首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The role of two sigma factors, AlgT and RpoS, in mediating Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide and monochloramine was investigated. Two knock out mutant strains, SS24 (rpoS-) and PAO6852 (algT-), were compared with a wild type, PAO1, in their susceptibility to monochloramine and hydrogen peroxide. When grown as biofilms on alginate gel beads (mean untreated areal cell density 3.7 +/- 0.27 log cfu cm-2) or on glass slides (mean untreated areal cell density 7.6 +/- 0.9 log cfu cm-2), wild type bacteria exhibited reduced susceptibility to both antimicrobial agents in comparison with suspended cells. On alginate gel beads, all strains were equally resistant to monochloramine. rpoS- and algT- gel bead biofilms of 24-hour-old were more susceptible to hydrogen peroxide disinfection than were biofilms formed by PAO1. Biofilm disinfection rate coefficients for the two mutant strains were statistically indistinguishable from planktonic disinfection rate coefficients, indicating complete loss of biofilm resistance. While 48-hour-old algT- biofilm cells became resistant to hydrogen peroxide, 48-hour-old rpoS- biofilm cells remained highly susceptible. With the thicker biofilms formed on glass coupons, all strains were equally resistant to both hydrogen peroxide and monochloramine. It is concluded that while RpoS and AlgT may play a transient role in protecting thin biofilms from hydrogen peroxide, these sigma factors do not mediate resistance to monochloramine and do not contribute significantly to the hydrogen peroxide resistance of thick biofilms.  相似文献   

2.
Analysis of biocide transport limitation in an artificial biofilm system   总被引:7,自引:4,他引:3  
An alginate gel bead artificial biofilm system was used to assay biofilm susceptibility to four biocides and to analyse the extent to which each agent penetrated the biofilm. Chlorine, glutaraldehyde, an isothiazolone, and a quaternary ammonium compound were tested on alginate-entrapped Enterobacter aerogenes in gel beads ranging from 1·8 to 6 mm in diameter. Gel-entrapped bacteria were less susceptible to all four antimicrobial agents than were planktonic micro-organisms. The degree of kill measured in artificial biofilm gel beads depended on the size of the gel bead and the cell density at which it was loaded. Disinfection efficacy decreased as gel bead radius or cell density increased. The manifest dependence of biofilm disinfection efficacy on the physical properties of the artificial biofilm (radius and cell density) suggests the impingement of transport limitation of biocide transport into the biofilm. A previously developed theory of biocide reaction and diffusion in biofilm was tested by calculating an appropriate Thiele modulus. In accordance with the theory, the efficacy of all four biocides decreased, albeit noisily, as the Thiele modulus exceeded 1. This result demonstrates that transport limitation can impact antimicrobial performance against biofilms not only of oxidizing biocides but also of non-oxidizing agents.  相似文献   

3.
This report describes the adaptation of an in situ direct viable count (in situ DVC) method in biofilm disinfection studies. The results obtained with this technique were compared to two other enumeration methods, the plate count (PC) and conventional direct viable count (c-DVC). An environmental isolate (Klebsiella pneumoniae Kp1) was used to form biofilms on stainless steel coupons in a stirred batch reactor. The in situ DVC method was applied to directly assess the viability of bacteria in biofilms without disturbing the integrity of the interfacial community. As additional advantages, the results were observed after 4 h instead of the 24 h incubation time required for colony formation and total cell numbers that remained on the substratum were enumerated. Chlorine and monochloramine were used to determine the susceptibilities of attached and planktonic bacteria to disinfection treatment using this novel analytical approach. The planktonic cells in the reactor showed no significant change in susceptibility to disinfectants during the period of biofilm formation. In addition, the attached cells did not reveal any more resistance to disinfection than planktonic cells. The disinfection studies of young biofilms indicated that 0.25 mg/l free chlorine (at pH 7.2) and 1 mg/l monochloramine (at pH 9.0) have comparable disinfection efficiencies at 25 degrees C. Although being a weaker disinfectant, monochloramine was more effective in removing attached bacteria from the substratum than free chlorine. The in situ DVC method always showed at least one log higher viable cell densities than the PC method, suggesting that the in situ DVC method is more efficient in the enumeration of biofilm bacteria. The results also indicated that the in situ DVC method can provide more accurate information regarding the cell numbers and viability of bacteria within biofilms following disinfection.  相似文献   

4.
Pseudomonas aeruginosa entrapped in alginate gel beads to form artificial biofilms resisted killing by chlorine, glutaraldehyde, 2,2-dibromo-3-nitrilopropionamide (DBNPA), and an alkyl dimethyl benzyl ammonium compound (ADBAC). The degree of resistance was quantified by a resistance factor that compared killing times for biofilm and planktonic cells in response to the same concentration of antimicrobial agent. Resistance factors averaged 120 for chlorine, 34 for glutaraldehyde, 29 for DBNPA, and 1900 for ADBAC. In every case, resistance factors decreased with increasing concentration of the antimicrobial agent. An independent analysis of the concentration dependence of the apparent rates of killing of planktonic and biofilm bacteria showed that elevating the treatment concentration increased bacterial killing more in the biofilm than it did in a suspension culture. Calculation of a transport modulus comparing the rates of biocide reaction and diffusion suggested that at least part of the biofilm resistance to chlorine, glutaraldehdye, and DBNPA could be attributed to incomplete or slow penetration of these agents into the biofilm. Time-kill curves were nonlinear for biofilm bacteria in some cases. The shapes of these curves implicated retarded antimicrobial penetration for chlorine and glutaraldehyde and the presence of a tolerant subpopulation for DBNPA and ADBAC. The results indicate that treating biofilms with a concentrated dose of biocide is more effective than using prolonged doses of a lower concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 10–15 doi:10.1038/sj.jim.7000256 Received 29 October 2001/ Accepted in revised form 18 March 2002  相似文献   

5.
An artificial biofilm system consisting of Pseudomonas aeruginosa entrapped in alginate and agarose beads was used to demonstrate transport limitation of the rate of disinfection of entrapped bacteria by chlorine. Alginate gel beads with or without entrapped bacteria consumed chlorine. The specific rate of chlorine consumption increased with increasing cell loading in the gel beads and decreased with increasing bead radius. The value of an observable modulus comparing the rates of reaction and diffusion ranged from less than 0.1 to 8 depending on the bead radius and cell density. The observable modulus was largest for large (3-mm-diameter) beads with high cell loading (1.8 x 10(9) cfu/cm(3)) and smallest for small beads (0.5 mm diameter) with no cells added. A chlorine microelectrode was used to measure chlorine concentration profiles in agarose beads (3.0 mm diameter). Chlorine fully penetrated cell-free agarose beads rapidly; the concentration of chlorine at the bead center reached 50% of the bulk concentration within approximately 10 min after immersion in chlorine solution. When alginate and bacteria were incorporated into an agarose bead, pronounced chlorine concentration gradients persisted within the gel bead. Chlorine did gradually penetrate the bead, but at a greatly retarded rate; the time to reach 50% of the bulk concentration at the bead center was approximately 46 h. The overall rate of disinfection of entrapped bacteria was strongly dependent on cell density and bead radius. Small beads with low initial cell loading (0.5 mm diameter, 1.1 x 10(7) cfu/cm(3)) experienced rapid killing; viable cells could not be detected (<1.6 x 10(5) cfu/cm(3)) after 15 min of treatment in 2.5 mg/L chlorine. In contrast, the number of viable cells in larger beads with a higher initial cell density (3.0 mm diameter, 2.2 x 10(9) cfu/cm(3)) decreased only about 20% after 6 h of treatment in the same solution. Spatially nonuniform killing of bacteria within the beads was demonstrated by measuring the transient release of viable cells during dissolution of the beads. Bacteria were killed preferentially near the bead surface. Experimental results were consistent with transport limitation of the penetration of chlorine into the artificial biofilm arising from a reaction-diffusion interaction. The methods reported here provide tools for diagnosing the mechanism of biofilm resistance to reactive antimicrobial agents in such applications as the treatment of drinking and cooling waters. (c) 1996 John Wiley & Sons, Inc.  相似文献   

6.
AIMS: The purpose of this study was to compare the efficacy, in terms of bacterial biofilm penetration and killing, of alkaline hypochlorite (pH 11) and chlorosulfamate (pH 5.5) formulations. METHODS AND RESULTS: Two species biofilms of Pseudomonas aeruginosa and Klebsiella pneumoniae were grown by flowing a dilute medium over inclined stainless steel slides for 6 d. Microelectrode technology was used to measure concentration profiles of active chlorine species within the biofilms in response to treatment at a concentration of 1000 mg total chlorine l(-1). Chlorosulfamate formulations penetrated biofilms faster than did hypochlorite. The mean penetration time into approximately 1 mm-thick biofilms for chlorosulfamate (6 min) was only one-eighth as long as for the same concentration of hypochlorite (48 min). Chloride ion penetrated biofilms rapidly (5 min) with an effective diffusion coefficient in the biofilm that was close to the value for chloride in water. Biofilm bacteria were highly resistant to killing by both antimicrobial agents. Biofilms challenged with 1000 mg l(-1) alkaline hypochlorite or chlorosulfamate for 1 h experienced 0.85 and 1.3 log reductions in viable cell numbers, respectively. Similar treatment reduced viable numbers of planktonic bacteria to non-detectable levels (log reduction greater than 6) within 60 s. Aged planktonic and resuspended laboratory biofilm bacteria were just as susceptible to hypochlorite as fresh planktonic cells. CONCLUSION: Chlorosulfamate transport into biofilm was not retarded whereas hypochlorite transport clearly was retarded. Superior penetration by chlorosulfamate was hypothesized to be due to its lower capacity for reaction with constituents of the biofilm. Poor biofilm killing despite direct measurement of effective physical penetration of the antimicrobial agent into the biofilm demonstrates that bacteria in the biofilm are protected by some mechanism other than simple physical shielding by the biofilm matrix. SIGNIFICANCE AND IMPACT OF THE STUDY: This study lends support to the theory that the penetration of antimicrobial agents into microbial biofilms is controlled by the reactivity of the antimicrobial agent with biofilm components. The finding that chlorine-based biocides can penetrate, but fail to kill, bacteria in biofilms should motivate the search for other mechanisms of protection from killing by antimicrobial agents in biofilms.  相似文献   

7.
AIMS: To determine the susceptibility of planktonic and biofilm-grown strains of resident and transient skin bacteria to the liquid hand soap biocides para-chloro-meta-xylenol (PCMX) and triclosan. METHODS AND RESULTS: Freshly isolated hand bacteria were identified by partial 16S rRNA gene sequencing. Two resident and three transient strains, as well as four exogenous potential transient strains, were selected for biocide susceptibility testing. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of planktonic cells were determined. Resident and transient strains showed a range of susceptibilities to both biocides (PCMX, MIC 12.5-200 mg x l(-1), MBC 100-400 mg x l(-1); triclosan, MIC 0.6- > 40 mg x l(-1), MBC 1.3- > 40 mg x l(-1)). Strains were attached to polystyrene plates for 65 h in 96-well microtitre plates and challenged with biocide to determine the biofilm inhibitory concentration and biofilm eradicating concentration. For all strains tested, biofilms were two- to eightfold less susceptible than planktonic cells to PCMX. CONCLUSIONS: Very few transients were detected on the hand. Transients were not more sensitive than residents to the biocides and susceptibility to PCMX and triclosan was strain dependent. Biofilm-grown strains were less susceptible to PCMX than planktonic cells. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provides increased knowledge about the susceptibility of skin bacteria to biocides present in typical liquid antibacterial hand soaps and suggests that the concentration of biocide employed in such products is in excess of that required to kill the low numbers of transient bacteria typically found on skin.  相似文献   

8.
Inactivation of biofilm bacteria   总被引:18,自引:0,他引:18  
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

9.
Inactivation of biofilm bacteria.   总被引:6,自引:14,他引:6       下载免费PDF全文
The current project was developed to examine inactivation of biofilm bacteria and to characterize the interaction of biocides with pipe surfaces. Unattached bacteria were quite susceptible to the variety of disinfectants tested. Viable bacterial counts were reduced 99% by exposure to 0.08 mg of hypochlorous acid (pH 7.0) per liter (1 to 2 degrees C) for 1 min. For monochloramine, 94 mg/liter was required to kill 99% of the bacteria within 1 min. These results were consistent with those found by other investigators. Biofilm bacteria grown on the surfaces of granular activated carbon particles, metal coupons, or glass microscope slides were 150 to more than 3,000 times more resistant to hypochlorous acid (free chlorine, pH 7.0) than were unattached cells. In contrast, resistance of biofilm bacteria to monochloramine disinfection ranged from 2- to 100-fold more than that of unattached cells. The results suggested that, relative to inactivation of unattached bacteria, monochloramine was better able to penetrate and kill biofilm bacteria than free chlorine. For free chlorine, the data indicated that transport of the disinfectant into the biofilm was a major rate-limiting factor. Because of this phenomenon, increasing the level of free chlorine did not increase disinfection efficiency. Experiments where equal weights of disinfectants were used suggested that the greater penetrating power of monochloramine compensated for its limited disinfection activity. These studies showed that monochloramine was as effective as free chlorine for inactivation of biofilm bacteria. The research provides important insights into strategies for control of biofilm bacteria.  相似文献   

10.
Microbial cells embedded in a self-produced extracellular biofilm matrix cause chronic infections, e. g. by Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. The antibiotic killing of bacteria in biofilms is generally known to be reduced by 100–1000 times relative to planktonic bacteria. This makes such infections difficult to treat. We have therefore proposed that biofilms can be regarded as an independent compartment with distinct pharmacokinetics. To elucidate this pharmacokinetics we have measured the penetration of the tobramycin into seaweed alginate beads which serve as a model of the extracellular polysaccharide matrix in P. aeruginosa biofilm. We find that, rather than a normal first order saturation curve, the concentration of tobramycin in the alginate beads follows a power-law as a function of the external concentration. Further, the tobramycin is observed to be uniformly distributed throughout the volume of the alginate bead. The power-law appears to be a consequence of binding to a multitude of different binding sites. In a diffusion model these results are shown to produce pronounced retardation of the penetration of tobramycin into the biofilm. This filtering of the free tobramycin concentration inside biofilm beads is expected to aid in augmenting the survival probability of bacteria residing in the biofilm.  相似文献   

11.
The rate of diffusion of serum albumin (MW 6.9 x 10(4) D) out of beads of calcium alginate gels depends upon the concentration and uronic acid composition of the alginate (ManA/GulA ratio), the conditions under which the beads are produced, the pH, and the temperature. The diffusion coefficient decreases with increasing alginate concentration, and (ManA/GulA) ratio and with decreasing pH. Diffusion out of the beads, in which the alginate is uniformly distributed (homogeneous gel), is faster than out of the beads in which the alginate is concentrated at the surface (inhomogeneous gel). The temperature dependence of the diffusion coefficient follows the Arrhenius law, with an activation energy of approximately 23 kJ x mol(-1).  相似文献   

12.
Biofilm-embedded bacteria are generally more resistant to antimicrobial agents than are planktonic bacteria. Two possible mechanisms for biofilm resistance are that the glycocalyx matrix secreted by cells in a biofilm reacts with and neutralizes the antimicrobial agent and that the matrix creates a diffusion barrier to the antimicrobial agent. This study was therefore conducted to examine the relationship between glycocalyx and enhanced povidone-iodine resistance in biofilms of Pseudomonas aeruginosa (ATCC 27853). Biofilms were generated by inoculation of polycarbonate membranes with broth-grown cells and incubation of them on the surfaces of nutrient agar plates. The quantities of glycocalyx material per cell were found not to be significantly different between biofilm and planktonic samples. Transmission electron microscopy showed that the distributions of glycocalyx material around cells differed in biofilm and in planktonic samples. Addition of alginic acid to planktonic cell suspensions resulted in a slight increase in resistance to povidone-iodine, suggesting some neutralizing interaction. However, the iodine demands created by biofilm and planktonic samples of equivalent biomass were not significantly different and, therefore, do not explain the contrast in resistance observed between biofilm and planktonic samples. Examination of the relationship between cell death and biomass detachment from the glycocalyx matrix revealed that most cell death occurred in the fraction of biomass that detached from a biofilm during treatment. The overall rate of iodine diffusion through biofilms was not different from that of planktonic cells collected on a polycarbonate membrane.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Spherical gel beads of collagen/alginate were prepared by discharging droplets of a mixture containing collagen (1.07-1.9 mg/ml) and alginate (1.2-1.5% w/v) into 1.5% w/v CaCl2 solution at 4°C. Collagen in the gel beads was reconstituted by raising the temperature to 37°C after alginate was liquefied by citrate. Scanning electron microscopy of the beads revealed the characteristic fibrous structure of collagen. To demonstrate the application of this new technique in cell culture, GH3 rat pituitary tumor cells were entrapped and grown in the gel beads. The immobilized cells proliferated to a density of 1.95 x 106 cell/ml which is about an order of magnitude higher than that grown in the alginate beads.  相似文献   

15.
Biofilms of a mucoid clinical isolate of Pseudomonas aeruginosa (24 h; ca. 10(sup6) CFU/cm(sup2)) were established by immersion of polymer discs in nutrient broth cultures at 37(deg)C. Biofilms exposed for 30 min to various concentrations (0 to 3 mg/ml) of hydrogen peroxide or potassium monopersulfate were rinsed and shaken vigorously in sterile saline to detach loosely associated cells, and the residual viable attached population was quantified by a blot succession method on agar plates. Incorporation of copper and cobalt phthalocyanine catalysts within the polymers significantly enhanced the activity of these oxidizing biocides towards biofilm bacteria by several orders of magnitude. Biofilms established on the control discs resisted treatment with concentrations of either agent of up to 3 mg/ml. Enhancement through incorporation of a catalyst was such that concentrations of potassium monopersulfate of as low as 20 (mu)g/ml gave no recoverable survivors either on the discs or within the washings. Catalysts such as these will promote the formation of active oxygen species from a number of oxidizing agents such as peroxides and persulfates, and it is thought that generation of these at the surface-biofilm interface concentrates the antimicrobial effect to the interfacial cells and generates a diffusion pump which further provides active species to the biofilm matrix. The survivors of low-concentration treatments with these agents were more readily removed from the catalyst-containing discs than from the control discs. This indicated advantages gained in hygienic cleansing of such modified surfaces.  相似文献   

16.
Despite the constantly increasing need for new antimicrobial agents, antibiotic drug discovery and development seem to have greatly decelerated in recent years. Presented with the significant problem of advancing antimicrobial resistance, the global scientific community has attempted to find alternative solutions; one of the most promising ones is the evaluation and use of old antibiotic compounds. A number of old antibiotic compounds, such as aminoglycosides, chloramphenicol, and tetracycline, are re-emerging as valuable alternatives for the treatment of difficult-to-treat infections. This study examined the in vitro potency for biofilm formation of five isolates (Klebsiella sp., Pseudomonas aeruginosa, Achromobacter sp., Klebsiella pneumoniae, and Bacillus pumilis) and the effects of antibiotics on these biofilms. Furthermore the quantitative analysis of planktonic, loosely attached cells, and their susceptibility to antibiotics was also determined. Twitching motility was observed to determine any effect in the biofilm forming capability of the isolates. All the isolates tested were efficient biofilm-forming strains in the polypropylene and borosilicate test tubes. Standard bacterial enumeration technique and CV staining produced equivalent results both in biofilm and planktonic assays. The biofilm formation of all the strains was affected in the presence of tetracycline or chloramphenicol. Highly significant decrease (P < 0.01) in biofilm formation was observed by treatment with chloramphenicol compared to tetracycline. In addition, the two antibiotics also affected adversely the planktonic and loosely attached cells of all isolates. Thus, testing the effects of older antibiotics on biofilms may supply useful information in addition to standard in vitro testing, particularly in diseases where biofilm formation is involved in the pathogenesis.  相似文献   

17.
AIMS: To evaluate both the antimicrobial activity and the effectiveness of a combination of sodium hypochlorite and hydrogen peroxide (Ox-B) for killing Pseudomonas aeruginosa ATCC 19142 cells and removing P. aeruginosa biofilms on aluminum or stainless steel surfaces. METHODS AND RESULTS: Pseudomonas aeruginosa biofilms were developed in tryptic soy broth containing vertically suspended aluminium or stainless steel plates. Biofilms were exposed to a mixed sodium hypochlorite and hydrogen peroxide solution as a sanitizer for 1, 5 and 20 min. The sanitizer was then neutralized, the cells dislodged from the test surfaces, and viable cells enumerated. Cell morphologies were determined using scanning (SEM) and transmission electron microscopy (TEM). Cell viability was determined by confocal scanning laser microscopy (CSLM). Biofilm removal was monitored by Fourier transform infrared (FTIR) spectrophotometry. Cell numbers were reduced by 5-log to 6-log after 1 min exposure and by 7-log after 5 min exposure to Ox-B. No viable cells were detected after a 20 min exposure. Treatment with equivalent concentrations of sodium hypochlorite reduced viable numbers by 3-log to 4-log after 1 min exposure and by 4-log to 6-log after 5 min, respectively. A 20 min exposure achieved a 7-log reduction. Hydrogen peroxide at test concentration treatments showed no effect. FTIR analysis of treated pseudomonad biofilms on aluminium or stainless steel plates showed either a significant reduction or complete removal of biofilm material after a 5 min exposure to the mixed sodium hypochlorite and hydrogen peroxide solution. SEM and TEM images revealed damage to cell wall and cell membranes. CONCLUSIONS: A combination of sodium hypochlorite and hydrogen peroxide effectively killed P. aeruginosa cells and removed biofilms from both stainless steel and aluminium surfaces. SIGNIFICANCE AND IMPACT OF THE STUDY: The combination of sodium hypochlorite and hydrogen peroxide can be used as an alternative disinfectant and/or biofilm remover of contaminated food processing equipment.  相似文献   

18.
Biofilm cells differ phenotypically from their free-floating counterparts. Differential growth rates in biofilms are often referred to, particularly in response to limited diffusion of oxygen and nutrients. We observed growth rates of attached Pseudomonas sp. strain CT07 cells that were notably higher than the maximum specific growth rate measured in batch culture. Despite dilution rates in continuous flow cells that exceeded the maximum planktonic specific growth rate by 58 times, sampling of the effluent revealed >10(9) cells ml(-1), suggesting that biofilms function as a source of planktonic cells through high cell yield and detachment. Further investigation demonstrated considerable planktonic cell yield from biofilms as young as 6 h, indicating that detachment is not limited to established biofilms. These biofilm-detached cells were more sensitive to a commercial biocide than associated biofilm- and chemostat-cultivated populations, implying that detached biofilm cells exhibit a character that is distinct from that of attached and planktonic cell populations.  相似文献   

19.
This study evaluated the susceptibility to amine fluorides (AmFs) of planktonic and biofilm cultures of Streptococcus sanguis grown with and without sucrose. Cultures were incubated with AmFs (250 mg of fluoride liter−1) for 1 min. The susceptibility of biofilms was less than that of the planktonic form and was further decreased by growth in the presence of sucrose.  相似文献   

20.
AIMS: To compare the effect of phosphorous concentration (200 mg P l(-1) and 20 mg P l(-1)) on the denitrifying efficiency of Alcaligenes denitrificans when in the form of planktonic cells or in the form of a biofilm, and to select the most adequate C/N ratio. METHODS AND RESULTS: Two types of assays were carried out: with planktonic cells and with cells in biofilm form. Anoxic bottles with the appropriate C/N and phosphorous concentration were incubated at 30 degrees C and submitted to orbital shaking at 150 rev min(-1). The specific activity of cells in biofilm form, in terms of substrate consumption, was significantly higher than cells in planktonic form. With regard to the effect of increasing phosphorous concentration, an increase in specific activity was also only evident when the cells were in biofilm form. CONCLUSIONS: The two forms showed different performances and phosphorous concentration only markedly affected the biofilm form. SIGNIFICANCE AND IMPACT OF THE STUDY: The importance of the C/N/P ratio in the denitrification process is demonstrated. As there was no report in the literature about the stoichiometric relationship of heterotrophic denitrification with citrate, its stoichiometry, including the requirement for cell synthesis, was determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号