首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellular electrophysiology experiments, important for understanding cardiac arrhythmia mechanisms, are usually performed with channels expressed in non myocytes, or with non-human myocytes. Differences between cell types and species affect results. Thus, an accurate model for the undiseased human ventricular action potential (AP) which reproduces a broad range of physiological behaviors is needed. Such a model requires extensive experimental data, but essential elements have been unavailable. Here, we develop a human ventricular AP model using new undiseased human ventricular data: Ca(2+) versus voltage dependent inactivation of L-type Ca(2+) current (I(CaL)); kinetics for the transient outward, rapid delayed rectifier (I(Kr)), Na(+)/Ca(2+) exchange (I(NaCa)), and inward rectifier currents; AP recordings at all physiological cycle lengths; and rate dependence and restitution of AP duration (APD) with and without a variety of specific channel blockers. Simulated APs reproduced the experimental AP morphology, APD rate dependence, and restitution. Using undiseased human mRNA and protein data, models for different transmural cell types were developed. Experiments for rate dependence of Ca(2+) (including peak and decay) and intracellular sodium ([Na(+)](i)) in undiseased human myocytes were quantitatively reproduced by the model. Early afterdepolarizations were induced by I(Kr) block during slow pacing, and AP and Ca(2+) alternans appeared at rates >200 bpm, as observed in the nonfailing human ventricle. Ca(2+)/calmodulin-dependent protein kinase II (CaMK) modulated rate dependence of Ca(2+) cycling. I(NaCa) linked Ca(2+) alternation to AP alternans. CaMK suppression or SERCA upregulation eliminated alternans. Steady state APD rate dependence was caused primarily by changes in [Na(+)](i), via its modulation of the electrogenic Na(+)/K(+) ATPase current. At fast pacing rates, late Na(+) current and I(CaL) were also contributors. APD shortening during restitution was primarily dependent on reduced late Na(+) and I(CaL) currents due to inactivation at short diastolic intervals, with additional contribution from elevated I(Kr) due to incomplete deactivation.  相似文献   

2.
Phospholemman (PLM) regulates cardiac Na(+)/Ca(2+) exchanger (NCX1) and Na(+)-K(+)-ATPase in cardiac myocytes. PLM, when phosphorylated at Ser(68), disinhibits Na(+)-K(+)-ATPase but inhibits NCX1. PLM regulates cardiac contractility by modulating Na(+)-K(+)-ATPase and/or NCX1. In this study, we first demonstrated that adult mouse cardiac myocytes cultured for 48 h had normal surface membrane areas, t-tubules, and NCX1 and sarco(endo)plasmic reticulum Ca(2+)-ATPase levels, and retained near normal contractility, but alpha(1)-subunit of Na(+)-K(+)-ATPase was slightly decreased. Differences in contractility between myocytes isolated from wild-type (WT) and PLM knockout (KO) hearts were preserved after 48 h of culture. Infection with adenovirus expressing green fluorescent protein (GFP) did not affect contractility at 48 h. When WT PLM was overexpressed in PLM KO myocytes, contractility and cytosolic Ca(2+) concentration ([Ca(2+)](i)) transients reverted back to those observed in cultured WT myocytes. Both Na(+)-K(+)-ATPase current (I(pump)) and Na(+)/Ca(2+) exchange current (I(NaCa)) in PLM KO myocytes rescued with WT PLM were depressed compared with PLM KO myocytes. Overexpressing the PLMS68E mutant (phosphomimetic) in PLM KO myocytes resulted in the suppression of I(NaCa) but had no effect on I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the PLMS68E mutant were depressed compared with PLM KO myocytes overexpressing GFP. Overexpressing the PLMS68A mutant (mimicking unphosphorylated PLM) in PLM KO myocytes had no effect on I(NaCa) but decreased I(pump). Contractility, [Ca(2+)](i) transient amplitudes, and sarcoplasmic reticulum Ca(2+) contents in PLM KO myocytes overexpressing the S68A mutant were similar to PLM KO myocytes overexpressing GFP. We conclude that at the single-myocyte level, PLM affects cardiac contractility and [Ca(2+)](i) homeostasis primarily by its direct inhibitory effects on Na(+)/Ca(2+) exchange.  相似文献   

3.
Hille C  Walz B 《Cell calcium》2006,39(4):305-311
Stimulation with the neurotransmitter dopamine causes an amplitude-modulated increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) in epithelial cells of the ducts of cockroach salivary glands. This is completely attributable to a Ca(2+) influx from the extracellular space. Additionally, dopamine induces a massive [Na(+)](i) elevation via the Na(+)K(+)2Cl(-) cotransporter (NKCC). We have reasoned that Ca(2+)-entry is mediated by the Na(+)Ca(2+) exchanger (NCE) operating in the Ca(2+)-entry mode. To test this hypothesis, [Ca(2+)](i) and [Na(+)](i) were measured by using the fluorescent dyes Fura-2, Fluo-3, and SBFI. Inhibition of Na(+)-entry from the extracellular space by removal of extracellular Na(+) or inhibition of the NKCC by 10 microM bumetanide did not influence resting [Ca(2+)](i) but completely abolished the dopamine-induced [Ca(2+)](i) elevation. Simultaneous recordings of [Ca(2+)](i) and [Na(+)](i) revealed that the dopamine-induced [Na(+)](i) elevation preceded the [Ca(2+)](i) elevation. During dopamine stimulation, the generation of an outward Na(+) concentration gradient by removal of extracellular Na(+) boosted the [Ca(2+)](i) elevation. Furthermore, prolonging the dopamine-induced [Na(+)](i) rise by blocking the Na(+)/K(+)-ATPase reduced the recovery from [Ca(2+)](i) elevation. These results indicate that dopamine induces a massive NKCC-mediated elevation in [Na(+)](i), which reverses the NCE activity into the reverse mode causing a graded [Ca(2+)](i) elevation in the duct cells.  相似文献   

4.
The role of Na(+), K(+), Cl(-)-cotransport (NKCC) in apoptosis of HepG2 human hepatoblastoma cells was investigated. Pinacidil (Pin), an activator of ATP-sensitive K(+) (K(ATP)) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 cells. Pin increased intracellular K(+) concentration ([K(+)](i)). Bumetanide and furosemide, NKCC inhibitors, significantly inhibited the Pin-induced increased [K(+)](i) and apoptosis, whereas K(ATP) inhibitors (glibenclamide and tolbutamide) had no effects. The Pin-induced [K(+)](i) increase was significantly prevented by reducing extracellular Cl(-) concentration, and Pin also increased intracellular Na(+) concentration ([Na(+)](i)), further indicating that these effects of Pin may be due to NKCC activation. In addition, Pin induced a rapid and sustained increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), which was completely prevented by the NKCC inhibitors. Treatment with EGTA or BAPTA/AM markedly inhibited the Pin-induced apoptosis. Inhibitors of Na(+), Ca(2+)-exchanger, bepridil, and benzamil significantly prevented both [Ca(2+)](i) increase and apoptosis induced by Pin. Taken together, these results suggest that Pin increases [Na(+)](i) through NKCC activation, which leads to stimulation of reverse-mode of Na(+), Ca(2+) exchanger, resulting in [Ca(2+)](i) increase, and in turn, apoptosis. These results further suggest that NKCC may be a good target for induction of apoptosis in human hepatoma cells.  相似文献   

5.
The reverse-mode of the Na(+)/Ca(2+)-exchanger (NCX) mediates Ca(2+)-entry in agonist-stimulated vascular smooth muscle (VSM) and plays a central role in salt-sensitive hypertension. We investigated buffering of Ca(2+)-entry by peripheral mitochondria upon NCX reversal in rat aortic smooth muscle cells (RASMC). [Ca(2+)] was measured in mitochondria ([Ca(2+)](MT)) and the sub-plasmalemmal space ([Ca(2+)](subPM)) with targeted aequorins and in the bulk cytosol ([Ca(2+)](i)) with fura-2. Substitution of extracellular Na(+) by N-methyl-d-glucamine transiently increased [Ca(2+)](MT) ( approximately 2microM) and [Ca(2+)](subPM) ( approximately 1.3microM), which then decreased to sustained plateaus. In contrast, Na(+)-substitution caused a delayed and tonic increase in [Ca(2+)](i) (<100nM). Inhibition of Ca(2+)-uptake by the sarcoplasmic reticulum (SR) (30microM cyclopiazonic acid) or mitochondria (2microM FCCP or 2microM ruthenium red) enhanced the elevation of [Ca(2+)](subPM). These treatments also abolished the delay in the [Ca(2+)](i) response to 0Na(+) and increased its amplitude. Extracellular ATP (1mM) caused a peak and plateau in [Ca(2+)](i), and only the plateau was inhibited by KB-R7943 (10microM), a selective blocker of reverse-mode NCX. Evidence for ATP-mediated NCX-reversal was also found in changes in [Na(+)](i). Mitochondria normally exhibited a transient elevation of [Ca(2+)] in response to ATP, but inhibiting the mitochondrial NCX with CGP-37157 (10microM) unmasked an agonist-induced increase in mitochondrial Ca(2+)-flux. This flux was blocked by KB-R7943. In summary, mitochondria and the sarcoplasmic reticulum co-operate to buffer changes in [Ca(2+)](i) due to agonist-induced NCX reversal.  相似文献   

6.
Immunological stimulation of rat mucosal-type mast cells (RBL-2H3 line) by clustering of their Fcepsilon receptors (FcepsilonRI) causes a rapid and transient increase in free cytoplasmic Ca(2+) ion concentration ([Ca(2+)](i)) because of its release from intracellular stores. This is followed by a sustained elevated [Ca(2+)](i), which is attained by Ca(2+) influx. Because an FcepsilonRI-induced increase in the membrane permeability for Na(+) ions has also been observed, and secretion is at least partially inhibited by lowering of extracellular sodium ion concentrations ([Na(+)](o)), the operation of a Na(+)/Ca(2+) exchanger has been considered. We found significant coupling between the Ca(2+) and Na(+) ion gradients across plasma membranes of RBL-2H3 cells, which we investigated employing (23)Na-NMR, (45)Ca(2+), (85)Sr(2+), and the Ca(2+)-sensitive fluorescent probe indo-1. The reduction in extracellular Ca(2+) concentrations ([Ca(2+)](o)) provoked a [Na(+)](i) increase, and a decrease in [Na(+)](o) results in a Ca(2+) influx as well as an increase in [Ca(2+)](i). Mediator secretion assays, monitoring the released beta-hexosaminidase activity, showed in the presence of extracellular sodium a sigmoidal dependence on [Ca(2+)](o). However, the secretion was not affected by varying [Ca(2+)](o) as [Na(+)](o) was lowered to 0.4 mM, while it was almost completely inhibited at [Na(+)](o) = 136 mM and [Ca(2+)](o) < 0.05 mM. Increasing [Na(+)](o) caused the secretion to reach a minimum at [Na(+)](o) = 20 mM, followed by a steady increase to its maximum value at 136 mM. A parallel [Na(+)](o) dependence of the Ca(2+) fluxes was observed: Antigen stimulation at [Na(+)](o) = 136 mM caused a pronounced Ca(2+) influx. At [Na(+)](o) = 17 mM only a slight Ca(2+) efflux was detected, whereas at [Na(+)](o) = 0.4 mM no Ca(2+) transport across the cell membrane could be observed. Our results clearly indicate that the [Na(+)](o) dependence of the secretory response to FcepsilonRI stimulation is due to its influence on the [Ca(2+)](i), which is mediated by a Na(+)-dependent Ca(2+) transport.  相似文献   

7.
Mathematical models were developed to reconstruct the action potentials (AP) recorded in epicardial and endocardial myocytes isolated from the adult rat left ventricle. The main goal was to obtain additional insight into the ionic mechanisms responsible for the transmural AP heterogeneity. The simulation results support the hypothesis that the smaller density and the slower reactivation kinetics of the Ca(2+)-independent transient outward K(+) current (I(t)) in the endocardial myocytes can account for the longer action potential duration (APD), and more prominent rate dependence in that cell type. The larger density of the Na(+) current (I(Na)) in the endocardial myocytes results in a faster upstroke (dV/dt(max)). This, in addition to the smaller magnitude of I(t), is responsible for the larger peak overshoot of the simulated endocardial AP. The prolonged APD in the endocardial cell also leads to an enhanced amplitude of the sustained K(+) current (I(ss)), and a larger influx of Ca(2+) ions via the L-type Ca(2+) current (I(CaL)). The latter results in an increased sarcoplasmic reticulum (SR) load, which is mainly responsible for the higher peak systolic value of the Ca(2+) transient [Ca(2+)](i), and the resultant increase in the Na(+)-Ca(2+) exchanger (I(NaCa)) activity, associated with the simulated endocardial AP. In combination, these calculations provide novel, quantitative insights into the repolarization process and its naturally occurring transmural variations in the rat left ventricle.  相似文献   

8.
The aim of this study was to investigate whether or not the activity of the cardiac Na(+)-Ca(2+) exchanger might be directly sensitive to external K(+) concentration ([K(+)](e)). Measurements of whole-cell exchanger current (I(NaCa)) were made at 37 degrees C from guinea-pig isolated ventricular myocytes, using whole-cell patch clamp recording with major interfering conductances blocked. Changing [K(+)](e) from 0 to 5mM significantly reduced both outward and inward exchange currents in a time-dependent manner. Various [K(+)](e) between 1 and 15 mM were tested and the inhibitory effect was observed to be concentration-dependent. At steady-state, 5mM [K(+)](e) decreased the density of Ni(2+)-sensitive current by 52.8+/-4.3% (mean+/-S.E.M., n=6) and of 0Na0Ca-sensitive current by 39.0+/-4.4% (n=5). The possibility that the inhibitory effect of external K(+) on I(NaCa) might wholly or in part be secondary to activation of the sarcolemmal Na(+)-K(+) pump was investigated by testing the effect of K(+) addition in the presence of a high concentration of strophanthidin (500 microM). Ni(2+)-sensitive I(NaCa) was still observed to be sensitive to external K(+) (I(NaCa) decreased by 39.4+/-9.4%, n=4), suggesting that the inhibitory effect could occur independently of activation of the Na(+)-K(+) pump. The effect of external K(+) on I(NaCa) was verified using a baby hamster kidney (BHK) cell line stably expressing the cardiac Na(+)-Ca(2+) exchanger isoform, NCX1. Similar to native I(NaCa), NCX1 current was also suppressed by [K(+)](e). However, [K(+)](e) did not alter current amplitude in untransfected BHK cells. The effect of [K(+)](e) on I(NaCa) could not be attributed to simply adding any monovalent cation back to the external solution, since it was not reproduced by application of equimolar Li(+), Cs(+) and TEA(+). Rb(+), however, could mimic the effect of K(+). Collectively, these data suggest that external K(+) at physiologically and pathologically relevant concentrations might be able to modulate directly the activity of the cardiac Na(+)-Ca(2+) exchanger.  相似文献   

9.
Although inhibition of the sarcolemmal (SL) Na(+)-K(+)-ATPase is known to cause an increase in the intracellular concentration of Ca(2+) ([Ca(2+)](i)) by stimulating the SL Na(+)/Ca(2+) exchanger (NCX), the involvement of other SL sites in inducing this increase in [Ca(2+)](i) is not fully understood. Isolated rat cardiomyocytes were treated with or without different agents that modify Ca(2+) movements by affecting various SL sites and were then exposed to ouabain. Ouabain was observed to increase the basal levels of both [Ca(2+)](i) and intracellular Na(+) concentration ([Na(+)](i)) as well as to augment the KCl-induced increases in both [Ca(2+)](i) and [Na(+)](i) in a concentration-dependent manner. The ouabain-induced changes in [Na(+)](i) and [Ca(2+)](i) were attenuated by treatment with inhibitors of SL Na(+)/H(+) exchanger and SL Na(+) channels. Both the ouabain-induced increase in basal [Ca(2+)](i) and augmentation of the KCl response were markedly decreased when cardiomyocytes were exposed to 0-10 mM Na(+). Inhibitors of SL NCX depressed but decreasing extracellular Na(+) from 105-35 mM augmented the ouabain-induced increase in basal [Ca(2+)](i) and the KCl response. Not only was the increase in [Ca(2+)](i) by ouabain dependent on the extracellular Ca(2+) concentration, but it was also attenuated by inhibitors of SL L-type Ca(2+) channels and store-operated Ca(2+) channels (SOC). Unlike the SL L-type Ca(2+)-channel blocker, the blockers of SL Na(+) channel and SL SOC, when used in combination with SL NCX inhibitor, showed additive effects in reducing the ouabain-induced increase in basal [Ca(2+)](i). These results support the view that in addition to SL NCX, SL L-type Ca(2+) channels and SL SOC may be involved in raising [Ca(2+)](i) on inhibition of the SL Na(+)-K(+)-ATPase by ouabain. Furthermore, both SL Na(+)/H(+) exchanger and Na(+) channels play a critical role in the ouabain-induced Ca(2+) increase in cardiomyocytes.  相似文献   

10.
Phospholemman (PLM), when phosphorylated at serine 68, relieves its inhibition on Na(+)-K(+)-ATPase but inhibits Na(+)/Ca(2+) exchanger 1 (NCX1) in cardiac myocytes. Under stress when catecholamine levels are high, enhanced Na(+)-K(+)-ATPase activity by phosphorylated PLM attenuates intracellular Na(+) concentration ([Na(+)](i)) overload. To evaluate the effects of PLM on NCX1 on in vivo cardiac contractility, we injected recombinant adeno-associated virus (serotype 9) expressing either the phosphomimetic PLM S68E mutant or green fluorescent protein (GFP) directly into left ventricles (LVs) of PLM-knockout (KO) mice. Five weeks after virus injection, ~40% of isolated LV myocytes exhibited GFP fluorescence. Expression of S68E mutant was confirmed with PLM antibody. There were no differences in protein levels of α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase, NCX1, and sarco(endo)plasmic reticulum Ca(2+)-ATPase between KO-GFP and KO-S68E LV homogenates. Compared with KO-GFP myocytes, Na(+)/Ca(2+) exchange current was suppressed, but resting [Na(+)](i), Na(+)-K(+)-ATPase current, and action potential amplitudes were similar in KO-S68E myocytes. Resting membrane potential was slightly lower and action potential duration at 90% repolarization (APD(90)) was shortened in KO-S68E myocytes. Isoproterenol (Iso; 1 μM) increased APD(90) in both groups of myocytes. After Iso, [Na(+)](i) increased monotonically in paced (2 Hz) KO-GFP but reached a plateau in KO-S68E myocytes. Both systolic and diastolic [Ca(2+)](i) were higher in Iso-stimulated KO-S68E myocytes paced at 2 Hz. Echocardiography demonstrated similar resting heart rate, ejection fraction, and LV mass between KO-GFP and KO-S68E mice. In vivo closed-chest catheterization demonstrated enhanced contractility in KO-S68E compared with KO-GFP hearts stimulated with Iso. We conclude that under catecholamine stress when [Na(+)](i) is high, PLM minimizes [Na(+)](i) overload by relieving its inhibition of Na(+)-K(+)-ATPase and preserves inotropy by simultaneously inhibiting Na(+)/Ca(2+) exchanger.  相似文献   

11.
Intracellular Na(+)-concentration, [Na(+)](i) modulates excitation-contraction coupling of cardiac myocytes via the Na(+)/Ca(2+) exchanger (NCX). In cardiomyocytes from rainbow trout (Oncorhyncus mykiss), whole cell patch-clamp studies have shown that Ca(2+) influx via reverse-mode NCX contributes significantly to contraction when [Na(+)](i) is 16 mM but not 10 mM. However, physiological [Na(+)](i) has never been measured. We recorded [Na(+)](i) using the fluorescent indicator sodium-binding benzofuran isophthalate in freshly isolated atrial and ventricular myocytes from rainbow trout. We examined [Na(+)](i) at rest and during increases in contraction frequency across three temperatures that span those trout experience in nature (7, 14, and 21 degrees C). Surprisingly, we found that [Na(+)](i) was not different between atrial and ventricular cells. Furthermore, acute temperature changes did not affect [Na(+)](i) in resting cells. Thus, we report a resting in vivo [Na(+)](i) of 13.4 mM for rainbow trout cardiomyocytes. [Na(+)](i) increased from rest with increases in contraction frequency by 3.2, 4.7, and 6.5% at 0.2, 0.5, and 0.8 Hz, respectively. This corresponds to an increase of 0.4, 0.6, and 0.9 mM at 0.2, 0.5, and 0.8 Hz, respectively. Acute temperature change did not significantly affect the contraction-induced increase in [Na(+)](i). Our results provide the first measurement of [Na(+)](i) in rainbow trout cardiomyocytes. This surprisingly high [Na(+)](i) is likely to result in physiologically significant Ca(2+) influx via reverse-mode NCX during excitation-contraction coupling. We calculate that this Ca(2+)-source will decrease with the action potential duration as temperature and contraction frequency increases.  相似文献   

12.
Ca(2+) current (I(Ca)) recovery from inactivation is necessary for normal cardiac excitation-contraction coupling. In normal hearts, increased stimulation frequency increases force, but in heart failure (HF) this force-frequency relationship (FFR) is often flattened or reversed. Although reduced sarcoplasmic reticulum Ca(2+)-ATPase function may be involved, decreased I(Ca) availability may also contribute. Longer action potential duration (APD), slower intracellular Ca(2+) concentration ([Ca(2+)](i)) decline, and higher diastolic [Ca(2+)](i) in HF could all slow I(Ca) recovery from inactivation, thereby decreasing I(Ca) availability. We measured the effect of different diastolic [Ca(2+)](i) on I(Ca) inactivation and recovery from inactivation in rabbit cardiac myocytes. Both I(Ca) and Ba(2+) current (I(Ba)) were measured. I(Ca) decay was accelerated only at high diastolic [Ca(2+)](i) (600 nM). I(Ba) inactivation was slower but insensitive to [Ca(2+)](i). Membrane potential dependence of I(Ca) or I(Ba) availability was not affected by [Ca(2+)](i) <600 nM. Recovery from inactivation was slowed by both depolarization and high [Ca(2+)](i). We also used perforated patch with action potential (AP)-clamp and normal Ca(2+) transients, using various APDs as conditioning pulses for different frequencies (and to simulate HF APD). Recovery of I(Ca) following longer APD was increasingly incomplete, decreasing I(Ca) availability. Trains of long APs caused a larger I(Ca) decrease than short APD at the same frequency. This effect on I(Ca) availability was exacerbated by slowing twitch [Ca(2+)](i) decline by approximately 50%. We conclude that long APD and slower [Ca(2+)](i) decline lead to cumulative inactivation limiting I(Ca) at high heart rates and might contribute to the negative FFR in HF, independent of altered Ca(2+) channel properties.  相似文献   

13.
Hypoxia and persistent sodium current   总被引:22,自引:0,他引:22  
During prolonged depolarization of excitable cells, some voltage-activated, tetrodotoxin-sensitive sodium channels are resistant to inactivation and can continue to open for long periods of time, generating a "persistent" sodium current ( I(NaP)). The amplitude of I(NaP) is small [generally less than 1% of the peak amplitude of the transient sodium current ( I(NaT))], activates at potentials close to the resting membrane potential, and is more sensitive to Na channel blocking drugs than I(NaT). It is thought that persistent Na channels are generated by a change in gating of transient Na channels, possibly because of a change in phosphorylation or protein structure, e.g. loss of the inactivation gate. Drugs that block Na channels can prevent the increase in [Ca(2+)](i) in cardiac cells during hypoxia. Hypoxia increases the amplitude of I(NaP). Paradoxically, NO causes a similar increase in I(NaP) and the effects of both can be inhibited by reducing agents such as dithiothreitol and reduced glutathione. It is proposed that an increased inflow of Na(+) during hypoxia increases [Na(+)](i), which in turn reverses the Na/Ca exchanger so that [Ca(2+)](i) rises. An increase in I(NaP) and [Ca(2+)](i) could cause arrhythmias and irreversible cell damage.  相似文献   

14.
We have shown previously that partial inhibition of the cardiac myocyte Na(+)/K(+)-ATPase activates signal pathways that regulate myocyte growth and growth-related genes and that increases in intracellular Ca(2+) concentration ([Ca(2+)](i)) and reactive oxygen species (ROS) are two essential second messengers within these pathways. The aim of this work was to explore the relation between [Ca(2+)](i) and ROS. When myocytes were in a Ca(2+)-free medium, ouabain caused no change in [Ca(2+)](i), but it increased ROS as it did when the cells were in a Ca(2+)-containing medium. Ouabain-induced increase in ROS also occurred under conditions where there was little or no change in [Na(+)](i). Exposure of myocytes in Ca(2+)-free medium to monensin did not increase ROS. Increase in protein tyrosine phosphorylation, an early event induced by ouabain, was also independent of changes in [Ca(2+)](i) and [Na(+)](i). Ouabain-induced generation of ROS in myocytes was antagonized by genistein, a dominant negative Ras, and myxothiazol/diphenyleneiodonium, indicating a mitochondrial origin for the Ras-dependent ROS generation. These findings, along with our previous data, indicate that increases in [Ca(2+)](i) and ROS in cardiac myocytes are induced by two parallel pathways initiated at the plasma membrane: One being the ouabain-altered transient interactions of a fraction of the Na(+)/K(+)-ATPase with neighboring proteins (Src, growth factor receptors, adaptor proteins, and Ras) leading to ROS generation, and the other, inhibition of the transport function of another fraction of the Na(+)/K(+)-ATPase leading to rise in [Ca(2+)](i). Evidently, the gene regulatory effects of ouabain in cardiac myocytes require the downstream collaborations of ROS and [Ca(2+)](i).  相似文献   

15.
Hypertrophy and failure (H/F) in humans and large mammals are characterized by a change from a positive developed force-frequency relationship (+FFR) in normal myocardium to a flattened or negative developed force-frequency relationship (-FFR) in disease. Altered Ca(2+) homeostasis underlies this process, but the role of intracellular Na(+) concentration ([Na(+)](i)) in H/F and frequency-dependent contractility reserve is unclear. We hypothesized that altered [Na(+)](i) is central to the -FFR response in H/F feline myocytes. Aortic constriction caused left ventricular hypertrophy (LVH). We found that as pacing rate was increased, contraction magnitude was maintained in isolated control myocytes (CM) but decreased in LVH myocytes (LVH-M). Quiescent LVH-M had higher [Na(+)](i) than CM (LVH-M 13.3 +/- 0.3 vs. CM 8.9 +/- 0.2 mmol/l; P < 0.001) with 0.5-Hz pacing (LVH-M 14.9 +/- 0.5 vs. CM 10.8 +/- 0.4 mmol/l; P < 0.001) but were not different at 2.5 Hz (17.0 +/- 0.7 vs. control 16.0 +/- 0.7 mmol/l; not significant). [Na(+)](i) was altered by patch pipette dialysis to define the effect of [Na(+)](i) on contraction magnitude and action potential (AP) wave shape at slow and fast pacing rates. Using AP clamp, we showed that LVH-M require increased [Na(+)](i) and long diastolic intervals to maintain normal shortening. Finally, we determined the voltage dependence of contraction for Ca(2+) current (I(Ca))-triggered and Na(+)/Ca(2+) exchanger-mediated contractions and showed that there is a greater [Na(+)](i) dependence of contractility in LVH-M. These data show that increased [Na(+)](i) is essential for maintaining contractility at slow heart rates but contributes to small contractions at fast rates unless rate-dependent AP shortening is prevented, suggesting that altered [Na(+)](i) regulation is a critical contributor to abnormal contractility in disease.  相似文献   

16.
The myocardial interstitium is important in regulating cardiac function. Between the atrial lumen and the pericardial space are transmural pathways, and movement of interstitial fluid (ISF) through these pathways is one of the main driving forces regulating translocation of substances from the interstitium into the blood. To define how ISF translocation from the interstitial space into the luminal space is regulated by each component of atrial hemodynamics, we devised a new rabbit atrial model in which each physical parameter could be controlled independently. Using this system, we also defined the physiological role of the cardiac Na(+)/Ca(2+) exchanger on secretion of atrial natriuretic peptide (ANP) by depletion of extracellular Na(+) ([Na(+)](o)). Increases in stroke volume and atrial end-systolic volume increased ISF translocation and ANP secretion. However, an increase in atrial rate did not influence ISF translocation but, rather, increased ANP secretion. Gradual depletion of [Na(+)](o) caused gradual increases in ANP secretion and intracellular Ca(2+) ([Ca(2+)](i)), which were blocked in the presence of Ca(2+)-free buffer and Ni(2+), but not in the presence of KB-R7943, diltiazem, mibefradil, caffeine, or monensin. Amiloride and its analog blocked an increase in ANP secretion but not an increase in [Ca(2+)](i) by [Na(+)](o) depletion. Therefore, we suggest that ANP secretion and ISF translocation may be differently controlled by each physical factor. These results also suggest that the increase in ANP secretion in response to [Na(+)](o) depletion may involve inhibition of Na(+)/Ca(2+) and Na(+)/H(+) exchangers but not an increase in [Ca(2+)](i).  相似文献   

17.
Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger were subjected to two periods of 5 and 3 min, respectively, during which the extracellular Na(+) concentration ([Na(+)](o)) was reduced to 20 mm; these intervals were separated by a 5-min recovery period at 140 mm Na(+)(o). The cytosolic Ca(2+) concentration ([Ca(2+)](i)) increased during both intervals due to Na(+)-dependent Ca(2+) influx by the exchanger. However, the peak rise in [Ca(2+)](i) during the second interval was only 26% of the first. The reduced rise in [Ca(2+)](i) was due to an inhibition of Na(+)/Ca(2+) exchange activity rather than increased Ca(2+) sequestration since the influx of Ba(2+), which is not sequestered by internal organelles, was also inhibited by a prior interval of Ca(2+) influx. Mitochondria accumulated Ca(2+) during the first interval of reduced [Na(+)](o), as determined by an increase in fluorescence of the Ca(2+)-indicating dye rhod-2, which preferentially labels mitochondria. Agents that blocked mitochondrial Ca(2+) accumulation (uncouplers, nocodazole) eliminated the observed inhibition of exchange activity during the second period of low [Na(+)](o). Conversely, diltiazem, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, increased mitochondrial Ca(2+) accumulation and also increased the inhibition of exchange activity. We conclude that Na(+)/Ca(2+) exchange activity is regulated by a feedback inhibition process linked to mitochondrial Ca(2+) accumulation.  相似文献   

18.
Treatment of Madin-Darby canine kidney (MDCK) cells with the peptide hormone angiotensin II (Ang II) results in an increase in the concentrations of cytosolic free calcium ([Ca(2+)](i)) and sodium ([Na(+)](i)) with a concomitant decrease in cytosolic free Mg(2+) concentration ([Mg(2+)](i)). In the present study we demonstrate that this hormone-induced decrease in [Mg(2+)](i) is independent of [Ca(2+)](i) but dependent on extracellular Na(+). [Mg(2+)](i), [Ca(2+)](i), and [Na(+)](i) were measured in Ang II-stimulated MDCK cells by fluorescence digital imaging using the selective fluoroprobes mag-fura-2AM, fura-2AM, and sodium-binding benzofuran isophthalate (acetoxymethyl ester), respectively. Ang II decreased [Mg(2+)](i) and increased [Na(+)](i) in a dose-dependent manner. These effects were inhibited by irbesartan (selective AT(1) receptor blocker) but not by PD123319 (selective AT(2) receptor blocker). Imipramine and quinidine (putative inhibitors of the Na(+)/Mg(2+) exchanger) and removal of extracellular Na(+) abrogated Ang II-mediated [Mg(2+)](i) effects. In cells pretreated with thapsigargin (reticular Ca(2+)-ATPase inhibitor), Ang II-stimulated [Ca(2+)](i) transients were attenuated (p < 0.01), whereas agonist-induced [Mg(2+)](i) responses were unchanged. Clamping the [Ca(2+)](i) near 50 nmol/liter with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) inhibited Ang II-induced [Ca(2+)](i) increases but failed to alter Ang II-induced [Mg(2+)](i) responses. Benzamil, a selective blocker of the Na(+)/Ca(2+) exchanger, inhibited [Na(+)](i) but not [Mg(2+)](i) responses. Our data demonstrate that in MDCK cells, AT(1) receptors modulate [Mg(2+)](i) via a Na(+)-dependent Mg(2+) transporter that is not directly related to [Ca(2+)](i). These data support the notion that rapid modulation of [Mg(2+)](i) is not simply a result of Mg(2+) redistribution from intracellular buffering sites by Ca(2+) and provide evidence for the existence of a Na(+)-dependent, hormonally regulated transporter for Mg(2+) in renally derived cells.  相似文献   

19.
20.
Heart failure constitutes a major public health problem worldwide. The electrophysiological remodeling of failing hearts sets the stage for malignant arrhythmias, in which the role of the late Na(+) current (I(NaL)) is relevant and is currently under investigation. In this study we examined the role of I(NaL) in the electrophysiological phenotype of ventricular myocytes, and its proarrhythmic effects in the failing heart. A model for cellular heart failure was proposed using a modified version of Grandi et al. model for human ventricular action potential that incorporates the formulation of I(NaL). A sensitivity analysis of the model was performed and simulations of the pathological electrical activity of the cell were conducted. The proposed model for the human I(NaL) and the electrophysiological remodeling of myocytes from failing hearts accurately reproduce experimental observations. The sensitivity analysis of the modulation of electrophysiological parameters of myocytes from failing hearts due to ion channels remodeling, revealed a role for I(NaL) in the prolongation of action potential duration (APD), triangulation of the shape of the AP, and changes in Ca(2+) transient. A mechanistic investigation of intracellular Na(+) accumulation and APD shortening with increasing frequency of stimulation of failing myocytes revealed a role for the Na(+)/K(+) pump, the Na(+)/Ca(2+) exchanger and I(NaL). The results of the simulations also showed that in failing myocytes, the enhancement of I(NaL) increased the reverse rate-dependent APD prolongation and the probability of initiating early afterdepolarizations. The electrophysiological remodeling of failing hearts and especially the enhancement of the I(NaL) prolong APD and alter Ca(2+) transient facilitating the development of early afterdepolarizations. An enhanced I(NaL) appears to be an important contributor to the electrophysiological phenotype and to the dysregulation of [Ca(2+)](i) homeostasis of failing myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号