首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This paper investigates the ability of neurons in the barn owl's (Tyto alba) inferior colliculus to sense brief appearances of interaural time difference (ITD), the main cue for azimuthal sound localization in this species. In the experiments, ITD-tuning was measured during presentation of a mask-probe-mask sequence. The probe consisted of a noise having a constant ITD, while the mask consisted of binaurally uncorrelated noise. Collicular neurons discriminated between the probe and masking noise by showing rapid changes from untuned to tuned and back to untuned responses.The curve describing the relation between probe duration and the degree of ITD-tuning resembled a leaky-integration process with a time constant of about 2 ms. Many neurons were ITD-tuned when probe duration was below 1 ms. These extremely short effective probe durations are interpreted as evidence for neuronal convergence within the pathway computing ITD. The minimal probe duration necessary for ITD-tuning was independent of the bandwidth of the neurons' frequency tuning and also of the best frequency of a neuron. Many narrowly tuned neurons having different best frequencies converge to form a broad-band neuron. To yield the short effective probe durations the convergence must occur in strong temporal synchronism.Abbreviations ICc central nucleus of the inferior colliculus; - ICx external nucleus of the inferior colliculus; - ITD interaural time difference - LP Likelihood parameter  相似文献   

2.
Barn owls use interaural intensity differences to localize sounds in the vertical plane. At a given elevation the magnitude of the interaural intensity difference cue varies with frequency, creating an interaural intensity difference spectrum of cues which is characteristic of that direction. To test whether space-specific cells are sensitive to spectral interaural intensity difference cues, pure-tone interaural intensity difference tuning curves were taken at multiple different frequencies for single neurons in the external nucleus of the inferior colliculus. For a given neuron, the interaural intensity differences eliciting the maximum response (the best interaural intensity differences) changed with the frequency of the stimulus by an average maximal difference of 9.4±6.2 dB. The resulting spectral patterns of these neurally preferred interaural intensity differences exhibited a high degree of similarity to the acoustic interaural intensity difference spectra characteristic of restricted regions in space. Compared to stimuli whose interaural intensity difference spectra matched the preferred spectra, stimuli with inverted spectra elicited a smaller response, showing that space-specific neurons are sensitive to the shape of the spectrum. The underlying mechanism is an inhibition for frequency-specific interaural intensity differences which differ from the preferred spectral pattern. Collectively, these data show that space-specific neurons are sensitive to spectral interaural intensity difference cues and support the idea that behaving barn owls use such cues to precisely localize sounds.Abbreviations ABI average binaural intensity - HRTF head-related transfer function - ICx external nucleus of the inferior colliculus - IID interaural intensity difference - ITD interaural time difference - OT optic tectum - RMS root mean square - VLVp nucleus ventralis lemnisci laterale, pars posterior  相似文献   

3.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

4.
 We propose a neural network model of the inferior colliculus (IC) for human echolocation. Neuronal mechanisms for human echolocation were investigated by simulating the model. The model consists of the neural networks of the central nucleus (ICc) and external nucleus (ICx) of the inferior colliculus. The neurons of the ICc receive interaural sound stimuli via multiple contralateral delay lines and a single ipsilateral delay line. The neurons of the ICc send output signals to the neurons of the ICx in a convergent manner. We stimulated the ICc with pairs of a direct sound (a sonar sound) and an echo sound (the reflection from an object). Information about the distance between the model and the object is expressed by the delay time of the echo sound with respect to the direct sound. The results presented here show that neurons of the ICc responsive to interaural onset time differences contribute to the creation of an auditory distance map in the ICx. We trained the model with various pairs of direct-echo sounds and modified synaptic connection strengths of the networks according to the Hebbian rule. It is shown that self-organized long-term depression of lateral inhibitory synaptic connections plays an important role in enhancing echolocation skills. Received: 26 November 2000 / Accepted in revised form: 16 October 2001  相似文献   

5.
Summary The coding of sound frequency and location in the avian auditory midbrain nucleus (nMLD) was examined in three diurnal raptors: the brown falcon (Falco berigora), the swamp harrier (Circus aeruginosus) and the brown goshawk (Accipiter fasciatus). Previously this nucleus has been studied with free field stimuli in only one other species, the barn owl (Tyto alba).We found some parallels between the organisation of nMLD in the diurnal raptors and that reported in the barn owl in that the central region of nMLD was tonotopically organised and contained cells that did not encode location, and the lateral region (nMLDl) contained cells which were sensitive to stimulus position. However, unlike the barn owl, which has units with circumscribed receptive fields, cells sensitive to stimulus location had large receptive fields which were restricted in azimuth but not in elevation (hemifield units). Such cells could not provide an acoustic space map in which both azimuthal and elevational dimensions were represented, but there was a tendency for units with contralateral borders to be found superficially, and those with ipsilateral borders to be found deep, in nMLDl. Hemifield units displayed receptive field properties consistent with the directional properties of the tympana in the presence of sound transmission through the interaural canal, if there is a central mechanism which is sensitive to interaural intensity differences.Abbreviations nMLD nucleus mesencephalicus lateralis pars dorsalis - SPL sound pressure level re 20 Pa - nMLDl lateral region of nMLD - ICC central nucleus of the inferior colliculus - ICX external nucleus of the inferior colliculus - IID interaural intensity difference - EI excitatory inhibitory  相似文献   

6.
The effect of binaural decorrelation on the processing of interaural level difference cues in the barn owl (Tyto alba) was examined behaviorally and electrophysiologically. The electrophysiology experiment measured the effect of variations in binaural correlation on the first stage of interaural level difference encoding in the central nervous system. The responses of single neurons in the posterior part of the ventral nucleus of the lateral lemniscus were recorded to stimulation with binaurally correlated and binaurally uncorrelated noise. No significant differences in interaural level difference sensitivity were found between conditions. Neurons in the posterior part of the ventral nucleus of the lateral lemniscus encode the interaural level difference of binaurally correlated and binaurally uncorrelated noise with equal accuracy and precision. This nucleus therefore supplies higher auditory centers with an undegraded interaural level difference signal for sound stimuli that lack a coherent interaural time difference. The behavioral experiment measured auditory saccades in response to interaural level differences presented in binaurally correlated and binaurally uncorrelated noise. The precision and accuracy of sound localization based on interaural level difference was reduced but not eliminated for binaurally uncorrelated signals. The observation that barn owls continue to vary auditory saccades with the interaural level difference of binaurally uncorrelated stimuli suggests that neurons that drive head saccades can be activated by incomplete auditory spatial information.  相似文献   

7.
We examined factors that affect spatial receptive fields of single units in the central nucleus of the inferior colliculus of Eptesicus fuscus. Pure tones, frequency- or amplitude-modulated sounds, or noise bursts were presented in the free-field, and responses were recorded extracellularly. For 58 neurons that were tested over a 30 dB range of sound levels, 7 (12%) exhibited a change of less than 10° in the center point and medial border of their receptive field. For 28 neurons that were tested with more than one stimulus type, 5 (18%) exhibited a change of less than 10° in the center point and medial border of their receptive field.The azimuthal response ranges of 19 neurons were measured in the presence of a continuous broadband noise presented from a second loudspeaker set at different fixed azimuthal positions. For 3 neurons driven by a contralateral stimulus only, the effect of the noise was simple masking. For 11 neurons driven by sound at either side, 8 were unaffected by the noise and 1 showed a simple masking effect. For the remaining 2, as well as for 5 neurons that were excited by contralateral sound and inhibited by ipsilateral sound, the peak of the azimuthal response range shifted toward the direction of the noise.Abbreviations E/E excitation at either ear - I/E inhibition at the ipsilateral ear, excitation at the contralateral ear - O/E no effect from the ipsilateral ear, excitation at the contralateral ear - FM downward frequency modulation - FM upward frequency modulation - IC inferior colliculus - ICC central nucleus of the inferior colliculus - ILD interaural level difference - ITD interaural time difference - PT pure tone - SAM sinusoidally amplitude modulated sounds - SFM sinusoidally frequency modulated sounds  相似文献   

8.
Barn owls localize sound by using the interaural time difference of the horizontal plane and the interaural intensity difference for the vertical plane. The owl's auditory system possesses the two binaural cues in separate pathways in the brainstem. Owls use a process similar to cross-correlation to derive interaural time differences. Convergence of different frequency bands in the inferior colliculus solves the problems of phase-ambiguity which is inherent in cross-correlating periodic signals. The two pathways converge in the external nucleus of the inferior colliculus to give rise to neurons that are selective for combinations of the two cues. These neurons form a map of auditory space. The map projects to the optic tectum to form a bimodal map which, in turn, projects to a motor map for head turning. The visual system calibrates the auditory space map during ontogeny in which acoustic variables change. In addition to this tectal pathway, the forebrain can also control the sound-localizing behaviour.  相似文献   

9.
A multiplicative combination of tuning to interaural time difference (ITD) and interaural level difference (ILD) contributes to the generation of spatially selective auditory neurons in the owl''s midbrain. Previous analyses of multiplicative responses in the owl have not taken into consideration the frequency-dependence of ITD and ILD cues that occur under natural listening conditions. Here, we present a model for the responses of ITD- and ILD-sensitive neurons in the barn owl''s inferior colliculus which satisfies constraints raised by experimental data on frequency convergence, multiplicative interaction of ITD and ILD, and response properties of afferent neurons. We propose that multiplication between ITD- and ILD-dependent signals occurs only within frequency channels and that frequency integration occurs using a linear-threshold mechanism. The model reproduces the experimentally observed nonlinear responses to ITD and ILD in the inferior colliculus, with greater accuracy than previous models. We show that linear-threshold frequency integration allows the system to represent multiple sound sources with natural sound localization cues, whereas multiplicative frequency integration does not. Nonlinear responses in the owl''s inferior colliculus can thus be generated using a combination of cellular and network mechanisms, showing that multiple elements of previous theories can be combined in a single system.  相似文献   

10.
We have previously shown that neurons in primary auditory cortex (A1) of anaesthetized (ketamine/medetomidine) ferrets respond more strongly and reliably to dynamic stimuli whose statistics follow "natural" 1/f dynamics than to stimuli exhibiting pitch and amplitude modulations that are faster (1/f(0.5)) or slower (1/f(2)) than 1/f. To investigate where along the central auditory pathway this 1/f-modulation tuning arises, we have now characterized responses of neurons in the central nucleus of the inferior colliculus (ICC) and the ventral division of the mediate geniculate nucleus of the thalamus (MGV) to 1/f(γ) distributed stimuli with γ varying between 0.5 and 2.8. We found that, while the great majority of neurons recorded from the ICC showed a strong preference for the most rapidly varying (1/f(0.5) distributed) stimuli, responses from MGV neurons did not exhibit marked or systematic preferences for any particular γ exponent. Only in A1 did a majority of neurons respond with higher firing rates to stimuli in which γ takes values near 1. These results indicate that 1/f tuning emerges at forebrain levels of the ascending auditory pathway.  相似文献   

11.
Interaural level differences play an important role for elevational sound localization in barn owls. The changes of this cue with sound location are complex and frequency dependent. We exploited the opportunities offered by the virtual space technique to investigate the behavioral relevance of the overall interaural level difference by fixing this parameter in virtual stimuli to a constant value or introducing additional broadband level differences to normal virtual stimuli. Frequency-specific monaural cues in the stimuli were not manipulated. We observed an influence of the broadband interaural level differences on elevational, but not on azimuthal sound localization. Since results obtained with our manipulations explained only part of the variance in elevational turning angle, we conclude that frequency-specific cues are also important. The behavioral consequences of changes of the overall interaural level difference in a virtual sound depended on the combined interaural time difference contained in the stimulus, indicating an indirect influence of temporal cues on elevational sound localization as well. Thus, elevational sound localization is influenced by a combination of many spatial cues including frequency-dependent and temporal features.  相似文献   

12.
Summary In the barn owl (Tyto alba), the posterior nucleus of the ventral lateral lemniscus (VLVp) is the first site of binaural convergence in the pathway that processes interaural level difference (ILD), an important sound-localization cue. The neurons of VLVp are sensitive to ILD because of an excitatory input from the contralateral ear and an inhibitory input from the ipsilateral ear. A previously described projection from the contralateral cochlear nucleus, can account for the excitation. The present study addresses the source of the inhibitory input.We demonstrate with standard axonal transport methods that the left and right VLVps are interconnected via fibers of the commissure of Probst. We further show that the anesthetization of one VLVp renders ineffective the inhibition that is normally evoked by stimulation of the ipsilateral ear. Thus, one cochlear nucleus (driven by the ipsilateral ear) appears to provide inhibition to the ipsilateral VLVp by exciting commissurally-projecting inhibitory neurons in the contralateral VLVp.Abbreviations ABL average binaural level - CP commissure of Probst - DNLL dorsal nucleus of the lateral lemniscus - IC inferior colliculus - ILD interaural level difference - IPc nucleus isthmi, pars parvocellularis - ITD interaural time difference - LSO lateral superior olive - MNTB medial nucleus of the trapezoid body - NA nucleus angularis - SL nucleus semilunaris - VLVa nucleus ventralis lemnisci lateralis, pars anterior - VLVp nucleus ventralis lemnisci lateralis, pars posterior  相似文献   

13.
Under free-field stimulation conditions, corticofugal regulation of auditory sensitivity of neurons in the central nucleus of the inferior colliculus of the big brown bat, Eptesicus fuscus, was studied by blocking activities of auditory cortical neurons with Lidocaine or by electrical stimulation in auditory cortical neuron recording sites. The corticocollicular pathway regulated the number of impulses, the auditory spatial response areas and the frequency-tuning curves of inferior colliculus neurons through facilitation or inhibition. Corticofugal regulation was most effective at low sound intensity and was dependent upon the time interval between acoustic and electrical stimuli. At optimal interstimulus intervals, inferior colliculus neurons had the smallest number of impulses and the longest response latency during corticofugal inhibition. The opposite effects were observed during corticofugal facilitation. Corticofugal inhibitory latency was longer than corticofugal facilitatory latency. Iontophoretic application of γ-aminobutyric acid and bicuculline to inferior colliculus recording sites produced effects similar to what were observed during corticofugal inhibition and facilitation. We suggest that corticofugal regulation of central auditory sensitivity can provide an animal with a mechanism to regulate acoustic signal processing in the ascending auditory pathway. Accepted: 15 July 1998  相似文献   

14.
The spike discharge regularity may be important in the processing of information in the auditory pathway. It has already been shown that many cells in the central nucleus of the inferior colliculus fire regularly in response to monaural stimulation by the best frequency tones. The aim of this study was to find how the regularity of units was affected by adding ipsilateral tone, and how interaural intensity difference sensitivity is related to regularity. Single unit recordings were performed from 66 units in the inferior colliculus of the anaesthetized guinea pig in response to the best frequency tone. Regularity of firing was measured by calculating the coefficient of variation as a function of time of a unit’s response. There was a positive correlation between coefficient of variation and interaural intensity difference sensitivity, indicating that highly regular units had very weak and irregular units had strong interaural intensity difference sensitivity responses. Three effects of binaural interaction on the sustained regularity were observed: constant coefficient of variation despite change in rate (66% of the units), negative (20%) and positive (13%) rate–CV relationships. A negative rate-coefficient of variation relationship was the dominant pattern of binaural interaction on the onset regularity.  相似文献   

15.
左明雪 《动物学报》1997,43(2):146-150
应用神经示踪物PHAL和BDA对环鸽丘脑听区的传入神经投射进行了研究。结果发现中脑外侧核背部和丘间核交界内缘区的神经元发出纤维投射至丘脑卵形核周围形成卵形壳;尾部Ov壳和Ov交界面区域接受前峡核浅区的投射;尾部Ov壳不但接受ICM神经元的传出投射,而且有神经发出的传出纤维参与了Ov壳的形成。  相似文献   

16.
基于TDT神经电生理软硬件平台和Matlab软件环境,开发了专用于听觉电生理研究的实时分析软件。通过对神经元胞外记录信号的在线处理和分析,可以在实验过程中得到刺激后放电活动时间直方图、平均发放率、首次发放潜伏期等定量分析结果,以及刺激参数变化时神经元发放率的变化曲线,如发放率-刺激强度曲线等。此分析软件被用于大鼠下丘神经元听觉信息编码的研究中,观察到下丘神经元对于纯音和噪声刺激不同的时间响应模式,以及神经元发放率和首次发放潜伏期对声音刺激强度的编码。  相似文献   

17.
Single-unit recordings were made from 143 neurons in the frog (Rana p. pipiens) inferior colliculus (IC) to investigate how free-field sound direction influenced neural responses to sinusoidal-amplitude-modulated (SAM) tone and/or noise. Modulation transfer functions (MTFs) were derived from 3 to 5 sound directions within 180° of frontal field. Five classes of MTF were observed: low-pass, high-pass, band-pass, multi-pass, and all-pass. For 64% of IC neurons, the MTF class remained unchanged when sound direction was shifted from contralateral 90° to ipsilateral 90°. However, the MTFs of more than half of these neurons exhibited narrower bandwidths when the loudspeaker was shifted to ipsilateral azimuths. There was a decrease in the cut-off frequency for neurons possessing low-pass MTFs, an increase in cut-off frequency for neurons showing high-pass MTFs, or a reduction in the pass-band for neurons displaying bandpass MTFs. These results suggest that sound direction can influence amplitude modulation (AM) frequency tuning of single IC neurons.Since changes in periodicity of SAM tones alter both the temporal parameters of sounds as well as the sound spectrum, we examined whether directional effects on spectral selectivity play a role in shaping the observed direction-dependent AM selectivity. The directional influence on AM selectivity to both SAM tone and SAM noise was measured in 62 neurons in an attempt to gain some insight into the mechanisms that underlie directionally-induced changes in AM selectivity. Direction-dependent changes in the shapes of the tone and noise derived MTFs were different for the majority of IC neurons (55/62) tested. These data indicate that a spectrally-based and a temporally-based mechanism may be responsible for the observed results.Abbreviations AM amplitude modulation - CF characteristic frequency - DI direction index - FR isointensity frequency response - GABA gamma-aminobutyric acid - IC inferior colliculus - ICc central nucleus of the inferior colliculus - ITD interaural time difference - MTF modulation transfer function - PSTH peri-stimulus time histogram - SAM sinusoidal-amplitude-modulated - SC synchronization coefficient - CN cochlear nucleus  相似文献   

18.
Bi-coordinate sound localization by the barn owl   总被引:6,自引:3,他引:3  
1. Binaurally time-shifted and intensity-unbalanced noise, delivered through earphones, induced owls to respond with a head-orienting behavior similar to that which occurs to free field auditory stimuli. 2. Owls derived the azimuthal and elevational coordinates of a sound from a combination of interaural time difference (ITD) and interaural intensity difference (IID). 3. IID and ITD each contained information about the azimuth and elevation of the signal. Thus, IID and ITD formed a coordinate system in which the axes were non-orthogonal. 4. ITD was a strong determinant of azimuth, and IID was a strong determinant of elevation, of elicited head turn.  相似文献   

19.
Summary Acoustic stimuli near 60 kHz elicit pronounced resonance in the cochlea of the mustached bat (Pteronotus parnellii parnellii). The cochlear resonance frequency (CRF) is near the second harmonic, constant frequency (CF2) component of the bat's biosonar signals. Within narrow bands where CF2 and third harmonic (CF3) echoes are maintained, the cochlea has sharp tuning characteristics that are conserved throughout the central auditory system. The purpose of this study was to examine the effects of temperature-related shifts in the CRF on the tuning properties of neurons in the cochlear nucleus and inferior colliculus.Eighty-two single and multi-unit recordings were characterizedin 6 awake bats with chronically implanted cochlear microphonic electrodes. As the CRF changed with body temperature, the tuning curves of neurons sharply tuned to frequencies near the CF2 and CF3 shifted with the CRF in every case, yielding a change in the unit's best frequency. The results show that cochlear tuning is labile in the mustached bat, and that this lability produces tonotopic shifts in the frequency response of central auditory neurons. Furthermore, results provide evidence of shifts in the frequency-to-place code within the sharply tuned CF2 and CF3 regions of the cochlea. In conjunction with the finding that biosonar emission frequency and the CRF shift concomitantly with temperature and flight, it is concluded that the adjustment of biosonar signals accommodates the shifts in cochlear and neural tuning that occur with active echolocation.Abbreviations BF best frequency - CF characteristic frequency - CF2, CF3 second and third harmonic, constant frequency components of the biosonar signal - CM cochlear microphonic - CN cochlear nucleus - CRF cochlear resonance frequency - IC inferior colliculus - MT minimum threshold - OAE otoacoustic emission - Q10dB BF (or CF) divided by the response bandwidth at 10 dB above MT  相似文献   

20.
Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号