首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sperm tail from representatives of several families of Diptera has been examined by high resolution electron microscopy and a computer analysis that improved the visualization of recorded patterns. A considerable variability in sperm tail structure is found within Diptera, and is actually greater than that of any other insect order. The 'generalized insect sperm axoneme'. which is characterized as a 9+9+2 axoneme and by the accessory microtubules having 16 protofilaments, was found only in some dipterans; these are members of Mycetophilidae. From this fact we conclude that Mycetophilidae is likely to be the most primitive extant dipteran group. Another mycetophilid, Boletina , was seen to have accessory tubules with 15 protofilaments as have members of families Dixidae, Chironomidae, Culicidae, and Bibionidae. The last two families have spermatozoa of a type designated as 9+9+'1' there is a central rod rather than two microtubules. We regard this 9+9+'1'pattern with 15 protofilaments to represent a synapomorphic feature. Representatives of the neatoceran families Tipulidae and Trichoceridae have accessory tubules with 13 protofilaments as do examined members of several brachyceran families. Brachycera is hence likely to be derived from the vicinity of the tipulid family. The intertubular material is small in Mycetophilidae and most nematoceran groups, whereas in Tipulidae and Brachycera it is enlarged; here it bridges the space between the accessory tubules and contains various inclusions.  相似文献   

2.
Spermatozoa from a great number of insect species were fixed in a tannic acid-containing fixative and the ultrastructure of the flagellar axoneme was examined in a search for apomorphies. Most of the examined species, representing a majority of insect orders. have accessory tubules outside the axoneme (hence a 9 + 9 + 2 pattern), and these consist of 16 protofilaments. Some important apomorphies concern the number of protofilaments in the accessory tubules: 13 (plus 7 inner elements) in Ephemeroptera, 13 in the (elliptic) tubules of Psocoptera + Anoplura + Mallophaga (thus a synapomorphy), 13 in Tipulidae + Brachycera, 15 in the dipteran families Dixidae + Chironomidae (with a 9 + 9 + 2 axoneme) and Culicidae + Bibionidae (with a 9 + 9 + “1” axoneme), 17 in Phasmatodea, and 17–20 in Trichoptera. Other apomorphies concern the appearance of the so-called intertubular material outside the microtubular doublets, the appearance of the interior of the various microtubules, and the loss, in some taxa, of outer or inner dynein arms of both dynein arms. In some cases, the flagellum is completely abnormal; the sperm tail of Thysanoptera, for example, consists of 27 elements of 3 different kinds. The different taxa within orders Diptera and Trichoptera have sperm tail axonemes of different appearances, where those from other orders have a rather uniform appearance. The conclusions that can be drawn from this spermatological study, generally agree with data from classical studies, except with some variations, in some cases.  相似文献   

3.
Spermatozoa from representatives of the five insect orders in superorder Neuropteroidea were examined by electron microscopy following a new fixation method that includes tannic acid in the primary fixative but has uranyl acetate rather than osmium tetroxide as the secondary fixative. The sperm axoneme was found to be similar in the four orders Megaloptera, Raphidioptera, Neuroptera, and Coleoptera, and is characterized above all by its so-called intertubular material being divided into two portions, one located outside, but in contact with the doublet, and the other projecting from the accessory tubule and having a beak-like shape. These features have not been seen in insects from other orders and may be a synapomorphy for these neuropteroid orders. The accessory tubules in these four orders have 16 protofilaments. The shape of the accessory bodies adjacent to the mitochondrial derivatives is nearly the same in insects from the more primitive neuropteroid orders and in Coleoptera. The sperm tail of the examined strepsipteran deviates in several respects from that of other neuropteroids: the particle row in the wall of accessory tubules is incomplete, an intertubular material is missing, and the mitochondria contain no crystal. © 1994 Wiley-Liss, Inc.  相似文献   

4.
Previous studies have demonstrated the presence of sperm dimorphism in the Mantispidae Perlamantispa perla. We extended the study on several other mantidflies. In all the examined species the occurrence of euspermatozoa (typical) and paraspermatozoa (atypical) was established. The euspermatozoa are characterized by the presence of a cylindrical nucleus surrounded by an envelope that fans out laterally into two thin wings of different length. The acrosome seems to be missing. The nucleus is surrounded by extracellular material. The flagellum is provided with a 9 + 9 + 2 axonemal pattern; the accessory tubules contain 16 protofilaments and the intertubular material has the distribution typical of the taxon. Two elongated accessory bodies flank partially the axoneme and connect this structure with the mitochondrial derivatives. The flagellar axoneme of paraspermatozoa consists of an axoneme and two giant mitochondrial derivatives filled with large globular units. The axoneme exhibits a 9 + 9 + 2 pattern, in which the central 9 + 2 units have a normal structure, in that the microtubular doublets are provided with both dynein arms and radial links. On the contrary, the nine accessory microtubules have a large diameter and their tubular wall consists of 40 protofilaments. This comparative study provided evidences about the uniformity of sperm ultrastructure in Mantispidae. The function of non-fertilizing giant sperm in mantidflies is discussed.  相似文献   

5.
The systematic position of insect order Strepsiptera is still under debate. It was, therefore, thought of interest to examine the ultrastructure of a strepsipteran in a search for synapomorphies shared with Coleoptera, Diptera, or any other insect order. The fine structure of spermatozoa and the spermatid from Xenos vesparum (Rossi) was re-examined using scanning and transmission electron microscopy and a fixation technique that permits the visualization of the macromolecular organization of the organelles. The spermatozoon was shown to possess several traits that are characteristics of insects in general, such as a 9 + 9 + 2 axoneme, two mitochondrial derivatives containing a crystalline material and two 'zipper lines' present along the sperm tail. Seventeen protofilaments occurred along most of the accessory tubules, which reduced to 16 posteriorly. An acrosome is absent. The neck region contains a prominent centriolar adjunct, which gives rise to two accessory bodies which adhere to the mitochondrial derivatives, and to slender strands of the so-called intertubular material found between the accessory tubules. Of interest is the finding that the glycocalyx consists of prominent filamentous strands, similar to those found in siphonapterans, mecopterans and basal dipterans.  相似文献   

6.
The sperm ultrastructure of a few species of Limoniidae (Limonia nigropunctata; L. nubeculosa; Chionea n. sp.; C. alpina; C. lutescens) was studied. The two species of Limonia have a monolayered acrosome with crystallized material, a three-lobed nucleus in cross section, a ring of centriole adjunct material and a flagellum which consists of a 9+9+1 axoneme and a single mitochondrial derivative. The central axonemal tubule is provided with 15 protofilaments in its tubular wall, while the accessory tubules have 13 protofilaments and are flanked by the electron-dense intertubular material. The three species of Chionea share a monolayered acrosome, a nucleus with two longitudinal grooves, a centriole adjunct material which surrounds the centriole and the initial part of the axoneme. The axoneme is of conventional type, with 9+9+2 microtubular pattern, with accessory tubules provided with 13 protofilaments and intertubular material. However, in C. lutescens the accessory tubules start with 15 protofilaments and transform into a tubule with 13 protofilaments. These data are discussed in the light of the phylogenetic relationship between Limoniidae and Tipulidae. For this purpose, the sperm ultrastructure of Nephrotoma appendiculata was also considered comparatively.  相似文献   

7.
The families Rhyacophilidae and Glossosomatidae (Trichoptera) are considered to be the most primitive ones within the order. We examined the spermatozoa of members of these families to see whether their ultrastructure is consistent with an ancestral position. Axonemal structures, after fixation with a tannic acid-containing fixative, have been shown to be particularly useful as taxonomical indicators. It was found that 4 members of Rhyacophilidae, representing 3 subgenera (Rhyacophila, Pararhyacophila, and Hyporhyacophila) all have motile spermatozoa, with a 9 + 9 + 2 axoneme in which inner (but no outer) dynein arms are present. The accessory tubules have a wall consisting of 17 protofilaments, decreasing to 16 near the distal end, whereas the examined member of Glossosomatidae, Catagapetus nigrans, has accessory tubules with 18 protofilaments and a 9 + 9 + 2 axoneme with inner dynein arms and with motility similar to the Rhyacophilidae. Sperm motility is consistent with the inclusion of these 2 families within the suborder Integripalpia, and the axonemal pattern 9 + 9 + 2 indicates that the families indeed occupy a primitive position within Trichoptera.  相似文献   

8.
Sperm of the dictyopteran key taxon Cryptocercus punctulatus was examined. It has largely maintained a blattodean groundplan condition, with a three‐layered acrosome, an elongate nucleus, a single centriole, a conspicuous centriole adjunct material, two connecting bands (=accessory bodies), and a long functional flagellum with a 9+9+2 axoneme provided with accessory tubules with 16 protofilaments and intertubular material. These sperm characters are shared with several other polyneopterans. The sperm of C. punctulatus is very similar to what is found in Periplaneta americana and species of other groups of roaches, including the sperm of Loboptera decipiens described here for the first time. The general sperm organization here described can be assumed for the groundplan of Insecta and Pterygota. The following evolutionary path can be suggested: after the split between Cryptocercidae and the common ancestor of Isoptera, the typical pattern of sperm formation was altered very distinctly, resulting in a duplication or multiplication (Mastotermitidae) of the centrioles. Mastotermes has maintained a certain sperm motility, but with a very unusual apparatus of multiple flagella with a 9+0 axoneme pattern. After the split into Mastotermitidae and the remaining Isoptera, sperm motility was completely abandoned, and different modifications of sperm components occurred, and even the loss of the sperm flagellum. J. Morphol. 276:361–369, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Spermatozoa from seven gall-midge species, representing the supertribes Lasiopteridi and Stomatosematidi, have been examined by electron microscopy and compared to the spermatozoa of 30 previously examined gall-midge species of the subfamily Cecidomyiinae. Derived characteristics of all examined representatives of this subfamily are the lack of acrosome and the absence of accessory tubules in their axoneme. The sperm axoneme of Didactylomyia has a unique '9 + 5 pattern', i.e. with 9 outer doublets and 5 inner singlet microtubules. Unlike other members of Cecidomyiinae, Didactylomyia has retained some plesiomorphic traits, namely crystal containing mitochondria and a homogeneously condensed nucleus. Stomatosema has a 10 + 0 axoneme and an irregular nuclear condensation. Thus, Didactylomyia may serve as an useful outgroup for phylogenetic analysis within the subfamily Cecidomyiinae. The supertribe Stomatosematidi is a paraphyletic assemblage. Nearly all members of Lasiopteridi, Ozirhincus, Arnoldiola, Brachineura and Ledomyia , have a synapomorphic character in the great number of microtubules in parallel to the axoneme. A notable exception is Rhizomyia , which shares certain apomorphic traits with several genera that have previously been classified within the Cecidomyiidi, i.e. Contarinia, Allocontarinia, Lestodiplosis and Myricomyia. Moreover, these genera have a flat sperm tail and microtubular doublets located close to the cell membrane, both characteristics that differ markedly from the very peculiar sperm tail found in other members of Cecidomyiidi.
Cladistic analysis of sperm characters suggests that the supertribe Cecidomyiidi is a polyphyletic taxon and supports the existence of a sister-group relationship between the supertribe Lasiopteridi and the genera Rhizomyia, Contarinia, Allocontarinia, Lestodiplosis and Myricomyia.  相似文献   

10.
The male and female reproductive apparatus of Zorotypus magnicaudelli (Malaysia), Zorotypus huxleyi (Ecuador) and Zorotypus weidneri (Brazil) were examined and documented in detail. The genital apparatus and sperm of the three species show only minor differences. The testes are larger in Z. magnicaudelli. Z. huxleyi lacks the helical appendage in the accessory glands. A long cuticular flagellum is present in Z. magnicaudelli and in the previously studied Zorotypus caudelli like in several other species, whereas it is absent in Z. weidneri, Z. huxleyi, Zorotypus hubbardi, Zorotypus impolitus and Zorotypus guineensis. Characteristic features of the very similar sperm are the presence of: a) two dense arches above the axoneme; b) a 9 + 9+2 axoneme with detached subtubules A and B of doublets 1 and 6; c) the axonemal end degenerating with enlarging accessory tubules; d) accessory tubules with 17 protofilaments; e) three accessory bodies beneath the axoneme; and f) two mitochondrial derivatives of equal shape. The first characteristic (a) is unknown outside of Zoraptera and possibly autapomorphic. The sperm structure differs distinctly in Z. impolitus and Z. hubbardi, which produce giant sperm and possess a huge spermatheca. The presence of the same sperm type in species either provided with a sclerotized coiled flagellum in males or lacking this structure indicates that a different organization of the genital apparatus does not necessarily affect the sperm structure. The flagellum and its pouch has probably evolved within Zoraptera, but it cannot be excluded that it is a groundplan feature and was reduced several times. The fossil evidence and our findings suggest that distinct modifications in the genital apparatus occurred before the fragmentation of the Gondwanan landmass in the middle Cretaceous.  相似文献   

11.
The sperm ultrastructure of the Grylloblattodea Galloisiana yuasai was described and the sperm characters were comparatively examined in several orthopteroid insect orders for inferring the phylogenetic placement of the Grylloblattodea. The spermatozoa of G. yuasai are joined in bundles (spermatodesms) containing 200 units. Major features of these spermatozoa include a monolayered acrosome, a 9+9+2 axoneme with 16-pfs accessory microtubules and expanded intertubular material, and an evident “centriole adjunct”. The diffused material observed between the axoneme and the mitochondrial derivatives is considered to be an extension of the three connecting bands observed in other orthopteroid taxa, similar to what happens in some orthopteran lineages. The presence of the connecting bands, even though modified in G. yuasai, suggests that the Grylloblattodea are to be placed in a clade with Mantophasmatodea, Mantodea and Orthoptera.  相似文献   

12.
The spermiogenesis and the sperm ultrastructure of several species of Coniopterygidae have been examined. The spermatozoa consist of a three-layered acrosome, an elongated elliptical nucleus, a long flagellum provided with a 9+9+3 axoneme and two mitochondrial derivatives. No accessory bodies were observed. The axoneme exhibits accessory microtubules provided with 13, rather than 16, protofilaments in their tubular wall; the intertubular material is reduced and distributed differently from that observed in other Neuropterida. Sperm axoneme organization supports the isolated position of the family previously proposed on the basis of morphological data.  相似文献   

13.
The silverfish Tricholepidion gertschi is of interest in that it is the most basal representative of Zygentoma. An ultrastructural study of its spermiogenesis was performed to find out whether there are traits which resemble those of other, more advanced insects. This was found to be the case; spermiogenesis can be considered to be of a common insectan type, leading to the formation of elongated sperm cells with acrosome, nucleus, neck region and a tail with axoneme and two mitochondrial derivatives. Total cell length, 50 microm, is short for an insect. There are some specializations, which probably represent autapomorphies. The acrosome has a posterior canal or cleft that makes a U-turn. The centriole adjunct forms a prominent post-nuclear ring surrounding the centriole and have a posterior extension, and further originates nine intertubular fibers with a longitudinal periodicity and two accessory bodies. The mitochondrial derivatives have five rows of regularly spaced cristae within a crystalline matrix. The axoneme has accessory tubules consisting of 16 protofilaments, formed at the B-tubules of the doublets and placed at some distance from them in the posterior part of the sperm tail.  相似文献   

14.
15.
Sperm ultrastructure has been studied in three species of the taxa Mecoptera and Siphonaptera. The spermatozoon of the scorpion fly Panorpa germanica shows an apical bilayered acrosome, a helicoidal nucleus, a centriolar region and a 9+2 flagellar axoneme helicoidally arranged around a long mitochondrial derivative. A second mitochondrial derivative is very short and present only in the centriolar region. A single accessory body is present and it is clearly formed as a prolongation of the centriole adjunct material. Two lateral lamellae run parallel to the nucleus. The snow fly Boreus hyemalis has a conventional sperm structure and shows a bilayered acrosome, a long nucleus, a centriolar region, two mitochondrial derivatives and two accessory bodies. The axoneme is of the 9+2 type and is flattened at the tail tip. Both P. germanica and B. hyemalis have two longitudinal extra-axonemal rods and have a glycocalyx consisting of longitudinal parallel ridges or filaments. The spermatozoon of the flea Ctenocephalides canis has a long apical bilayered acrosome, a nucleus, a centriolar region, a 9+2 axoneme wound around two unequally sized mitochondrial derivatives, and two triangular accessory bodies. In the posterior tail end the flagellar axoneme disorganises and a few microtubular doublets run helicoidally around the remnant mitochondrial derivative. The glycocalyx consists of fine transverse striations. In all three species, the posterior tail tip is characterised by a dense matrix embedding the disorganised axoneme. From this comparative analysis of the sperm structure it is concluded that Mecoptera, as traditionally defined, is monophyletic and that B. hyemalis is a member of Mecoptera rather than of Siphonaptera.  相似文献   

16.
The spermatozoon of Atelura formicaria (Zygentoma) shows several features that are typical of insects: an apical acrosome, an elongated dense nucleus, a centriole with expanded centriolar adjunct material, two large mitochondrial derivatives, and two thin accessory bodies located beneath the nucleus. The axoneme exhibits a 9 + 9 + 2 pattern with accessory tubules formed by 16 protofilaments and intertubular material. However, spermatozoa of A. formicaria show some remarkable features. The sperm cell is short for an insect, being only 50 µm in length. The nucleus is characterized by the presence of two lateral grooves which are filled with numerous infoldings of the nuclear envelope. In a cross-section the chromatin has the configuration of the Leonardo da Vinci's 'Vitruvian man'. Each mitochondrial derivative has a peculiar structure with peripheral cristae and four crystalline bodies in its matrix; two of these crystalline bodies are large and have differently orientated cristal planes. At the end of spermiogenesis, sperm bundles are stored in the proximal part of the testes. Secretions from the epithelial wall of this region give rise to large globular structures. These include sperm bundles intermingled with dense granules, forming the so called 'spermatolophids'. These formations descend along the deferent duct and are stored in the expanded seminal vesicle. Atelura spermatozoa do not pair as in some Lepismatidae, nor do they fuse as in Tricholepidion (Lepidotrichidae). Thus, sperm aggregation in Zygentoma is realized according to different modalities and can hardly be considered as a synapomorphic trait of its subtaxa.  相似文献   

17.
U. Fischer 《Zoomorphology》1994,114(4):213-225
Summary Spermatogenesis and sperm ultrastructure of the macrodasyidan gastrotrich Cephalodasys maximus are described by means of transmission electron microscopy. The filiform sperm consists of an acrosomal accessory structure and an acrosomal vesicle, both being surrounded by spiralled material. The successive nuclear helix encloses the spiral-shaped mitochondrion and the axoneme of the flagellum is accompanied by dense strings, three helical elements and peripheral microtubules. During spermiogenesis the acrosomal accessory structure develops first and moves into a cell projection, where the spiral around this acrosomal rod forms. A nuclear section with condensed chromatin and one single fused large mitochondrion follow into the extension, becoming helical. A connecting clasp between nucleus and flagellum shortens to a cap-like structure. Parallel to the acrosomal and nuclear projection the flagellum develops where the spiralled elements and the basal plate form in succession, while the basal body shrinks.  相似文献   

18.
The spermatogenesis of the proturan Acerentomon microrhinus Berlese, (Redia 6:1–182, 1909) is described for the first time with the aim of comparing the ultrastructure of the flagellated sperm of members of this taxon with that of the supposedly related group, Collembola. The apical region of testes consists of a series of large cells with giant polymorphic nuclei and several centrosomes with 14 microtubule doublets, whose origin is likely a template of a conventional 9-doublet centriole. Beneath this region, there are spermatogonial cells, whose centrosome has two centrioles, both with 14 microtubule doublets; the daughter centriole of the pair has an axial cylinder. Slender parietal cells in the testes have centrioles with nine doublet microtubules. Spermatocytes produce short primary cilia with 14 microtubule doublets. Spermatids have a single basal body with 14 microtubule doublets. Anteriorly, a conical dense material is present, surrounded by a microtubular basket, which can be seen by using an α-anti-tubulin antibody. Behind this region, the basal body expresses a long axoneme of 14 microtubule doublets with only inner arms. An acrosome is lacking. The nucleus is twisted around the apical conical dense structure and the axoneme; this coiling seems to be due to the rotation of the axoneme on its longitudinal axis. The posterior part of the axoneme forms three turns within the spermatid cytoplasm. Few unchanged mitochondria are scattered in the cytoplasm. Sperm consist of encysted, globular cells that descend along the deferent duct lumen. Some of them are engulfed by the epithelial cells, which thus have a spermiophagic activity. Sperm placed in a proper medium extend their flagellar axonemes and start beating. Protura sperm structure is quite different from that of Collembola sperm; and on the basis of sperm characters, a close relationship between the two taxa is not supported.  相似文献   

19.
Spermal ultrastructure in 16 caddisflies (Trichoptera) belonging to the suborder Integripalpia, superfamily Limnephiloidea, was examined in a search for apomorphic and plesiomorphic features. In all species examined, the sperm tail axoneme was of the 9 + 9 + 2 + type, the axonemal doublets lacked outer dynein arms but had inner ones, and the cell membrane was scalloped with a prominent glycocalyx. The number of protofilaments in the accessory tubules depended on the phylogenetic position: 18 in the family Leptoceridae, 19 in Limnephilidae, Goeridae and Odontoceridae (with a reduction in the number distally), and 20 in Sericostomatidae. Spermatozoa in Leptoccridae are further characterized by the 2 central microtubules being flattened and eccentric and not being surrounded by a central sheath. Spermatozoa of Sericostomatidae have an accessory body and a helicoidal array of the sperm tail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号