首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the conformational analysis by 1H NMR in DMSO and computer simulations involving distance geometry and molecular dynamics simulations at 300K of peptoid analogs of the cyclic hexapeptide c-[Phe11-Pro6-Phe7-D-Trp8-Lys9-Thr10]. The analogs c-[Phe11-Nasp6-Phe7-D-Trp8-Lys9-Thr10](1), c-[Phe11-Ndab6Phe7-D-Trp8-Lys9-Thr10] (2) and c-[Phen11-Nlys6-Phe7-D-Trp8-Lys9-Thr10](3) where Nasp denotes N-(2-carboxyethyl) glycine, Ndab N-(2-aminoethyl) glycine and Nlys N-(4-aminobutyl) glycine are subject to conformational studies. The results of free and restrained molecular dynamics simulations at 300K are reported and give insight into the conformational behaviour of these analogs. The compounds show two sets of nuclear magnetic resonance signals corresponding to the cis and trans orientations of the peptide bond between residues 11 and 6. The backbone conformation of the cis isomers that we believe are the bioactive isomers of the three compounds are very similar to each other while there are larger variations amongst the trans isomers. The binding data to the isolated receptors show that the introduction of the Nlys residue in analog 3 leads to an enhancement of binding potency to the hsst5 receptor compared with analog 2 while maintaining identical binding potency to the hsst2 receptor. The Nasp6 analog 1 binds weakly to the hsst2 and is essentially inactive towards the other receptors. Comparison of the conformations and binding activities of these three analogs indicates that the Nlys residue extends sufficiently far to allow binding to a negatively charged binding domain on the hsst5 receptor. According to this model, the Ndab analog 2 cannot extend far enough to allow for binding to the receptor pocket. The loss of activity observed for the Nasp6 compound 1 indicates that the presence of a negatively charged residue in position 6 is unfavorable for binding to the hsst receptors.  相似文献   

2.
The synthesis, binding affinity, and structure-activity relationships of compounds related to the cyclic hexapeptide, c[Pro6-Phe7-D-Trp8-Lys9-Thr10-Phe11], L-363,301 (the numbering in the sequence refers to the position of the residue in native somatostatin) is reported. The Pro residue in this compound is replaced with the peptoid residues Nasp [N-(2-carboxyethyl) glycine], Ndab [N-(2-aminoethyl) glycine] and Nlys [N-(4-aminobutyl) glycine]. This series of compounds enables us to draw conclusions about the influence of positively or negatively charged residues in the bridging region on the binding affinity towards the isolated human somatostatin receptors. A loss of binding to the recombinant human somatostatin (hsst) receptors in the Nasp analog compared with L-363,301 and compared with the Ndab and Nlys analogs clearly demonstrates that the presence of an acidic residue in the bridging region is unfavorable for binding to the hsst receptors. Comparison between the Ndab analog and the Nlys analog suggests that the presence of a basic residue in the bridging region might be advantageous for binding to the hsst5 receptor provided that the residue bearing the basic group extends far enough to allow for interaction with the receptor, while the length of the basic peptoid residue does not influence binding to the hsst2 receptor. These results are useful for the design of hsst5 selective somatostatin analogs.  相似文献   

3.
We report the synthesis, binding affinities to the recombinant human somatostatin receptors, and structure‐activity relationship studies of compounds related to the cyclic hexapeptide, c‐[Pro6‐Phe7‐D‐Trp8‐Lys9‐Thr10‐Phe11], L‐363,301 (the numbering in the sequence refers to the position of the residues in native somatostatin). The Pro residue in this compound is replaced with the arylalkyl peptoid residues Nphe (N‐benzylglycine), (S)βMeNphe [(S)‐N‐[(α‐methyl)benzyl]glycine] or (R)βMeNphe [(R)‐N‐[(α‐methyl)benzyl]glycine] and l ‐1‐naphthylalanine is incorporated into either position 7 or 11 of the parent compound. The synthesis and binding data of the Nnal6 ([N‐naphthylmethyl]glycine) analog of L‐363,301 is also reported. The incorporation of the Nnal residue into position 6 of L‐363,301 resulted in an analog with weaker binding affinities to all hsst receptors but enhanced selectivity towards the hsst2 receptor compared with the parent compound. The other compounds bind effectively to the hsst2 receptor but show some variations in the binding to the hsst3 and hsst5 receptors resulting in different ratios of binding affinities to the hsst5 and hsst2 or hsst3 and hsst2, respectively. The incorporation of the Nphe residue into position 6 and the Nal residue into position 7 of L‐363,301 led to a compound which binds potently to the hsst2 and has increased selectivity towards this receptor (weaker binding to hsst3 and hsst5 receptors) compared with the parent compound. The analogs with β‐methyl chiral substitutions in the aromatic peptoid side chain and Nal in position 7 or 11 bind effectively to the hsst2 and hsst5 receptors. They exhibit similar ratios of binding affinities to the hsst5 and hsst2 receptors as observed for L‐363,301. There are however minor differences in binding to the hsst3 receptor among these analogs. These studies allow us to investigate the influence of additional hydrophobic groups on the binding activity to the isolated human somatostatin receptors and the results are important for the design of other somatostatin analogs. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
5.
One carbonyl oxygen of the cyclic hexapeptide cyclo(-Gly1-Pro2-Phe3-Val4-Phe5-Phe6-) (A) can be selectively exchanged with sulphur using Yokoyama's reagent. Surprisingly it was not the C=] of Gly1 but that of Phe5 which was substituted and cyclo(-Gly1-Pro2-Phe3-Val4-Phe5 psi [CS-NH]Phe6-) (B) was obtained. Thionation results in a conformational change of the peptide backbone although the C=O of Phe5 and the corresponding C=S are not involved in internal hydrogen bonds. Two isomers in slow exchange, containing a cis Gly1-Pro2 bond in a beta VIa-turn (minor) and a trans Gly-Pro bond in a beta II'-turn (major), were analyzed by restrained molecular dynamics in vacuo and in DMSO as well as using time dependent distance constraints. It is impossible to fit all experimental data to a static structure of each isomer. Interpreting the conflicting NOEs, local segment flexibility is found. MD simulations lead to a dynamic model for each structure with evidence of an equilibrium between a beta I- and beta II-turn about the Val4-Phe5 amide bond in both the cis and trans isomers. Additionally proton relaxation rates in the rotating frame (R1 rho) were measured to verify the assumption of this fast beta I/beta II equilibrium within each isomer. Significant contributions to R1 rho-rates from intramolecular motions were found for both isomers. Therefore it is possible to distinguish between at least four conformers interconverting on different time scales based on NMR data and MD refinement. This work shows that thionation is a useful modification of peptides for conformation-activity investigations.  相似文献   

6.
The syntheses and agonist and binding activities of 5(S)-hydroxy- 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-deoxy LTB4), 5(S), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (12-epi LTB4), 12(R)-hydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-deoxy LTB4), 5(R), 12(S)-dihydroxy-6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5-epi LTB4), 6(Z), 8(E), 10(E), 14(Z)-eicosatetraenoic acid (5, 12-deoxy LTB4) are described. These leukotriene B4 analogs were all able to aggregate rat leukocytes and compete with [3H]-leukotriene B4 for binding to rat and human leukocyte leukotriene B4 receptors with varying efficacy. The analog in which the 12-hydroxyl group was removed was severely reduced both in agonist action (aggregation) and binding. The epimeric 12-hydroxyl analog demonstrated better agonist and binding properties than the analog without a hydroxyl at this position. In contrast, in the case of the 5-hydroxyl the epimeric hydroxyl analog had greatly reduced agonist and binding activities while the 5-deoxy analog demonstrated potency only several fold less than leukotriene B4 itself. The dideoxy leukotriene B4 analog was more than a thousand fold less active than leukotriene B4 as an agonist and in binding to the leukotriene B4 receptor. These results show that binding to the leukocyte leukotriene B4 receptor requires a hydroxyl group at the 12 position in either stereochemical orientation but that the presence of a hydroxyl at the 5 position is less important. However, the epimeric C5 leukotriene B4 analog clearly interacts unfavourably with the binding site of the leukotriene B4 receptor.  相似文献   

7.
Biological activity of six somatostatin analogs has been investigated. In these analogs, disulfide bond is replaced by ethylene bond cyclized with alpha-amino suberic acid. In addition, they contain unique D-configuration in both Trp8 and Cys14 moiety with dicarba substitution. An analog of the short chain length, C omega 7-cyclo (Phe6-Phe7-D-Trp8-Lys9-Thr10-Phe11-D-Asu14) (analog 4) has suppressive effect for GH, but not for other hormones. Analog 6, C omega 9-cyclo(Asn5-Phe6-Phe7-D-Trp8-Lys9-Thr10-Ph e11-Thr12-D-Asu14), has suppressed GH and insulin secretion, but not for gastrin and glucagon. Analog 1, C omega 11-cyclo (Lys4-Asn5-Phe6-Phe7-D-Trp8-Lys9-Thr10-Phe11- Thr12-Ser13-D-Asu14] and 5, C omega 9-cyclo (Lys4-Asn5-Phe6-Phe7-D-Trp8-Lys9-Thr10-Phe11-D-+ ++Asu14) have broad suppressive effect for GH, gastrin, insulin and glucagon release after arginine infusion. The shortest analog, analog 2, C omega 5-cyclo (Phe7-D-Trp8-Lys9-Thr10-D-Asu14) has weak suppressive effect of GH, insulin and glucagon secretion, and it is suggested that Phe6 and Phe11 are necessary for the appearance of suppressive effect of GH. Specific analog, analog 4, may be useful for the future treatment for acromegaly and diabetic retinopathy. Nonspecific analogs, 1 and 5 are candidates for the clinical application of wide variety.  相似文献   

8.
As part of our continuing effort to define structure-activity relationships for enkephalin and design enzymatically resistant analogs, we report the synthesis and biological activities of linear and cyclic enkephalin analogs modified at the Gly3-Phe4 amide bond. The partial retro-inverso enkephalin analog Tyr-D-Ala-gGly-(R,S)-mPhe-Leu-NH2 and its cyclic counterpart, Tyr-cyclo[D-A2 bu-gGly-(R,S)-mPhe-Leu-], were synthesized as diastereomeric mixtures using solution methodology. The racemic benzylmalonate allowed the linear analog to be synthesized by fragment coupling at the reversed bond. Cyclization of the second analog was carried out at high concentration, eliminating formation of polymer by the use of an insoluble base. All gem-diaminoalkyl residues were prepared by conversion of peptidyl amides with benzene iodonium bis(trifluoroacetate). Diastereomers of both compounds were separable by reverse phase HPLC but those of the linear compound racemized rapidly under conditions of testing and were therefore tested together. All analogs tested had activities ranging from 6 to 14% of the activity of Leu enkephalin, indicating that the Gly3-Phe4 amide bond is important, though not crucial, for receptor binding.  相似文献   

9.
We report the conformational analysis by 1H nmr in DMSO and computer simulations involving distance geometry and molecular dynamics simulations of analogs of the cyclic octapeptide D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Thr6-Cys 7]-Thr8-ol (sandostatin, octreotide). The analogs D-Phe1-c[Cys2-Phe3-D-Trp4-Lys5-Xaa6-Cys 7]-Xbb8-NH2 (Xaa = allo-Thr, D-allo-Thr, D-beta-Hyv, beta-Hyv, D-Thr, and Xbb = Thr or Xaa = Thr and Xbb = allo-Thr, D-allo-Thr, beta-Hyv, D-Thr) contain stereochemical changes in the Thr residues in positions 6 and 8, which allow us to investigate the influence of the stereochemistry within these residues on conformation and binding affinity. The molecular dynamics simulations provide insight into the conformational flexibility of these analogs. The compounds with (S)-configuration at the C(alpha) of residue 6 adopt beta-sheet structures containing a type II' beta-turn with D-Trp in the i+1 position, and these conformations are "folded" about residues 6 and 3. The structures are very similar to those observed for sandostatin, and the disulfide bridge results in a close proximity of the H(alpha) protons of residues 7 and 2, which confirms earlier observations that a disulfide bridge is a good mimic for a cis peptide bond. The compounds with (R)-configuration at the C(alpha) of residue 6 adopt considerably different backbone conformations. The structures observed for these analogs contain either a beta-turn about residue Lys and Xaa6 or a gamma-turn about the Xaa6 residue. These compounds do not exhibit significant binding to the somatostatin receptors, while the compounds with (S) configuration in position 6 bind potently to the sst2, 3, and 5 receptors. The nmr spectra of analogs with (R) or (S) configuration at the C(alpha) of residue 8 are strikingly similar to each other. We have demonstrated that the chemical shifts of protons of residues 3, 4, 5, and 6, which are part of the type II' beta-turn, and especially the effect on the Lys gamma-protons are considerably different in active molecules as compared to inactive analogs. Since the presence of a type II' beta-turn is crucial for the binding to the receptors, the chemical shifts, the amide temperature coefficients of the Thr residue and the medium strength NOE between LysNH and ThrNH can be extremely useful as an initial screening tool to separate the active molecules from inactive analogs.  相似文献   

10.
Z Szendi  F Sweet 《Steroids》1991,56(9):458-463
Pregnenolone 3-(2'-tetrahydropyranyl) ether (1) was condensed with 3,4-[2H]dihydropyran to mainly give (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (20R-3), according to nuclear magnetic resonance (NMR). Cold, dilute HCl in ethanol removed the tetrahydropyranyl group at C-3 and also opened the dihydropyranyl ring at the C-20 position of 20R-3 to give (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol (20R-5). Analogous results were obtained by condensing pregnenolone 3-acetate with 3,4-[2H]dihydropyran to provide (20R)-[6'-(3',4'-[2'H]dihydropyranyl)]-pregn-5-ene-3 beta,20-diol 3-acetate (20R-4). Acid-catalyzed opening of the dihydropyranyl ring at C-20 in 20R-4 yielded 20R-7, which, on acetylation followed by crystallization, provided (20R)-27-norcholest-5-en-22-one-3 beta,20,26-triol 3,26-diacetate (20R-8), identical to the diacetate made from 20R-5. Varying the reaction sequence beginning with 20(R,S)-4 gave an 84:16 ratio of 20R to 20S in a mixture of 20(R,S)-8, according to NMR analysis. Crystallization of the mixture from methanol provided pure 20R-8. Condensing 2,3-dihydrofuran and 1 for producing (20R)-[5'-(2',3'-dihydrofuranyl)]-pregn-5-ene-3 beta,20-diol 3-(2'-tetrahydropyranyl) ether (6) gave instead (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol 3-(2'-tetrahydropyranyl) ether (20R-9) by partial hydrolysis during workup. Treating 20R-9 briefly with dilute HCl produced (20R)-26,27-bisnorcholest-5-en-22-one-3 beta,20,25-triol (20R-10).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A cyclic somatostatin analog [structure: see text] (1) has been synthesized. Biological assays show that this compound has strong binding affinities to somatostatin hsst2 and hsst5 receptor subtypes (5.2 and 1.2 nM, respectively, and modest affinity to hsst4 (41.1 nM)). Our conformational analysis carried out in DMSO-d6 indicates that this compound exists as two structures arising from the trans and cis configurations of the peptide bond between Phe7 and N-alkylated Gly8. However, neither conformer exhibits a type II' beta-turn. This is the first report of a potent bioactive somatostatin analog that does not exhibit a type II' beta-turn in solution. Molecular dynamics simulations (500 ps) carried out at 300 K indicate that the backbone of compound 1 is more flexible than other cyclic somatostatin analogs formed by disulfide bonds.  相似文献   

12.
13.
1. Bradykinin (Bk; Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg8) inactivation by bulk isolated neurons from rat brain is described. 2. Bk is rapidly inactivated by neuronal perikarya (4.2 +/- 0.6 fmol/min/cell body). 3. Sites of inactivating cleavages, determined by a kininase bioassay combined with a time-course Bk-product analysis, were the Phe5-Ser6, Pro7-Phe8, Gly4-Phe5, and Pro3-Gly4 peptide bonds. The cleavage of the Phe5-Ser6 bond inactivated Bk at least five fold faster than the other observed cleavages. 4. Inactivating peptidases were identified by the effect of inhibitors on Bk-product formation. The Phe5-Ser6 bond cleavage is attributed mainly to a calcium-activated thiol-endopeptidase, a predominantly soluble enzyme which did not behave as a metalloenzyme upon dialysis and was strongly inhibited by N-[1(R,S)-carboxy-2-phenylethyl]-Ala-Ala-Phe-p-aminobenzoate and endo-oligopeptidase A antiserum. Thus, neuronal perikarya thiol-endopeptidase seems to differ from endo-oligopeptidase A and endopeptidase 24.15. 5. Endopeptidase 24.11 cleaves Bk at the Gly4-Phe5 and, to a larger extent, at the Pro7-Phe8 bond. The latter bond is also cleaved by angiotensin-converting enzyme (ACE) and prolyl endopeptidase (PE). PE also hydrolyzes Bk at the Pro3-Gly4 bond. 6. Secondary processing of Bk inactivation products occurs by (1) a rapid cleavage of Ser6-Pro7-Phe8-Arg8 at the Pro7-Phe8 bond by endopeptidase 24.11, 3820ACE, and PE; (2) a bestatin-sensitive breakdown of Phe8-Arg9; and (3) conversion of Arg1-Pro7 to Arg1-Phe5, of Gly4-Arg9 to both Gly4-Pro7 and Ser6-Arg9, and of Phe5-Arg9 to Ser6-Arg9, Phe8-Arg9, and Ser6-Pro7, by unidentified peptidases. 7. A model for the enzymatic inactivation of bradykinin by rat brain neuronal perikarya is proposed.  相似文献   

14.
The three-dimensional structure of a potent SSTR3-selective analogue of somatostatin, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-Agl(8)(N(beta) Me, 2-naphthoyl)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-Agl(8)(N(beta) Me, 2-naphthoyl)]-SRIF) (peptide 1) has been determined by (1)H NMR in water and molecular dynamics (MD) simulations. The peptide exists in two conformational isomers differing mainly by the cis/trans isomerization of the side chain in residue 8. The structure of 1 is compared with the consensus structural motifs of other somatostatin analogues that bind predominantly to SSTR1, SSTR2/SSTR5 and SSTR4 receptors, and to the 3D structure of a non-selective SRIF analogue, cyclo(3-14)H-Cys(3)-Phe(6)-Tyr(7)-D-2Nal(8)-Lys(9)-Thr(10)-Phe(11)-Cys(14)-OH (des-AA(1, 2, 4, 5, 12, 13)[Tyr(7), D-2Nal(8)]-SRIF) (peptide 2). The structural determinant factors that could explain selectivity of peptide 1 for SSTR3 receptors are discussed.  相似文献   

15.
The ability of (S)-alpha-methylproline (alpha-MePro) to stabilise reverse-turn conformations in the peptide hormone bradykinin (BK = Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9) has been investigated. Two BK analogues containing alpha-MePro at position 3 or position 7 were synthesised and their conformations in aqueous solution investigated by NMR spectroscopy. Whereas BK is largely disordered on the NMR time scale both analogues showed ROE connectivities in 2D-ROESY spectra indicative of reverse-turn conformations at both Pro2-Phe5 and Ser6-Arg9, whose formation appears to be cooperative. Some potential applications of alpha-MePro as a reverse-turn mimetic in the construction of synthetic peptide libraries is discussed.  相似文献   

16.
Parkin is the gene product identified as the major cause of autosomal recessive juvenile Parkinsonism (AR-JP). Parkin, a ubiquitin ligase E3, contains a unique ubiquitin-like domain in its N-terminus designated Uld which is assumed to be a interaction domain with the Rpn 10 subunit of 26S proteasome. To elucidate the structural and functional role of Uld in parkin at the atomic level, the X-ray crystal structure of murine Uld was determined and a molecular dynamics simulation of wild Uld and its five mutants (K27N, R33Q, R42P, K48A and V56E) identified from AR-JP patients was performed. Murine Uld consists of two alpha helices [Ile23-Arg33 (alpha1) and Val56-Gln57 (alpha2)] and five beta strands [Met1-Phe7 (beta1), Tyr11-Asp18 (beta2), Leu41-Phe45 (beta3), Lys48-Pro51 (beta4) and Ser65-Arg72 (beta5)] and its overall structure is essentially the same as that of human ubiquitin with a 1.22 A rmsd for the backbone atoms of residues 1-76; however, the sequential identity and similarity between both molecules are 32% and 63%, respectively. This close resemblance is due to the core structure built by same hydrogen bond formations between and within the backbone chains of alpha1 and beta1/2/5 secondary structure elements and by nearly the same hydrophobic interactions formed between the nonpolar amino acids of their secondary structures. The side chain NetaH of Lys27 on the alpha1 helix was crucial to the stabilization of the spatial orientations of beta3 and beta4 strands, possible binding region with Rpn 10 subunit, through three hydrogen bonds. The MD simulations showed the K27N and R33Q mutations increase the structural fluctuation of these beta strands including the alpha1 helix. Reversely, the V56E mutant restricted the spatial flexibility at the periphery of the short alpha2 helix by the interactions between the polar atoms of Glu56 and Ser19 residues. However, a large fluctuation of beta4 strand with respect to beta5 strand was induced in the R42P mutant, because of the impossibility of forming paired hydrogen bonds of Pro for Arg42 in wild Uld. The X-ray structure showed that the side chains of Asp39, Gln40 and Arg42 at the N-terminal periphery of beta3 strand protrude from the molecular surface of Uld and participate in hydrogen bonds with the polar residues of neighboring Ulds. Thus, the MD simulation suggests that the mutation substitution of Pro for Arg42 not only causes the large fluctuation of beta3 strand in the Uld but also leads to the loss of the ability of Uld to trap the Rpn 10 subunit. In contrast, the MD simulation of K48A mutant showed little influence on the beta3-beta4 loop structure, but a large fluctuation of Lys48 side chain, suggesting the importance of flexibility of this side chain for the interaction with the Rpn 10 subunit. The present results would be important in elucidating the impaired proteasomal binding mechanism of parkin in AR-JP.  相似文献   

17.
alpha-Melanocyte stimulating hormone (alphaMSH), Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), is an endogenous agonist for the melanocortin receptor 1 (MC1R), the receptor found in the skin, several types of immune cells, and other peripheral sites. Three-dimensional models of complexes of this receptor with alphaMSH and its synthetic analog NDP-alphaMSH, Ac-Ser(1)-Tyr(2)-Ser(3)-Nle(4)-Glu(5)-His(6)-D-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2), have been previously proposed. In those models, the 6-9 segment of the ligand was considered essential for the ligand-receptor interactions. In this study, we probed the role of Trp(9) of NDP-alphaMSH in interactions with hMC1bR. Analogs of NDP-alphaMSH with various amino acids in place of Trp(9) were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4, and 5 (hMC1b,3-5R). Several new compounds displayed high agonist potency at hMC1bR (EC(50) = 0.5-5 nM) and receptor subtype selectivity greater than 2000-fold versus hMC3-5R. The Trp(9) residue of NDP-alphaMSH was determined to be not essential for molecular recognition at hMC1bR.  相似文献   

18.
Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR.  相似文献   

19.
Met5-enkephalin-Arg6-Phe7 (Tyr-Gly-Gly-Phe-Met-Arg-Phe, MERF) is a naturally occurring heptapeptide that binds to opioid and non-opioid recognition sites in the central nervous system. Four synthetic analogs with single or double amino acid substitutions were prepared by solid phase peptide synthesis to achieve proteolytically more stable structures: Tyr-D-Ala-Gly-Phe-Met-Arg-Phe (I), Tyr-D-Ala-Gly-Phe-D-Nle-Arg-Phe (II), Tyr-D-Ala-Gly-Phe-L-Nle-Arg-Phe (III) and Tyr-Gly-Gly-Phe-L-Nle-Arg-Phe (IV). In this study receptor binding characteristics and G-protein activation of MERF and its derivatives were compared in crude membrane fractions of frog and rat brain. Synthetic MERF-derived peptides were potent competitors for [3H]MERF and [3H]naloxone binding sites with the exception of analog (II) which turned to be substantially less active. The presence of 100 mM NaCl or 100 microM 5'-guanylylimidodiphosphate, Gpp(NH)p, decreased the affinity of the peptides in [3H]naloxone binding assays, suggesting that these ligands might act as agonists at the opioid receptors. Some of the compounds were also used to stimulate guanosine-5'-O-(3-[gamma-[35S]thio)triphosphate ([35S]GTPgammaS) binding in rat and frog brain membranes at concentrations of 10(-9)-10(-5) M. The EC50 values of analog (II) were the highest in both tissues. Analog (I) was as effective as MERF in rat brain membranes, but showed lower maximal stimulation in frog brain preparation. Again, analog (II) seemed to be the least efficacious peptide that stimulated [35S]GTPgammaS binding only by 59%. Specificity of the peptides was further investigated by the inhibition of agonist-stimulated [35S]GTPgammaS binding in the presence of selective antagonists for the opioid receptor types. The mu-selective antagonist cyprodime displayed the lowest potency in inhibiting the effects of the peptides, whereas norbinaltorphimine (kappa-selective antagonist) and naltrindole (delta-selective antagonist) were quite potent in both tissues. We concluded that MERF and its derivatives are able to activate G-proteins mainly via kappa- and delta-opioid receptors.  相似文献   

20.
Somatostatin (S-14) analogs with Phe4 substitutions bound to pituitary and cerebrocortical S-14 receptors more avidly than did S-14. The 2-4 fold greater affinities of the Phe4 S-14 as well as analogs with structural modification of the Phe4 residue for binding to pituitary S-14 receptors showed good correlation with their reported potencies for in vivo Gh inhibition. In the cerebral cortex, [Phe4] S-14, [Phe4, D-Trp8] S-14 and [F5-Phe4] S14 were 2-3 times more potent while [p-NH2-Phe4] S-14 was 6 times more potent compared to S-14 in binding to S-14 receptors. The increased binding affinities of the Phe4 analogs in these two tissues does not appear to be due to differential stability of the analogs compared to S-14 under the experimental conditions used. [Thr4] S-14 exhibited very low binding in both these tissues. Thus structural modification of the position 4 moiety of the S-14 molecule does not result in dissociated affinities for binding to S-14 receptors in the brain and the pituitary. The increased receptor binding affinities of the Phe4 analogs in the cerebral cortex suggest that they may be more potent than S-14 in the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号