首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A recombinant live attenuated dengue virus type 4 (DEN4) vaccine candidate, 2ADelta30, was found previously to be generally well tolerated in humans, but a rash and an elevation of liver enzymes in the serum occurred in some vaccinees. 2ADelta30, a non-temperature-sensitive (non-ts) virus, contains a 30-nucleotide deletion (Delta30) in the 3' untranslated region (UTR) of the viral genome. In the present study, chemical mutagenesis of DEN4 was utilized to generate attenuating mutations which may be useful in further attenuation of the 2ADelta30 candidate vaccine. Wild-type DEN4 2A virus was grown in Vero cells in the presence of 5-fluorouracil, and a panel of 1,248 clones were isolated. Twenty ts mutant viruses were identified that were ts in both simian Vero and human liver HuH-7 cells (n = 13) or only in HuH-7 cells (n = 7). Each of the 20 ts mutant viruses possessed an attenuation phenotype, as indicated by restricted replication in the brains of 7-day-old mice. The complete nucleotide sequence of the 20 ts mutant viruses identified nucleotide substitutions in structural and nonstructural genes as well as in the 5' and 3' UTRs, with more than one change occurring, in general, per mutant virus. A ts mutation in the NS3 protein (nucleotide position 4995) was introduced into a recombinant DEN4 virus possessing the Delta30 deletion, thereby creating rDEN4Delta30-4995, a recombinant virus which is ts and more attenuated than rDEN4Delta30 virus in the brains of mice. We are assembling a menu of attenuating mutations that should be useful in generating satisfactorily attenuated recombinant dengue vaccine viruses and in increasing our understanding of the pathogenesis of dengue virus.  相似文献   

2.
Virus assembly represents one of the last steps in the retrovirus life cycle. During this process, Gag polyproteins assemble at specific sites within the cell to form viral capsids and induce membrane extrusion (viral budding) either as assembly progresses (type C virus) or following formation of a complete capsid (type B and type D viruses). Finally, the membrane must undergo a fusion event to pinch off the particle in order to release a complete enveloped virion. Structural elements within the MA region of the Gag polyprotein define the route taken to the plasma membrane and direct the process of virus budding. Results presented here suggest that a distinct region of Gag is necessary for virus release. The pp24 and pp16 proteins of the type D retrovirus Mason-Pfizer monkey virus (M-PMV) are phosphoproteins that are encoded in the gag gene of the virus. The pp16 protein is a C-terminally located cleavage product of pp24 and contains a proline-rich motif (PPPY) that is conserved among the Gag proteins of a wide variety of retroviruses. By performing a functional analysis of this coding region with deletion mutants, we have shown that the pp16 protein is dispensable for capsid assembly but essential for virion release. Moreover, additional experiments indicated that the virus release function of pp16 was abolished by the deletion of only the PPPY motif and could be restored when this motif alone was reinserted into a Gag polyprotein lacking the entire pp16 domain. Single-amino-acid substitutions for any of the residues within this motif confer a similar virion release-defective phenotype. It is unlikely that the function of the proline-rich motif is simply to inhibit premature activation of protease, since the PPPY deletion blocked virion release in the context of a protease-defective provirus. These results demonstrate that in type D retroviruses a PPPY motif plays a key role in a late stage of virus budding that is independent of and occurs prior to virion maturation.  相似文献   

3.
Li P  Bai X  Sun P  Li D  Lu Z  Cao Y  Fu Y  Bao H  Chen Y  Xie B  Liu Z 《BMC veterinary research》2012,8(1):57
ABSTRACT: BACKGROUND: Foot-and-mouth disease (FMD) is the most economically important and highly contagious disease of cloven-hoofed animals worldwide. Control of the disease has been mainly based on large-scale vaccinations with whole-virus inactivated vaccines. In recent years, a series of outbreaks of type O FMD occurred in China (including Chinese Taipei, Chinese Hong Kong) posed a tremendous threat to Chinese animal husbandry. Its causative agent, type O FMDV, has evolved into three topotypes (East-South Asia (ME-SA), Southeast Asia (SEA), Cathay (CHY)) in these regions, which represents an important obstacle to disease control. The available FMD vaccine in China shows generally good protection against ME-SA and SEA topotype viruses infection, but affords insufficient protection against some variants of the CHY topotype. Therefore, the choice of a new vaccine strain is of fundamental importance. RESULTS: The present study describes the generation of a full-length infectious cDNA clone of FMDV vaccine strain and a genetically modified virus with some amino acid substitutions in antigenic sites 1, 3, and 4, based on the established infectious clone. The recombinant viruses had similar growth properties to the wild O/HN/CHA/93 virus. All swine immunized with inactivated vaccine prepared from the O/HN/CHA/93 were fully protected from challenge with the viruses of ME-SA and SEA topotypes and partially protected against challenge with the virus of CHA topotype at 28 days post-immunization. In contrast, the swine inoculated with the genetically modified vaccine were completely protected from the infection of viruses of the three topotypes. CONCLUSIONS: Some amino acid substitutions in the FMDV vaccine strain genome did not have an effect on the ability of viral replication in vitro. The vaccine prepared from genetically modified FMDV by reverse genetics significantly improved the protective efficacy to the variant of the CHA topotype, compared with the wild O/HN/CHA/93 virus. Thus, the full-length cDNA clone of FMDV can be a useful tool to develop genetically engineered FMDV vaccine candidates to help control porcinophilic FMD epidemics in China.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) genomic RNA segments at nucleotide (nt) positions +240 to +274 are thought to form a stem-loop secondary structure, termed SL1, that serves as a dimerization initiation site for viral genomic RNA. We have generated two distinct deletion mutations within this region, termed BH10-LD3 and BH10-LD4, involving nt positions +238 to +253 and +261 to +274, respectively, and have shown that each of these resulted in significant diminutions in levels of viral infectiousness. However, long-term culture of each of these viruses in MT-2 cells resulted in a restoration of infectiousness, due to a series of compensatory point mutations within four distinct proteins that are normally cleaved from the Gag precursor. In the case of BH10-LD3, these four mutations were MA1, CA1, MP2, and MNC, and they involved changes of amino acid Val-35 to Ile within the matrix protein (MA), Ile-91 to Thr within the capsid (CA), Thr-12 to Ile within p2, and Thr-24 to Ile within the nucleocapsid (NC). The order in which these mutations were acquired by the mutated BH10-LD3 was MNC > CA1 > MP2 > MA1. The results of site-directed mutagenesis studies confirmed that each of these four substitutions contributed to the increased viability of the mutated BH10-LD3 viruses and that the MNC substitution, which was acquired first, played the most important role in this regard. Three point mutations, MP2, MNC, and MA2, were also shown to be sequentially acquired by viruses that had emerged in culture from the BH10-LD4 deletion. The first two of these were identical to those described above, while the last involved a change of Val-35 to Leu. All three of these substitutions were necessary to restore the infectiousness of mutated BH10-LD4 viruses to wild-type levels, although the MP2 mutation alone, but neither of the other two substitutions, was able to confer some viability on BH10-LD4 viruses. Studies of viral RNA packaging showed that the BH10-LD4 deletion only marginally impaired encapsidation while the BH10-LD3 deletion caused a severe deficit in this regard.  相似文献   

5.
Human immunodeficiency virus type 1 (HIV-1) heterogeneity contributes to the emergence of drug-resistant virus, escape from host defense systems, and/or conversion of the cellular tropism. To establish an in vitro system to address a heterogeneous virus population, we constructed a library of HIV-1 molecular clones containing a set of random combinations of zero to 11 amino acid substitutions associated with resistance to protease inhibitors by the HIV-1 protease. The complexity (2.1 x 10(5)) of the HIV-1 library pNG-PRL was large enough to cover all of the possible combinations of zero to 11 amino acid substitutions (a total of 4,096 substitutions possible). The T-cell line MT-2 was infected with the HIV-1 library, and resistant viruses were selected after treatment by the protease inhibitor ritonavir (0.03 to 0.30 microM). The viruses that contained three to eight amino acid substitutions could be selected within 2 weeks. These results demonstrate that this HIV-1 library could serve as an alternative in vitro system to analyze the emergence of drug resistance and to evaluate the antiviral activity of novel compounds against multidrug-resistant viruses.  相似文献   

6.
Despite being silent with respect to protein sequence, synonymous nucleotide substitutions can be targeted by natural selection directly at the DNA or RNA level. However, there has been no systematic assessment of how frequent this type of selection is. Here, we have constructed 53 single random synonymous substitution mutants of the bacteriophages Qβ and ΦX174 by site-directed mutagenesis and assayed their fitness. Analysis of this mutant collection and of previous studies undertaken with a variety of single-stranded (ss) viruses demonstrates that selection at synonymous sites is stronger in RNA viruses than in DNA viruses. We estimate that this type of selection contributes approximately 18% of the overall mutational fitness effects in ssRNA viruses under our assay conditions and that random synonymous substitutions have a 5% chance of being lethal to the virus, whereas in ssDNA viruses, these figures drop to 1.4% and 0%, respectively. In contrast, the effects of nonsynonymous substitutions appear to be similar in ssRNA and ssDNA viruses.  相似文献   

7.
Simian immunodeficiency virus (SIV) infection of macaques is remarkably similar to that of human immunodeficiency virus type 1 (HIV-1) in humans, and the SIV-macaque system is a good model for AIDS research. We have constructed an SIV proviral DNA clone that is deleted of 97 nucleotides (nt), i.e., construct SD, at positions (+322 to +418) immediately downstream of the primer binding site (PBS) of SIVmac239. When this construct was transfected into COS-7 cells, the resultant viral progeny were severely impaired with regard to their ability to replicate in C8166 cells. Further deletion analysis showed that a virus termed SD1, containing a deletion of 23 nt (+322 to +344), was able to replicate with wild-type kinetics, while viruses containing deletions of 21 nt (+398 to +418) (construct SD2) or 53 nt (+345 to +397) (construct SD3) displayed diminished capacity in this regard. Both the SD2 and SD3 viruses were also impaired with regard to ability to package viral RNA, while SD1 viruses were not. The SD and SD3 constructs did not revert to increased replication ability in C8166 cells over 6 months in culture. In contrast, long-term passage of the SD2 mutated virus resulted in a restoration of replication capacity, due to the appearance of four separate point mutations. Two of these substitutions were located in leader sequences of viral RNA within the PBS and the dimerization initiation site (DIS), while the other two were located within two distinct Gag proteins, i.e., CA and p6. The biological relevance of three of these point mutations was confirmed by site-directed mutagenesis studies that showed that SD2 viruses containing each of these substitutions had regained a significant degree of viral replication capacity. Thus, leader sequences downstream of the PBS, especially the U5-leader stem and the DIS stem-loop, are important for SIV replication and for packaging of the viral genome.  相似文献   

8.

Background

Rift Valley fever virus is an arthropod-borne human and animal pathogen responsible for large outbreaks of acute and febrile illness throughout Africa and the Arabian Peninsula. Reverse genetics technology has been used to develop deletion mutants of the virus that lack the NSs and/or NSm virulence genes and have been shown to be stable, immunogenic and protective against Rift Valley fever virus infection in animals. We assessed the potential for these deletion mutant viruses to infect and be transmitted by Aedes mosquitoes, which are the principal vectors for maintenance of the virus in nature and emergence of virus initiating disease outbreaks, and by Culex mosquitoes which are important amplification vectors.

Methodology and Principal Findings

Aedes aegypti and Culex quinquefasciatus mosquitoes were fed bloodmeals containing the deletion mutant viruses. Two weeks post-exposure mosquitoes were assayed for infection, dissemination, and transmission. In Ae. aegypti, infection and transmission rates of the NSs deletion virus were similar to wild type virus while dissemination rates were significantly reduced. Infection and dissemination rates for the NSm deletion virus were lower compared to wild type. Virus lacking both NSs and NSm failed to infect Ae. aegypti. In Cx. quinquefasciatus, infection rates for viruses lacking NSm or both NSs and NSm were lower than for wild type virus.

Conclusions/Significance

In both species, deletion of NSm or both NSs and NSm reduced the infection and transmission potential of the virus. Deletion of both NSs and NSm resulted in the highest level of attenuation of virus replication. Deletion of NSm alone was sufficient to nearly abolish infection in Aedes aegypti mosquitoes, indicating an important role for this protein. The double deleted viruses represent an ideal vaccine profile in terms of environmental containment due to lack of ability to efficiently infect and be transmitted by mosquitoes.  相似文献   

9.
X Y Ma  P Sova  W Chao    D J Volsky 《Journal of virology》1994,68(3):1714-1720
The infectivity factor of human immunodeficiency virus type 1 (HIV-1), Vif, contains two cysteine residues which are highly conserved among animal lentiviruses. We introduced substitutions of leucine for cysteine residues in the vif gene of a full-length HIV-1 clone to analyze their roles in viral infection. Mutant viruses containing substitutions in either Cys-114, Cys-133, or both displayed a vif-negative infection phenotype similar to that of an isogeneic vif deletion mutant, namely, a cell-dependent complete to partial loss of infectivity. The vif defect could be complemented by cotransfection of mutant viral DNA with a Vif expression vector, and there was no evidence that recombination contributed to the repair of the vif deficiency. The viral protein profile, as determined by immunoblotting, in cells infected with cysteine substitution mutants and that in wild-type virus were similar, including the presence of the 23-kDa Vif polypeptide. In addition, immunoblotting with an antiserum directed against the carboxyl terminus of gp41 revealed that gp41 was intact in cells infected with either wild-type or vif mutant HIV-1, excluding that Vif cleaves the C terminus of gp41. Our results indicate that the cysteines in HIV-1 Vif are critical for Vif function in viral infectivity.  相似文献   

10.
A Cameroonian patient with antibodies reacting simultaneously to human immunodeficiency virus type 1 (HIV-1) group O- and group M-specific V3-loop peptides was identified. In order to confirm that this patient was coinfected with both viruses, PCRs with O- and M-specific discriminating primers corresponding to different regions of the genome were carried out with both primary lymphocyte DNA and the corresponding viral strains isolated from three consecutive patient samples. The PCR data suggested that this patient is coinfected with a group M virus and a recombinant M/O virus. Indeed, only type M gag sequences could be amplified, while for the env region, both type M and O sequences were amplified, from plasma or from DNA extracted from primary lymphocytes. Sequence analysis of a complete recombinant genome isolated from the second sample (97CA-MP645 virus isolate) revealed two intergroup breakpoints, one in the vpr gene and the second in the long terminal repeat region around the TATA box. Comparison of the type M sequences shared by the group M and the recombinant M/O viruses showed that these sequences were closely related, with only 3% genetic distance, suggesting that the M virus was one of the parental viruses. In this report we describe for the first time a recombination event in vivo between viruses belonging to two different groups, leading to a replicative virus. Recombination between strains with such distant lineages (65% overall homology) may contribute substantially to the emergence of new HIV-1 variants. We documented that this virus replicates well and became predominant in vitro. At this time, group O viruses represent a minority of the strains responsible for the HIV-1 pandemic. If such recombinant intergroup viruses gained better fitness, inducing changes in their biological properties compared to the parental group O virus, the prevalences of group O sequences could increase rapidly. This will have important implications for diagnosis of HIV-1 infections by serological and molecular tests, as well as for antiviral treatment.  相似文献   

11.
The "Spanish" pandemic influenza A virus, which killed more than 20 million worldwide in 1918-19, is one of the serious pathogens in recorded history. Characterization of the 1918 pandemic virus reconstructed by reverse genetics showed that PB1, hemagglutinin (HA), and neuraminidase (NA) genes contributed to the viral replication and virulence of the 1918 pandemic influenza virus. However, the function of the NA gene has remained unknown. Here we show that the avian-like low-pH stability of sialidase activity discovered in the 1918 pandemic virus NA contributes to the viral replication efficiency. We found that deletion of Thr at position 435 or deletion of Gly at position 455 in the 1918 pandemic virus NA was related to the low-pH stability of the sialidase activity in the 1918 pandemic virus NA by comparison with the sequences of other human N1 NAs and sialidase activity of chimeric constructs. Both amino acids were located in or near the amino acid resides that were important for stabilization of the native tetramer structure in a low-pH condition like the N2 NAs of pandemic viruses that emerged in 1957 and 1968. Two reverse-genetic viruses were generated from a genetic background of A/WSN/33 (H1N1) that included low-pH-unstable N1 NA from A/USSR/92/77 (H1N1) and its counterpart N1 NA in which sialidase activity was converted to a low-pH-stable property by a deletion and substitutions of two amino acid residues at position 435 and 455 related to the low-pH stability of the sialidase activity in 1918 NA. The mutant virus that included "Spanish Flu"-like low-pH-stable NA showed remarkable replication in comparison with the mutant virus that included low-pH-unstable N1 NA. Our results suggest that the avian-like low-pH stability of sialidase activity in the 1918 pandemic virus NA contributes to the viral replication efficiency.  相似文献   

12.
Serial passage of the prototype (PR) cell-adapted Wyoming strain of equine infectious anemia virus (EIAV) in fetal donkey dermal (FDD) rather than fetal horse (designated fetal equine kidney [FEK]) cell cultures resulted in the generation of a variant virus strain which produced accelerated cytopathic effects in FDD cells and was 100- to 1,000-fold more sensitive to neutralizing antibodies than its parent. This neutralization-sensitive variant was designated the FDD strain. Although there were differences in glycosylation between the PR and FDD strains, passage of the FDD virus in FEK cells did not reduce its sensitivity to neutralizing antibody. Nucleotide sequencing of the region encoding the surface unit (SU) protein from the FDD strain revealed nine amino acid substitutions compared with the PR strain. Two of these substitutions resulted in changes in the polarity of charge, four caused the introduction of a charged residue, and three had no net change in charge. Nucleotide sequence analysis was extended to the region of the FDD virus genome encoding the extracellular domain of the transmembrane envelope glycoprotein (TM). Unlike the situation with the FDD virus coding region, there were minor variations in nucleotide sequence between individual molecular clones containing this region of the TM gene. Although each clone contained three nucleotide substitutions compared with the PR strain, only one of these was common to all, and this did not affect the amino acid content. Of the remaining two nucleotide substitutions, only one resulted in an amino acid change, and in each case, this change appeared to be conservative. To determine if amino acid substitutions in the SU protein of FDD cell-grown viruses were responsible for the enhanced sensitivity to neutralizing antibodies, chimeric viruses were constructed by using an infectious molecular clone of EIAV. These chimeric viruses contained all of the amino acid substitutions found in the FDD virus strain and were significantly more sensitive to neutralizing antibodies than viruses from the parental (PR) molecular clone. These results demonstrated that sensitivity to neutralizing antibodies in EIAV can be conferred by amino acid residues in the SU protein. However, such amino acid substitutions were not sufficient to enhance cytopathogenicity, as the chimeric viruses did not cause excessive degenererative effects in FDD cells, as was observed with the parental FDD virus strain.  相似文献   

13.
A molecular clone of mouse-neuroadapted yellow fever 17D virus (SPYF-MN) was used to identify critical determinants of viral neuroinvasiveness in a SCID mouse model. Virus derived from this clone differs from nonneuroinvasive YF5.2iv virus at 29 nucleotide positions, encoding 13 predicted amino acid substitutions and 2 substitutions in the 3' untranslated region (UTR). The virulence determinants of SPYF-MN for SCID mice were identified by constructing and characterizing intratypic viruses in which the E protein of SPYF-MN was expressed in the YF5.2iv background (SPYF-E) or the E protein of YF5.2iv was expressed in the SPYF-MN background (YF5.2-E). SPYF-E caused lethal encephalitis in young adult SCID mice after intraperitoneal inoculation, with average survival times and tissue virus burdens resembling those of mice inoculated with the parental SPYF-MN virus. To define which domains of the E protein are involved in neuroinvasiveness, two viruses were tested in which the amino acid substitutions in domains I-II and III were segregated. This revealed that substitutions in domain III (residues 305, 326, and 380) were critical for the neuroinvasive phenotype, based on average survival times and tissue burdens of infectious virus. Comparison of growth properties of the various intratypic viruses in cell culture indicated that no inherent defects in replication efficiency were likely to account for the biological differences observed in these experiments. These findings demonstrate that the E protein is a critical factor for yellow fever virus neuropathogenesis in the SCID mouse model and that the neuroinvasive properties depend principally on functions contributed by domain III of this protein. To assess whether critical determinants for neuroinvasion of normal ICR mice by SPYF virus were also in the E protein, sequences of viruses recovered from brains of ICR mice succumbing to encephalitis with the parental SPYF virus were derived. No differences were found in the E protein; however, two substitutions were present in the 3' UTR compared to that of SPYF-MN, one of which is predicted to alter RNA secondary structure in this region. These findings suggest that the 3' UTR may also affect neuroinvasiveness of SPYF virus in the mouse model.  相似文献   

14.
The genome of foot-and-mouth disease virus (FMDV) differs from that of other picornaviruses in that it encodes a larger 3A protein (>50% longer than poliovirus 3A), as well as three copies of protein 3B (also known as VPg). Previous studies have shown that a deletion of amino acids 93 to 102 of the 153-codon 3A protein is associated with an inability of a Taiwanese strain of FMDV (O/TAW/97) to cause disease in bovines. Recently, an Asian virus with a second 3A deletion (amino acids 133 to 143) has also been detected (N. J. Knowles et al., J. Virol. 75:1551-1556, 2001). Genetically engineered viruses harboring the amino acids 93 to 102 or 133 to 143 grew well in porcine cells but replicated poorly in bovine cells, whereas a genetically engineered derivative of the O/TAW/97 virus expressing a full-length 3A (strain A12) grew well in both cell types. Interestingly, a virus with a deletion spanning amino acid 93 to 144 also grew well in porcine cells and caused disease in swine. Further, genetically engineered viruses containing only a single copy of VPg were readily recovered with the full-length 3A, the deleted 3A (amino acids 93 to 102), or the "super" deleted forms of 3A (missing amino acids 93 to 144). All of the single-VPg viruses were attenuated in porcine cells and replicated poorly in bovine cells. The single-VPg viruses produced a mild disease in swine, indicating that the VPg copy number is an important determinant of host range and virulence. The association of VPg copy number with increased virulence in vivo may help to explain why all naturally occurring FMDVs have retained three copies of VPg.  相似文献   

15.
The Tyr-X-X-Leu (YxxL) motif of the vaccinia virus F13L protein was examined for late (L) domain activity. The ability of an F13L deletion virus to form plaques was restored by PCR products containing single alanine substitutions within the motif and a YAAL construct but not by constructs lacking both the Y and L residues. Recombinant viruses possessing alanine substitutions in place of the tyrosine or the leucine residue in the YxxL motif demonstrated small, asymmetrical plaques. RNA interference-dependent depletion of Alix and TSG101 (host proteins involved in L domain-dependent protein trafficking) diminished extracellular enveloped virion production to various degrees, suggesting that the YxxL motif is a genuine L domain.  相似文献   

16.
In contrast to wild type bovine viral diarhea virus (BVDV) specific double deletion mutants are not able to establish persistent infection upon infection of a pregnant heifer. Our data shows that this finding results from a defect in transfer of the virus from the mother animal to the fetus. Pregnant heifers were inoculated with such a double deletion mutant or the parental wild type virus and slaughtered pairwise on days 6, 9, 10 and 13 post infection. Viral RNA was detected via qRT-PCR and RNAscope analyses in maternal tissues for both viruses from day 6 p.i. on. However, the double deletion mutant was not detected in placenta and was only found in samples from animals infected with the wild type virus. Similarly, high levels of wild type viral RNA were present in fetal tissues whereas the genome of the double deletion mutant was not detected supporting the hypothesis of a specific inhibition of mutant virus replication in the placenta. We compared the induction of gene expression upon infection of placenta derived cell lines with wild type and mutant virus via gene array analysis. Genes important for the innate immune response were strongly upregulated by the mutant virus compared to the wild type in caruncle epithelial cells that establish the cell layer on the maternal side at the maternal–fetal interface in the placenta. Also, trophoblasts which can be found on the fetal side of the interface showed significant induction of gene expression upon infection with the mutant virus although with lower complexity. Growth curves recorded in both cell lines revealed a general reduction of virus replication in caruncular epithelial cells compared to the trophoblasts. Compared to the wild type virus this effect was dramtic for the mutant virus that reached only a TCID50 of 1.0 at 72 hours post infection.  相似文献   

17.
E Rieder  B Baxt  J Lubroth    P W Mason 《Journal of virology》1994,68(11):7092-7098
The G-H loop of VP1 (residues 132 to 159) of foot-and-mouth disease virus (FMDV) is a prominent feature on the virion surface and has an important role in vaccine efficacy, generation of antigenic variants, and cell binding. Using an infectious cDNA of FMDV, we have constructed serotype A viruses in which the G-H loop has been substituted with the homologous sequences from serotype O or C. These chimeric viruses replicated to high titer and displayed plaque morphologies similar to those of wild-type viruses, demonstrating that the functions provided by the loop can be readily exchanged between serotypes. Monoclonal antibody analyses showed that epitopes contained within the loop were transferred to the chimeras and that epitopes encoded by the type A backbone were maintained. Chemically inactivated vaccines prepared from chimeric viruses induced antibodies in guinea pigs that neutralized both type A and either type O or type C viruses. Swine inoculated with the A/C chimera vaccine also produced cross-reactive antibodies, were protected from challenge with the type A virus, and partially protected against challenge with type C. These studies emphasize the importance of epitopes outside of the G-H loop in protective immunity in swine, which is a natural host of FMDV.  相似文献   

18.
Sequence Heterogeneity in Closed Simian Virus 40 Deoxyribonucleic Acid   总被引:14,自引:29,他引:14       下载免费PDF全文
The heteroduplex molecules formed by self-annealing of denatured, singly nicked simian virus 40 (SV40) deoxyribonucleic acid (DNA) prepared from closed viral DNA were examined by formamide-protein film electron microscopy to test the DNA for sequence homogeneity. Sequence inhomogeneity appears in the heteroduplexes as single-strand loops. These result from sequence deletion or from sequence substitution, if regions greater than 50 nucleotides are involved. The undenatured DNA from viruses passaged twice at multiplicities of infection much less than 1 plaque-forming unit (PFU) per cell appeared to be homogeneous in size. The heteroduplexes formed by this DNA indicated that approximately 2% of the molecules carried deletions, but that substitutions were below the level of detection. In contrast, undenatured DNA from viruses grown by passaging undiluted lysates seven times or by infection with stock virus at a multiplicity of infection of 5 PFU per cell contained a large frequency of molecules shorter than the full length. The heteroduplex samples indicated that 12 and 7% of the undenatured material contained base substitutions, and 13 and 11% contained deletions. The deletions and substitutions appear to occur in separate molecules. Length measurements on heteroduplexes displaying the loop characteristic of substitutions have established that these molecules are from true sequence substitutions, and not from adjacent or overlapping deletions. More than 80% of the molecules carrying substitutions are shorter than the native SV40 length. On the average, the substituted sequence is about 20% of the length of SV40, but it replaces a sequence about 30% of the native length. The substituted sequences may be host cell nuclear DNA, possibly arising from integration of SV40 into the chromosome followed by excision of the SV40 DNA together with chromosomal DNA.  相似文献   

19.
20.
Herpes simplex virus glycoprotein D (gD) plays an essential role during penetration of the virus into cells. There is evidence that it recognizes a specific receptor after initial attachment of virions to cell surface heparan sulfate and also that gD-1, gD-2, and gp50 (the pseudorabies virus gD homolog) bind to the same receptor. Although the antigenic structure of gD has been studied intensively, little is known about functional regions of the protein. Antigenic site I is a major target for neutralizing antibodies and has been partially mapped by using deletion mutants and neutralization-resistant viruses. Working on the assumption that such a site may overlap with a functional region of gD, we showed previously that combining two or more amino acid substitutions within site I prevents gD-1 from functioning and is therefore lethal. We have now used a complementation assay to measure the functional activity of a panel of deletion mutants and compared the results with an antigenic analysis. Several mutations cause gross changes in protein folding and destroy functional activity, whereas deletions at the N and C termini have little or no effect on either. In contrast, deletion of residues 234 to 244 has only localized effects on antigenicity but completely abolishes functional activity. This region, which is part of antigenic site Ib, is therefore essential for gD-1 function. The complementation assay was also used to show that a gD-negative type 1 virus can be rescued by gD-2 and by two gD-1-gD-2 hybrids but not by gp50, providing some support for the existence of a common receptor for herpes simplex virus types 1 and 2 but not pseudorabies virus. Alternatively, gp50 may lack a signal for incorporation into herpes simplex virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号