首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluid genome is a great advantage to prokaryotes, enabling quick adaptation to various types of ecological niches and to diverse environmental selective pressures. A substantial portion of these sudden changes is mediated by lateral gene transfer (LGT), through genetic recombination mechanisms, such as transformation, conjugation and transduction. The recent sequencing of several organisms has offered a new approach to the study of LGT, using comparison and analysis of nucleotide sequences dispersed throughout the genome of these species. This analysis in Choromobacterium violaceum has revealed four prophage and 12 insertion sequences, suggesting genetic exchange with several other bacterial species, including Salmonella enterica, Ralstonia and Xanthomonas. An Rhs (recombination hot spot) element (containing a vgr-like gene) was also observed, the function of which remains unknown, but it has a sequence related to species of Acinetobacter and Sphingomonas. These results support the role of LGT in the acquisition of new traits by C. violaceum.  相似文献   

2.
The genome of Salmonella enterica subsp. enterica serovar Weltevreden strain 2007-60-3289-1 was sequenced. The genome sequence of this fresh-vegetable isolate from Scandinavia will be useful for the elucidation of plant host factors in comparison to other serovars of S. enterica subsp. enterica.  相似文献   

3.
We report here the complete genome sequence of Salmonella enterica subsp. enterica serovar Typhi P-stx-12, a clinical isolate obtained from a typhoid carrier in India.  相似文献   

4.
The genomes of most strains of Salmonella and Escherichia coli are highly conserved. In contrast, all 136 wild-type strains of Salmonella enterica serovar Typhi analyzed by partial digestion with I-CeuI (an endonuclease which cuts within the rrn operons) and pulsed-field gel electrophoresis and by PCR have rearrangements due to homologous recombination between the rrn operons leading to inversions and translocations. Recombination between rrn operons in culture is known to be equally frequent in S. enterica serovar Typhi and S. enterica serovar Typhimurium; thus, the recombinants in S. enterica serovar Typhi, but not those in S. enterica serovar Typhimurium, are able to survive in nature. However, even in S. enterica serovar Typhi the need for genome balance and the need for gene dosage impose limits on rearrangements. Of 100 strains of genome types 1 to 6, 72 were only 25.5 kb off genome balance (the relative lengths of the replichores during bidirectional replication from oriC to the termination of replication [Ter]), while 28 strains were less balanced (41 kb off balance), indicating that the survival of the best-balanced strains was greater. In addition, the need for appropriate gene dosage apparently selected against rearrangements which moved genes from their accustomed distance from oriC. Although rearrangements involving the seven rrn operons are very common in S. enterica serovar Typhi, other duplicated regions, such as the 25 IS200 elements, are very rarely involved in rearrangements. Large deletions and insertions in the genome are uncommon, except for deletions of Salmonella pathogenicity island 7 (usually 134 kb) from fragment I-CeuI-G and 40-kb insertions, possibly a prophage, in fragment I-CeuI-E. The phage types were determined, and the origins of the phage types appeared to be independent of the origins of the genome types.  相似文献   

5.
M Kim  S Kim  S Ryu 《Journal of virology》2012,86(19):10894
Salmonella enterica serovar Typhimurium rough strain-specific phage SSU5 was isolated, and its whole genome was sequenced. The 103,229-bp-long double-stranded DNA genome of SSU5 encodes 130 open reading frames with one tRNA for asparagine. Genomic analysis revealed that SSU5 might be the phylogenetic origin of cryptic plasmid pHCM2 harbored by Salmonella Typhi CT18.  相似文献   

6.
Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar Typhimurium DT160, were subjected to Salmonella gene microarray and suppression subtractive hybridization analyses. Their genome contents were compared with those of coexisting sporadic strains matched by serotype, geographic and temporal distribution, and host species origin. These paired comparisons revealed that epidemic strains of S. enterica had specific genes and gene regions that were shared by isolates of the same subtype. Most of these gene sequences are related to mobile genetic elements, including phages, plasmids, and plasmid-like and transposable elements, and some genes may encode proteins conferring growth or survival advantages. The emergence of epidemic MDR strains may therefore be associated with the presence of fitness-associated genetic factors in addition to their antimicrobial resistance genes.  相似文献   

7.
Variations in the mass spectral profiles of multiple housekeeping proteins of 126 strains representing Salmonella enterica subsp. enterica (subspecies I), S. enterica subsp. salamae (subspecies II), S. enterica subsp. arizonae (subspecies IIIa), S. enterica subsp. diarizonae (subspecies IIIb), S. enterica subsp. houtenae (subspecies IV), and S. enterica subsp. indica (subspecies VI), and Salmonella bongori were analyzed to obtain a phylogenetic classification of salmonellae based on whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometric bacterial typing. Sinapinic acid produced highly informative spectra containing a large number of biomarkers and covering a wide molecular mass range (2,000 to 40,000 Da). Genus-, species-, and subspecies-identifying biomarker ions were assigned on the basis of available genome sequence data for Salmonella, and more than 200 biomarker peaks, which corresponded mainly to abundant and highly basic ribosomal or nucleic acid binding proteins, were selected. A detailed comparative analysis of the biomarker profiles of Salmonella strains revealed sequence variations corresponding to single or multiple amino acid changes in multiple housekeeping proteins. The resulting mass spectrometry-based bacterial classification was very comparable to the results of DNA sequence-based methods. A rapid protocol that allowed identification of Salmonella subspecies in minutes was established.  相似文献   

8.
Lee JH  Shin H  Kim H  Ryu S 《Journal of virology》2011,85(24):13470-13471
Salmonella bacteriophage SPN3US was isolated from a chicken fecal sample. It is a virulent phage belonging to the Myoviridae family and showing effective inhibition of Salmonella enterica and a few Escherichia coli O157:H7 strains. Here we announce the completely sequenced first genome of a Salmonella phage using flagella as receptors. It is the largest genome among Salmonella phages sequenced to date, and major findings from its annotation are described.  相似文献   

9.
Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby strains isolated from different seafood were genotyped by PCR-ribotyping and ERIC-PCR assays. This study has ascertained the genetic relatedness among serovars prevalent in tropical seafood. PCR-ribotyping exhibited genetic variation in both Salmonella serovars, and ribotype profile (II) was most predominant, which was observed in 10/18 of Salmonella enterica subsp. enterica Typhimurium and 7/17 Salmonella enterica subsp. enterica Derby isolates. Cluster analysis of ERIC-PCR for Salmonella enterica subsp. enterica Typhimurium strains exhibited nine different banding patterns and four strains showed >95% genetic homology within the cluster pairs. ERIC-PCR produced more genetic variations in Salmonella enterica subsp. enterica Typhimurium; nevertheless, both methods were found to be comparable for Salmonella enterica subsp. enterica Derby isolates. Discrimination index of PCR-ribotyping for Salmonella enterica subsp. enterica Typhimurium isolates was obtained at 0.674 and index value 0.714 was observed for Salmonella enterica subsp. enterica Derby strains. Molecular fingerprinting investigation highlighted the hypothesis of diverse routes of Salmonella contamination in seafood as multiple clones of Salmonella enterica subsp. enterica Typhimurium and Salmonella enterica subsp. enterica Derby were detected in same or different seafood throughout the study period.  相似文献   

10.
The evolving genome of Salmonella enterica serovar Pullorum   总被引:9,自引:0,他引:9       下载免费PDF全文
Salmonella enterica serovar Pullorum is a fowl-adapted bacterial pathogen that causes dysentery (pullorum disease). Host adaptation and special pathogenesis make S. enterica serovar Pullorum an exceptionally good system for studies of bacterial evolution and speciation, especially regarding pathogen-host interactions and the acquisition of pathogenicity. We constructed a genome map of S. enterica serovar Pullorum RKS5078, using I-CeuI, XbaI, AvrII, and SpeI and Tn10 insertions. Pulsed-field gel electrophoresis was employed to separate the large DNA fragments generated by the endonucleases. The genome is 4,930 kb, which is similar to most salmonellas. However, the genome of S. enterica serovar Pullorum RKS5078 is organized very differently from the majority of salmonellas, with three major inversions and one translocation. This extraordinary genome structure was seen in most S. enterica serovar Pullorum strains examined, with different structures in a minority of S. enterica serovar Pullorum strains. We describe the coexistence of different genome structures among the same bacteria as genomic plasticity. Through comparisons with S. enterica serovar Typhimurium, we resolved seven putative insertions and eight deletions ranging in size from 12 to 157 kb. The genomic plasticity seen among S. enterica serovar Pullorum strains supported our hypothesis about its association with bacterial evolution: a large genomic insertion (157 kb in this case) disrupted the genomic balance, and rebalancing by independent recombination events in individual lineages resulted in diverse genome structures. As far as the structural plasticity exists, the S. enterica serovar Pullorum genome will continue evolving to reach a further streamlined and balanced structure.  相似文献   

11.
This study describes the identification of the insertion site and partial characterization of a 43-kb region harboring the genes associated with the penta-resistant phenotype of a Canadian isolate of Salmonella enterica Typhymurium DT104 labelled 96-5227. The 43-kb fragment, here referred to as Salmonella genomic island I (SgiI), was found in the genome of S. enterica Typhymurium between the thdf and a prophage CP-4-like integrase (int2) gene and is flanked by an imperfect 18-bp direct repeat. A region downstream of sulI in the right end of SgiI contained four open reading frames which includes an IS6100 element, and a 2-kb region from the left end contained two open reading frames which showed homology to an integrase and an excisionase. Furthermore, a 1.9-kb retron sequence located between int2 and yidY was identified which may be unique to the S. enterica Typhymurium genome. The int-retron sequence is flanked by a 27-bp imperfect direct repeat.  相似文献   

12.
Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.  相似文献   

13.
Particular serovars of Salmonella enterica have emerged as significant foodborne pathogens in humans. At the chromosomal level, discrete regions in the Salmonella genome have been identified that are known to play important roles in the maintenance, survival, and virulence of S. enterica within the host. Interestingly, several of these loci appear to have been acquired by horizontal transfer of DNA among and between bacterial species. The profound importance of recombination in pathogen emergence is just now being realized, perhaps explaining the sudden interest in developing novel and facile ways for detecting putative horizontal transfer events in bacteria. The incongruence length difference (ILD) test offers one such means. ILD uses phylogeny to trace sequences that may have been acquired promiscuously by exchange of DNA during chromosome evolution. We show here that the ILD test readily detects recombinations that have taken place in several housekeeping genes in Salmonella as well as genes composing the type 1 pilin complex (14 min) and the inv-spa invasion gene complex (63 min). Moreover, the ILD test indicated that the mutS gene (64 min), whose product helps protect the bacterial genome from invasion by foreign DNA, appears to have undergone intragenic recombination within S. enterica subspecies I. ILD findings were supported using additional tests known to be independent of the ILD approach (e.g., split decomposition analysis and compatibility of sites). Taken together, these data affirm the application of the ILD test as one approach for identifying recombined sequences in the Salmonella chromosome. Furthermore, horizontally acquired sequences within mutS support a model whereby evolutionarily important recombinants of S. enterica are rescued from strains carrying defective mutS alleles via horizontal transfer.  相似文献   

14.
AIM: To develop a real-time PCR assay for Salmonella spp. targeting the stn gene. METHODS AND RESULTS: The presence of stn in the Salmonella bongori genome was found by a BLAST with Salmonella enterica stn sequence. Manual alignment of stn sequences showed that Salm. bongori had 88% sequence identity with Salm. enterica. Two primers (stnL-433 and stnR-561) and a probe (stnP-452) were designed to target conserved regions in stn and meet the requirements of a 5'-nuclease assay. The primers and probe were evaluated against 353 isolates, including 255 Salm. enterica representing 158 serotypes, 14 Salm. bongori representing 12 serotypes and 84 non-Salmonella representing 56 species from 31 genera. All isolates were correctly identified, with the exception of three isolates of Citrobacter amalonaticus, which gave false positives. The limit of detection with cultured Salmonella was 3 CFU per reaction. CONCLUSIONS: The stn real-time PCR method had 100% inclusivity, 96.4% exclusivity and a level of detection of 3 CFU per reaction for cultured Salmonella spp. SIGNIFICANCE AND IMPACT OF THE STUDY: The study showed that stn is present in Salm. bongori and is a valid target for both species of Salmonella. The Salmonella s tn real-time PCR is a useful method for identifying Salmonella spp.  相似文献   

15.
Genes of Salmonella enterica serovar Typhimurium LT2 expected to be specifically present in Salmonella were selected using the Basic Local Alignment Search Tool (BLAST) program. The 152 selected genes were compared with 11 genomic sequences of Salmonella serovars, including Salmonella enterica subsp. I and IIIb and Salmonella bongori (V), and were clustered into 17 groups by their comparison patterns. A total of 38 primer pairs were constructed to represent each of the 17 groups, and PCR was performed with various Salmonella subspecies including Salmonella enterica subsp. I, II, IIIa, IIIb, IV, VI, and V to evaluate a comprehensive DNA-based scheme for identification of Salmonella subspecies and the major disease-causing Salmonella serovars. Analysis of PCR results showed that Salmonella enterica subsp. I was critically divided from other subspecies, and Salmonella strains belonging to S. enterica subsp. I were clustered based on their serovars. In addition, genotypic relationships within S. enterica subsp. I by PCR results were investigated. Also, Salmonella signature genes, Salmonella enterica serovar Typhimurium signature genes, and Salmonella enterica subsp. I signature genes were demonstrated based on their PCR results. The described PCR method suggests a rapid and convenient method for identification of Salmonella serovars that can be used by nonspecialized laboratories. Genome sequence comparison can be a useful tool in epidemiologic and taxonomic studies of Salmonella.  相似文献   

16.
Salmonella enterica serovar Gallinarum is a fowl-adapted pathogen, causing typhoid fever in chickens. It has the same antigenic formula (1,9,12:--:--) as S. enterica serovar Pullorum, which is also adapted to fowl but causes pullorum disease (diarrhea). The close relatedness but distinct pathogeneses make this pair of fowl pathogens good models for studies of bacterial genomic evolution and the way these organisms acquired pathogenicity. To locate and characterize the genomic differences between serovar Gallinarum and other salmonellae, we constructed a physical map of serovar Gallinarum strain SARB21 by using I-CeuI, XbaI, and AvrII with pulsed-field gel electrophoresis techniques. In the 4,740-kb genome, we located two insertions and six deletions relative to the genome of S. enterica serovar Typhimurium LT2, which we used as a reference Salmonella genome. Four of the genomic regions with reduced lengths corresponded to the four prophages in the genome of serovar Typhimurium LT2, and the others contained several smaller deletions relative to serovar Typhimurium LT2, including regions containing srfJ, std, and stj and gene clusters encoding a type I restriction system in serovar Typhimurium LT2. The map also revealed some rare rearrangements, including two inversions and several translocations. Further characterization of these insertions, deletions, and rearrangements will provide new insights into the molecular basis for the specific host-pathogen interactions and mechanisms of genomic evolution to create a new pathogen.  相似文献   

17.
Salmonellosis is one of the most important food-borne diseases worldwide. For outbreak investigation and infection control, accurate and fast subtyping methods are essential. A triplex gene-scanning assay was developed and evaluated for serotype-specific subtyping of Salmonella enterica isolates based on specific single-nucleotide polymorphisms in fragments of fljB, gyrB, and ycfQ. Simultaneous gene scanning of fljB, gyrB, and ycfQ by high-resolution melting-curve analysis of 417 Salmonella isolates comprising 46 different serotypes allowed the unequivocal, simple, and fast identification of 37 serotypes. Identical melting-curve profiles were obtained in some cases from Salmonella enterica serotype Enteritidis and Salmonella enterica serotype Dublin, in all cases from Salmonella enterica serotype Ohio and Salmonella enterica serotype Rissen, from Salmonella enterica serotype Mbandaka and Salmonella enterica serotype Kentucky, and from Salmonella enterica serotype Bredeney, Salmonella enterica serotype Give, and Salmonella enterica serotype Schwarzengrund. To differentiate the most frequent Salmonella serotype, Enteritidis, from some S. Dublin isolates, an additional single PCR assay was developed for specific identification of S. Enteritidis. The closed-tube triplex high-resolution melting-curve assay developed, in combination with an S. Enteritidis-specific PCR, represents an improved protocol for accurate, cost-effective, simple, and fast subtyping of 39 Salmonella serotypes. These 39 serotypes represent more than 94% of all human and more than 85% of all nonhuman Salmonella isolates (including isolates from veterinary, food, and environmental samples) obtained in the years 2008 and 2009 in Austria.  相似文献   

18.
The availability of the complete genome sequence of several Salmonella enterica serovars has revealed the presence of unstable genetic elements in these bacteria, such as pathogenicity islands and prophages. This is the case of Salmonella enterica serovar Enteritidis (S. Enteritidis), a bacterium that causes gastroenteritis in humans and systemic infection in mice. The whole genome sequence analysis for S. Enteritidis unveiled the presence of several genetic regions that are absent in other Salmonella serovars. These regions have been denominated "regions of difference" (ROD). In this study we show that ROD21, one of such regions, behaves as an unstable pathogenicity island. We observed that ROD21 undergoes spontaneous excision by two independent recombination events, either under laboratory growth conditions or during infection of murine cells. Importantly, we also found that one type of excision occurred at higher rates when S. Enteritidis was residing inside murine phagocytic cells. These data suggest that ROD21 is an unstable pathogenicity island, whose frequency of excision depends on the environmental conditions found inside phagocytic cells.  相似文献   

19.
Lee JH  Shin H  Ryu S 《Journal of virology》2012,86(6):3404-3405
Salmonella is one of the major pathogenic bacteria that cause food poisoning. To elucidate the host infection mechanism of Salmonella enterica serovar Typhimurium-targeting phages, the bacteriophage SPN3UB was isolated from a chicken fecal sample. This phage belongs morphologically to the Siphoviridae family and infects the host via the O antigen of lipopolysaccharide (LPS). To further understand its infection mechanism, we completely sequenced and analyzed the genome. Here, we announce its complete genome sequence and report major findings from the genomic analysis results.  相似文献   

20.
Salmonella pathogenicity islands are inserted into the genome by horizontal gene transfer and are required for expression of full virulence. Here, we performed tRNA scanning of the genome of Salmonella enterica serovar Typhimurium and compared it with that of nonpathogenic Escherichia coli in order to identify genomic islands that contribute to Salmonella virulence. Using deletion analysis, we identified four genomic islands that are required for virulence in the mouse infection model. One of the newly identified pathogenicity islands was the pheV- tRNA-located genomic island, which is comprised of 26 126 bp, and encodes 22 putative genes, including STM3117–STM3138. We also showed that the pheV tRNA-located genomic island is widely distributed among different nontyphoid Salmonella serovars. Furthermore, genes including STM3118–STM3121 were identified as novel virulence-associated genes within the pheV- tRNA-located genomic island. These results indicate that a Salmonella -specific pheV- tRNA genomic island is involved in Salmonella pathogenesis among the nontyphoid Salmonella serovars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号