首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
In mouse and human, precursors of NK cell lineage home to decidualizing uteri. To assess the requirement for IL-15, an essential cytokine for NK differentiation in lymphoid tissue, on uterine NK (uNK) cell differentiation, implantation sites from IL-15(-/-) mice were analyzed histologically. IL-15(-/-) implantation sites had no uNK cells, no spiral-artery modification, and lacked the decidual integrity found in normal mice. IL-15(-/-) recipients of C57BL/6 marrow displayed similar pathology. However, implantation sites from recombination-activating gene-2(-/-)gamma(c)(-/-) (alymphoid) recipients of IL-15(-/-) marrow showed normal uNK cells, modified spiral arteries, and well-developed decidua basalis. Deletion of the IFN-regulatory factor (IRF)-1, but not IRF-2 (factors important in peripheral NK cell differentiation) limited but did not prevent uNK cell development. In situ hybridization localized IRF-1 largely to placental trophoblast cells. IRF-1(-/-) marrow transplanted into recombination-activating gene-2(-/-)gamma(c)(-/-) displayed competence for full uNK cell differentiation. IL-15 mRNA expression at implantation sites of IRF-1(-/-) and C57BL/6 was similar, suggesting that, unlike in bone marrow and spleen, IRF-1 does not regulate IL-15 in the pregnant uterus. Terminal differentiation of uNK cells was not promoted in pregnant IRF-1(-/-) mice by 5-day infusion of murine rIL-15, suggesting that IRF-1 deficiency rather than IL-15 deficiency limits uNK cell differentiation in these mice. Further, IRF-1 regulates placental growth, birth weight, and postnatal growth of offspring. These studies indicate that uNK cell development and maturation share some aspects with NK cell development in other tissues, but also display distinctive tissue-specific regulation.  相似文献   

8.
9.
10.
11.
Megakaryopoiesis is associated with inflammatory reactions. To investigate the role of interferon regulatory factors (IRFs) in inflammation-associated megakaryopoiesis, mouse bone marrow hematopoietic stem cells (HSCs) were analyzed. IFN-γ treatment induced IRF-2 expression as well as the expression of CD41 and IRF-1 in HSCs. An in vitro clonogenic assay showed that IRF-2- but not IRF-1-overexpressing cells increased the number of megakaryocytic colonies. IRF-2 transfection up-regulated CD41 promoter activity in hematopoietic cell lines. The number of CD41-positive bone marrow cells increased in mice injected with IRF-2-expressing bone marrow cells. These findings suggest that IRF-2 plays an important role in megakaryopoiesis in inflammatory states.  相似文献   

12.
13.
14.
15.
Results of this study showed that lymphocytic choriomeningitis virus infection causes a marked activation of natural killer (NK) cells not only in the spleen but also in the bone marrow. This activity reached its peak at about day 3 of infection and declined after days 6 to 7. Enhanced NK cell activity was found to correlate with decreased receptivity for syngeneic stem cells in bone marrow and spleen, with the notable exception that decreased receptivity persisted longer in bone marrow. Treatment of infected recipients with anti-asialo GM1 (ganglio-N-tetraosylceramide) significantly increased the receptivity for syngeneic hemopoietic cells. These findings are consistent with the hypothesis that NK cell activation causes rejection of syngeneic stem cells, thus resulting in hemopoietic depression. To understand the mechanisms behind the prolonged decrease in bone marrow receptivity (and bone marrow function in the intact mouse) mentioned above, we followed the changes in the number of pluripotential stem cells (CFU-S) circulating in the peripheral blood and in endogenous spleen colonies in irradiated mice, the limbs of which were partially shielded. It was found that following a marked early decline, both parameters increased to normal or supranormal levels at about day 9 after infection. Because the bone marrow pool of CFU-S is only about 20% of normal at this time after infection, a marked tendency for CFU-S at this stage in the infection to migrate from the bone marrow to the spleen is suggested. It seems, therefore, that as NK cell activity declines, the spleen regains the ability to support growth of hemopoietic cells and the bone marrow resumes an elevated export of stem cells to the spleen. This diversion of hemopoiesis could explain both the long-standing deficiencies of the bone marrow compartment and the prolonged decrease in the receptivity of this organ.  相似文献   

16.
17.
18.
19.
We tested the ability of normal osteoclast progenitors found in neonatal liver and bone marrow to develop into functional osteoclasts when co-cultured with metatarsals from newborn osteopetrotic rabbits; the latter inherit an osteoclast incompetence resistant to cure by bone marrow transplantation. This system, developed by Burger and colleagues, has been shown to produce normal, functional osteoclasts when used with normal metatarsals. Our study tested the competence of the mutant skeletal microenvironment for differentiation of normal osteoclasts. Mutant and normal metatarsals were cultured alone or with normal liver, spleen, or bone marrow for up to 14 days. All normal cultures possessed a marrow cavity and contained numerous osteoclasts with cytochemical characteristics (tartrate-resistant acid phosphatase) of active cells. Mutant metatarsals co-cultured with normal spleen, liver, or bone marrow failed to develop a marrow cavity (evidence in itself of reduced bone resorption) and had osteoclasts reduced in both numbers and cytochemically detectable activity. Similar metatarsal cultures of an osteopetrotic rat mutation (incisors--absent) curable by bone-marrow transplantation exhibited marrow cavity development in mutant metatarsals co-cultured with normal spleen. These data suggest that the skeletal environment of osteopetrotic rabbits contains an inhibitor or lacks a promoter of osteoclast differentiation and function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号