activity of the lipase was found to be reduced when exposed to high concentrations of short-chain fatty acids. Finally, using a simplified experimental set-up, the specificity of the C. antarctica B-lipase was compared to the specificity of lipases derived from C. rugosa, Mucor miehei, Humicola, and Pseudomonas. Apart from the C. rugosa lipase, which exhibited a very poor performance, all the enzymes showed a very similar specificity with respect to fatty acids longer than octanoic acid while only the C. antarctica B-lipase showed activity towards sort-chain fatty acids.  相似文献   

4.
A procedure for identifying and profiling cutinolytic esterases was developed by combining traditional plate screen assays with an automated robotic system. In the first phase, the micro-organisms were screened on agar plates with cutin or the model substrate polycaprolactone as the sole carbon sources. In the second phase, p-nitrophenyl esters of fatty acids were used as the substrates in an automated activity assay of liquid culture media. The variables used were pH and the carbon chain length of the fatty acid moiety of the p-nitrophenyl substrate. Finally, 3H-labelled cutin was used as a specific substrate to verify the positive hits and to validate the screening procedure. With pH as the variable in the automatic screen, esterase production of cutinase positive strains typically proceeded in two stages: first an esterase with neutral activity optimum was produced, after which a strong esterolytic response in the alkaline range was detected. With carbon chain length of the fatty acid as the variable best correlation with cutinase production was obtained with strains showing a high ratio of activities towards p-nitrophenyl-butyrate and p-nitrophenyl-palmitate.  相似文献   

5.
Cytochrome P450 BM-3 (CYP102) catalyzes the subterminal hydroxylation of fatty acids with a chain length of 12–22 carbons. The paper focuses on the regioselectivity and substrate specificity of the purified wild-type enzyme and five mutated variants towards caprylic, capric, and lauric acid. The enzymes were obtained by random mutagenic fine-tuning of the mutant F87A(LARV). F87A(LARV) was selected as the best enzyme variant in a previous study in which the single mutant F87A was subjected to rational evolution to achieve hydroxylation activity for short chain length substrates using a p-nitrophenolate-based spectrophotometric assay.

The best mutants, F87V(LAR) and F87V(LARV), show a higher catalytic activity towards ω-(p-nitrophenoxy)decanoic acid (10-p-NCA) than F87A(LARV). In addition, they proved capable of hydroxylating ω-(p-nitrophenoxy)octanoic acid (8-p-NCA) which the wild-type enzyme is unable to do. Both variants catalyzed hydroxylation of capric acid, which is not a substrate for the wild-type, with a conversion rate of up to 57%. The chain length specificity of the mutants in fatty acid hydroxylation processes shows a good correlation with their activity towards p-NCA pseudosubstrates. The p-NCA assay therefore, allows high-throughput screening of large mutant libraries for the identification of enzyme variants with the desired catalytic activity towards fatty acids as the natural substrates.  相似文献   


6.
Abstract: Specificities of the cholesterol-esterifying enzyme and the three cholesterol esterases in rat brain with respect to the chain length of fatty acids were examined. For each of the hydrolases, activities toward cholesteryl lignocerate and cerotate were generally less than 1% of that toward cholesteryl oleate. However, both lignoceric and cerotic acids were esterified at rates approximately 10% of that for oleic acid. In postmortem human control and adrenoleukodystrophy brains, the esterifying activity toward cerotic acid was on the average 25% of that toward oleic acid. The abnormal accumulation of cholesterol esters with very long chain fatty acids observed in adrenoleukodystrophy can therefore occur in the absence of deficient activities of the cholesterol esterases, if the free fatty acid pool of the brain contains an abnormal amount of very long chain fatty acids.  相似文献   

7.
cDNA clones encoding a novel 3-ketoacyl-ACP synthase (KAS) have been isolated from Cuphea . The amino acid sequence of this enzyme is different from the previously characterized classes of KASs, designated KAS I and III, and similar to those designated as KAS II. To define the acyl chain specificity of this enzyme, we generated transgenic Brassica plants over-expressing the cDNA encoded protein in a seed specific manner. Expression of this enzyme in transgenic Brassica seeds which normally do not produce medium chain fatty acids does not result in any detectable modification of the fatty acid profile. However, co-expression of the Cuphea KAS with medium chain specific thioesterases, capable of production of either 12:0 or 8:0/10:0 fatty acids in seed oil, strongly enhances the levels of these medium chain fatty acids as compared with seed oil of plants expressing the thioesterases alone. By contrast, co-expression of the Cuphea KAS along with an 18:0/18:1-ACP thioesterase does not result in any detectable modification of the fatty acids. These data indicate that the Cuphea KAS reported here has a different acyl-chain specificity to the previously characterized KAS I, II and III. Therefore, we designate this enzyme KAS IV, a medium chain specific condensing enzyme.  相似文献   

8.
Benzoic acid esterases and ferulic acid esterases (FAE) are enzymes with different profiles of substrate specificity. An extracellular esterase (EstBC) from culture supernatants of the edible basidiomycete fungus Auricularia auricula-judae was purified by anion exchange chromatography, followed by preparative isoelectric focusing and hydrophobic interaction chromatography. EstBC showed a molecular mass of 36 kDa and an isoelectric point of 3.2 along with broad pH and temperature windows similar to fungal FAEs. However, EstBC exhibited also characteristics of a benzoic acid esterase acting on both benzoates and cinnamates, and most efficiently on methyl and ethyl benzoate, methyl 3-hydroxybenzoate and methyl salicylate. Feruloyl saccharides as well as lipase substrates, such as long chain fatty acids esterified with glycerol, polyethoxylated sorbitan and p-nitrophenol were not hydrolyzed. Protein database analyses with tryptic peptides of EstBC solely yielded hits regarding hypothetical proteins belonging to the alpha/beta hydrolase family. The uncommon substrate specificity of EstBC concomitant with a lack of sequence homology to known enzymes suggests a new type of enzyme.  相似文献   

9.
In order to study specificity of pancreatic lipase, a number of synthetic triglycerides were hydrolyzed by the enzyme under an improved condition. The proportions of isomers of the derived mono- and diglycerides, and the fatty acid compositions of the derived free acids and monoglycerides were determined. The hydrolyzing rate of fatty acids in glycerides depended on the position esterified in the glycerol, carbon number of the acid, and structure of the glyceride. Positional specificity of the enzyme was markedly displayed for symmetrical triglyceridcs composed of long chain acids, but at somewhat lower rate for glycerides containing short chain or highly unsaturated acids.  相似文献   

10.
Isocitrate lyase is a key enzyme of the glyoxylate cycle. This cycle plays an essential role in cell growth on acetate, and is important for gluconeogenesis as it bypasses the two oxidative steps of the tricarboxylic acid (TCA) cycle in which CO2 is evolved. In this paper, a null icl mutant of the green microalga Chlamydomonas reinhardtii is described. Our data show that isocitrate lyase is required for growth in darkness on acetate (heterotrophic conditions), as well as for efficient growth in the light when acetate is supplied (mixotrophic conditions). Under these latter conditions, reduced acetate assimilation and concomitant reduced respiration occur, and biomass composition analysis reveals an increase in total fatty acid content, including neutral lipids and free fatty acids. Quantitative proteomic analysis by 14N/15N labelling was performed, and more than 1600 proteins were identified. These analyses reveal a strong decrease in the amounts of enzymes of the glyoxylate cycle and gluconeogenesis in parallel with a shift of the TCA cycle towards amino acid synthesis, accompanied by an increase in free amino acids. The decrease of the glyoxylate cycle and gluconeogenesis, as well as the decrease in enzymes involved in β–oxidation of fatty acids in the icl mutant are probably major factors that contribute to remodelling of lipids in the icl mutant. These modifications are probably responsible for the elevation of the response to oxidative stress, with significantly augmented levels and activities of superoxide dismutase and ascorbate peroxidase, and increased resistance to paraquat.  相似文献   

11.
The thioesterase activity of porcine pancreatic phospholipase A2 has been investigated with non-phospholipid substrates. The acyl-CoA hydrolase activity towards acyl-CoA derivatives is specific for long chain fatty acids (14 C, 16 C) but is unable to hydrolyze short chain acyl-CoA compounds (below 8 C). The same enzyme also shows protein deacylase activity liberating [3H]palmitic acid from [3H]palmitoyl-acyl carrier protein.  相似文献   

12.
Medium-chain fatty acids (C6–C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme ‘TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of ‘TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the ‘TesARD−2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.  相似文献   

13.
The conversion of industrial by‐products into high‐value added compounds is a challenging issue. Crude glycerol, a by‐product of the biodiesel production chain, could represent an alternative carbon source for the cultivation of oleaginous yeasts. Here, we developed five minimal synthetic glycerol‐based media, with different C/N ratios, and we analyzed the production of biomass and fatty acids by Yarrowia lipolytica Po1g strain. We identified two media at the expense of which Y. lipolytica was able to accumulate ~5 g L?1 of biomass and 0.8 g L?1 of fatty acids (0.16 g of fatty acids per g of dry weight). These optimized media contained 0.5 g L?1 of urea or ammonium sulfate and 20 g L?1 of glycerol, and were devoid of yeast extract. Moreover, Y. lipolytica was engineered by inserting the FatB2 gene, coding for the CpFatB2 thioesterase from Cuphea palustris, in order to modify the fatty acid composition towards the accumulation of medium‐chain fatty acids. Contrary to the expected, the expression of the heterologous gene increased the production of oleic acid, and concomitantly decreased the level of saturated fatty acids. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:26–35, 2016  相似文献   

14.
Summary Candida guilliermondii strain 1 was grown on solar as a sole carbon source for 14 days, and the lipid classes were investigated. The yeast showed high affinity towards hydrocarbons of short chain length, and within 6 days the cellular lipid classes represented 39.69%, 27.50%, 15.35%, 2.23%, 16.20% of hydrocarbons, neutral lipids, free fatty acids, sterols and polar lipids respectively. Undecanoic and hexadecanoic acids were the major fatty acids of the cellular neutral lipids and oleic acid was the major component of the polar lipids.  相似文献   

15.
Lipases and esterases are hydrolytic enzymes and are known to hydrolyze esters with unique substrate specificity and acyl chain length selectivity. We have developed a simple competitive multiple substrate assay for determination of acyl chain length selectivity of lipases/esterases using RP-HPLC with UV detection. A method for separation and quantification of 4-nitrophenyl fatty acid esters (C4–C18) was developed and validated. The chain length selectivity of five lipases and two esterases was determined in a multisubstrate reaction system containing equimolar concentrations of 4-nitrophenyl esters (C4–C18). This assay is simple, reproducible, and a useful tool for determining chain length selectivity of lipases/esterases.  相似文献   

16.
Lipoxygenases (LOXs) constitute a family of lipid-peroxidizing enzymes that catalyze the oxidation of unsaturated fatty acid containing a (1Z,4Z)-pentadiene structural unit, leading to formation of conjugated (Z,E)-hydroperoxydienoic acid. LOXs are known to be widely distributed in plants and animals. Recently, several microbial LOXs were reported to be involved in the production of hydroperoxy fatty acids. Among the microorganisms that produce hydroxy fatty acids, Pseudomonas aeruginosa PR3 is known to convert linoleic acid to trihydroxy fatty acid, which suggests the involvement of a LOX enzyme. Based on these reports, we identified a novel thermostable LOX from P. aeruginosa PR3 strain. The protein was purified 34.3-fold with a recovery rate of 5.14%. The Km and Vmax values of the purified enzyme were 3.57 mM and 0.73 μmol/min//mg, respectively. Heat stability of the purified enzyme was unexpectedly high with an LD50 of 90 min at 80°C, although P. aeruginosa PR3 is known as a mesophilic bacterium. Substrate specificity of the purified enzyme was restricted only to unsaturated fatty acids carrying a (1Z,4Z)-pentadiene unit.  相似文献   

17.
Flavour formation by amino acid catabolism   总被引:18,自引:0,他引:18  
Microbial catabolism of amino acids produces flavour compounds of importance for foods such as cheese, wine and fermented sausages. Lactic acid bacteria are equipped with enzyme systems for using the amino acids in their metabolism and are useful for flavour formation of foods. Branched-chain amino acids (Leu, Ile, Val) are converted into compounds contributing to malty, fruity and sweaty flavours; catabolism of aromatic amino acids (Phe, Tyr, Trp) produce floral, chemical and faecal flavours; aspartic acid (Asp) is catabolised into buttery flavours and sulphuric amino acids (Met, Cys) are transferred into compounds contributing to boiled cabbage, meaty and garlic flavours.  相似文献   

18.
19.
The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. coli fabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.  相似文献   

20.
Synthesis of fatty acids has been studied in aged potato slices. Formation of the very long chain fatty acids was inhibited by the presence of fluoride or by high incubation temperatures. Arsenite caused an increase in the percentage incorporation of radioactivity from acetate-[14C] into palmitic acid, apparently by inhibiting further elongation. The results indicate that the aged potato contains at least three enzymes responsible for saturated fatty acid synthesis, At short incubation times, the newly formed fatty acids were mainly unesterified but later become incorporated into phospholipids. Phosphatidylcholine contained the greatest proportion of radioactive fatty acids. Newly formed polyenoic fatty acids were principally transacylated into phosphatidylcholine and phosphatidylethanolamines. The very long chain fatty acids, on the other hand, were mainly located in the wax ester and unesterified fatty acid fractions, from which they can easily be converted into suberin components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号