首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endoplasmic reticulum (ER) stress has been implicated in several neurodegenerative diseases, including Parkinson's disease. The present study attempted to investigate the effect of hydrogen sulfide (H(2)S) on 6-hydroxydopamine (6-OHDA)-induced ER stress in SH-SY5Y cells. We found in the present study that exogenous application of sodium hydrosulfide (NaHS; an H(2)S donor, 100 μM) significantly attenuated 6-OHDA (50 μM)-induced cell death. NaHS also reversed the upregulation of cleaved poly(ADP-ribose) polymerase and caspase 9 in 6-OHDA-treated cells. Consistent with its cytoprotective effects, NaHS markedly reduced 6-OHDA induced-ER stress responses, including the upregulated levels of eukaryotic initiation factor-2α phosphorylation, glucose-regulated protein 78, and C/EBP homologous protein expression. The protective effect of H(2)S on ER stress was attenuated by blockade of Akt activity with an Akt inhibitor or inhibition of heat shock protein (Hsp)90 with geldanamycin but not by suppression of ERK1/2 with PD-98059. Blockade of Akt also significantly decreased the protein abundance of Hsp90 in SH-SY5Y cells. Moreover, overexpression of cystathionine β-synthase (a main H(2)S-synthesizing enzyme in the brain) elevated the Hsp90 protein level and suppressed 6-OHDA-induced ER stress. In conclusion, the protective effect of H(2)S against 6-OHDA-induced ER stress injury in SH-SY5Y cells involves the Akt-Hsp90 pathway.  相似文献   

2.
Remodeling by its very nature implied synthesis and degradation of extracellular matrix (ECM) proteins. Although oxidative stress, matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) have been implicated in vascular remodeling, the differential role of MMPs versus TIMPs and oxidative stress in vascular remodeling was unclear. TIMP-3 induced vascular cell apoptosis, therefore, we hypothesized that during vascular injury TIMP-3, MMP-9 and -12 (elastin-degrading MMP) were increased, whereas MMP-2 (constitutive MMP) and TIMP-4 (cardioprotective TIMP) decreased. Because of the potent anti-oxidant, vasorelaxing, anti-hypertensive agent, hydrogen sulfide (H2S) was used to mitigate the vascular remodeling due to the differential expression of MMP and TIMP. Carotid artery injury was created by inserting a PE-10 catheter and rotating several times before pulling out. The insertion hole was sealed. Mice were grouped: wild type (WT), wild-type damaged artery (WTD), WT + NaHS (sodium hydrogen sulfide, precursor of H2S) treatment (30 μmol/L in drinking water/6 weeks) and WTD + NaHS treatment. Carotid arteries were analyzed for oxidative stress and remodeling, by measuring super oxide dismutase-1 (SOD1), p47 (NADPH oxidase subunit), nitrotyrosine, MMPs and TIMPs by in situ immunolabeling and by Western blot analyses. The results suggested robust increase in p47, nitrotyrosine, MMP-9, MMP-12, TIMP-3 and decrease in SOD1 and MMP-2 levels in the injured arteries. The treatment with H2S ameliorated these effects. We concluded that p47, TIMP-3, MMP-9 and -12 were increased where as SOD-1, MMP-2 and TIMP-4 were decreased in the injured arteries. The treatment with H2S mitigated the vascular remodeling by normalizing the levels of redox stress, MMPs and TIMPs.  相似文献   

3.
过氧化氢预处理对抗氧化应激诱导的PC12细胞凋亡   总被引:1,自引:0,他引:1  
Tang XQ  Chen J  Tang EH  Feng JQ  Chen PX 《生理学报》2005,57(2):211-216
氧化应激可明显地诱导细胞凋亡。本研究旨在探讨H2O2预处理能否对H2O2诱导的PC12细胞凋亡生产保护作用及ATP敏感性K^ (ATP-sensitive potassinm,KATP)通道在其中的作用。采用PI染色流式细胞仪(flow cytometry, FCM)检测PC12细胞凋亡。结果表明,经10μmol/L H2O2预处理90min的PC12细胞,分别在20、30、50和100μmol/L H2O2作用24h后,其细胞凋亡率明显下降,与未经H2O2的预处理的PC12细胞相比,差异极显著(P<0.01),表明H2O2预处理对H2O2诱导PC12细胞凋亡具有保护作用。用10μmol/L的KATP通道激动齐pinacidil(Pin)可显著减少30和50μmol/L H2O2诱导的PC12细胞凋亡,10μmol/L的KATP通道拮抗齐glybenclamide(Gly)则可显著地抑制甚至取消KATP通道激动剂Pin对H2O3诱导PC12细胞凋亡的保护作用,但并不影响H2O2预处理对H2O2诱导PC12细胞凋亡的保护作用;然而,当联合应用H2O2预处理与Pin时,对PC12细胞凋亡的保护作用显大于各自的细胞凋亡作用。提示KATP通道开放不仅对H2O2诱导PC12细胞凋亡具有保护作用,而且与H2O2预处理一起产生抗PC12细胞凋亡的协同作用。但KATP通道开放可能不参与H2O2预处理的适应性保护作用。  相似文献   

4.
Glutathione protects Lactococcus lactis against oxidative stress   总被引:2,自引:0,他引:2  
Glutathione was found in several dairy Lactococcus lactis strains grown in M17 medium. None of these strains was able to synthesize glutathione. In chemically defined medium, L. lactis subsp. cremoris strain SK11 was able to accumulate up to approximately 60 mM glutathione when this compound was added to the medium. Stationary-phase cells of strain SK11 grown in chemically defined medium supplemented with glutathione showed significantly increased resistance (up to fivefold increased resistance) to treatment with H2O2 compared to the resistance of cells without intracellular glutathione. The resistance to H2O2 treatment was found to be dependent on the accumulation of glutathione in 16 strains of L. lactis tested. We propose that by taking up glutathione, L. lactis might activate a glutathione-glutathione peroxidase-glutathione reductase system in stationary-phase cells, which catalyzes the reduction of H2O2. Glutathione reductase, which reduces oxidized glutathione, was detectable in most strains of L. lactis, but the activities of different strains were very variable. In general, the glutathione reductase activities of L. lactis subsp. lactis are higher than those of L. lactis subsp. cremoris, and the activities were much higher when strains were grown aerobically. In addition, glutathione peroxidase is detectable in strain SK11, and the level was fivefold greater when the organism was grown aerobically than when the organism was grown anaerobically. Therefore, the presence of glutathione in L. lactis could result in greater stability under storage conditions and quicker growth upon inoculation, two important attributes of successful starter cultures.  相似文献   

5.
Acetaminophen protects human erythrocytes against oxidative stress   总被引:1,自引:0,他引:1  
Acetaminophen protects human erythrocytes against various modes of oxidative stress. Protection against ozone-induced damage can be explained by a direct scavenging reaction between the drug and ozone. With t-butylhydroperoxide acetaminophen appeared to be an effective scavenger of radicals, generated in secondary reactions. The protection by acetaminophen against t-butylhydroperoxide- and hydrogen peroxide-induced lipid peroxidation and K+-leakage can be explained along these lines. In all cases the protective effect of acetaminophen was attended with covalent binding of acetaminophen to membrane proteins.  相似文献   

6.
In organisms, various protective mechanisms against oxidative damaging of proteins exist. Here, we show that cofactor binding is among these mechanisms, because flavin mononucleotide (FMN) protects Azotobacter vinelandii flavodoxin against hydrogen peroxide-induced oxidation. We identify an oxidation sensitive cysteine residue in a functionally important loop close to the cofactor, i.e., Cys69. Oxidative stress causes dimerization of apoflavodoxin (i.e., flavodoxin without cofactor), and leads to consecutive formation of sulfinate and sulfonate states of Cys69. Use of 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) reveals that Cys69 modification to a sulfenic acid is a transient intermediate during oxidation. Dithiothreitol converts sulfenic acid and disulfide into thiols, whereas the sulfinate and sulfonate forms of Cys69 are irreversible with respect to this reagent. A variable fraction of Cys69 in freshly isolated flavodoxin is in the sulfenic acid state, but neither oxidation to sulfinic and sulfonic acid nor formation of intermolecular disulfides is observed under oxidising conditions. Furthermore, flavodoxin does not react appreciably with NBD-Cl. Besides its primary role as redox-active moiety, binding of flavin leads to considerably improved stability against protein unfolding and to strong protection against irreversible oxidation and other covalent thiol modifications. Thus, cofactors can protect proteins against oxidation and modification.  相似文献   

7.
Oxidative stress occurs when antioxidant defenses are overwhelmed by oxygen-reactive species and can lead to cellular damage, as seen in several neurodegenerative disorders. Microglia are specialized cells in the central nervous system that act as the first and main form of active immune defense in the response to pathological events. Autotaxin (ATX) plays an important role in the modulation of critical cellular functions, through its enzymatic production of lysophosphatidic acid (LPA). In this study, we investigated the potential role of ATX in the response of microglial cells to oxidative stress. We show that treatment of a microglial BV2 cell line with hydrogen peroxide (H(2)O(2)) stimulates ATX expression and LPA production. Stable overexpression of ATX inhibits microglial activation (CD11b expression) and protects against H(2)O(2)-treatment-induced cellular damage. This protective effect of ATX was partially reduced in the presence of the LPA-receptor antagonist Ki16425. ATX overexpression was also associated with a reduction in intracellular ROS formation, carbonylated protein accumulation, proteasomal activity, and catalase expression. Our results suggest that up-regulation of ATX expression in microglia could be a mechanism for protection against oxidative stress, thereby reducing inflammation in the nervous system.  相似文献   

8.
Accurate flow of genetic information from DNA to protein requires faithful translation. An increased level of translational errors (mistranslation) has therefore been widely considered harmful to cells. Here we demonstrate that surprisingly, moderate levels of mistranslation indeed increase tolerance to oxidative stress in Escherichia coli. Our RNA sequencing analyses revealed that two antioxidant genes katE and osmC, both controlled by the general stress response activator RpoS, were upregulated by a ribosomal error-prone mutation. Mistranslation-induced tolerance to hydrogen peroxide required rpoS, katE and osmC. We further show that both translational and post-translational regulation of RpoS contribute to peroxide tolerance in the error-prone strain, and a small RNA DsrA, which controls translation of RpoS, is critical for the improved tolerance to oxidative stress through mistranslation. Our work thus challenges the prevailing view that mistranslation is always detrimental, and provides a mechanism by which mistranslation benefits bacteria under stress conditions.  相似文献   

9.
RNA-Seq and gene set enrichment anylysis revealed that ovarian cancer associated fibroblasts (CAFs) are mitotically active compared with normal fibroblasts (NFs). Cellular senescence is observed in CAFs treated with H2O2 as shown by elevated SA-β-gal activity and p21 (WAF1/Cip1) protein levels. Reactive oxygen species (ROS) production and p21 (WAF1/Cip1) elevation may account for H2O2-induced CAFs cell cycle arrest in S phase. Blockage of autophagy can increase ROS production in CAFs, leading to cell cycle arrest in S phase, cell proliferation inhibition and enhanced sensitivity to H2O2-induced cell death. ROS scavenger NAC can reduce ROS production and thus restore cell viability. Lactate dehydrogenase A (LDHA), monocarboxylic acid transporter 4 (MCT4) and superoxide dismutase 2 (SOD2) were up-regulated in CAFs compared with NFs. There was relatively high lactate content in CAFs than in NFs. Blockage of autophagy decreased LDHA, MCT4 and SOD2 protein levels in CAFs that might enhance ROS production. Blockage of autophagy can sensitize CAFs to chemotherapeutic drug cisplatin, implicating that autophagy might possess clinical utility as an attractive target for ovarian cancer treatment in the future.  相似文献   

10.
The roles of hydrogen sulfide (H(2)S) and endoplasmic reticulum (ER) stress in doxorubicin (DOX)-induced cardiotoxicity are still unclear. This study aimed to dissect the hypothesis that H(2)S could protect H9c2 cells against DOX-induced cardiotoxicity by inhibiting ER stress. Our results showed that exposure of H9c2 cells to DOX significantly inhibited the expression and activity of cystathionine-γ-lyase (CSE), a synthetase of H(2)S, accompanied by the decreased cell viability and the increased reactive oxygen species (ROS) accumulation. In addition, exposure of cells to H(2)O(2) (an exogenous ROS) mimicked the inhibitory effect of DOX on the expression and activity of CSE. Pretreatment with N-acetyl-L: -cysteine (NAC) (a ROS scavenger) attenuated intracellular ROS accumulation, cytotoxicity, and the inhibition of expression and activity of CSE induced by DOX. Notably, the ER stress-related proteins, including glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were obviously upregulated in DOX-treated H9c2 cells. Pretreatment with sodium hydrosulfide (NaHS, a H(2)S donor) before DOX exposure markedly suppressed DOX-induced overexpressions of GRP78 and CHOP, cytotoxicity and oxidative stress. In conclusion, we have demonstrated that ROS-mediated inhibition of CSE is involved in DOX-induced cytotoxicity in H9c2 cells, and that exogenous H(2)S can confer protection against DOX-induced cardiotoxicity partly through inhibition of ER stress.  相似文献   

11.
Sawgrass (Cladium jamaicense) is the predominant plant and vegetation community in the Florida Everglades. Germination of sawgrass seeds in the laboratory or nursery has been difficult and problematic, yet little is known about the physiological mechanistic regulation of the sawgrass seed germination process. In the present study, we examined the factors and mechanisms that influence sawgrass seed germination. We found that removal of seed husk and bracts, pre-soaking with bleach (hypochlorite), breaking the seed coat, or combinations of these treatments promoted the rate and success of germination, whereas presence of seed-encasing structures or treatment with husk/bract extract inhibited germination. We further detected the presence of abscisic acid (ABA) in the husk and bract. Experiments with ABA and gibberellin biosynthesis inhibitors fluridone and tetcyclacis suggested that ABA already presented in the pre-imbibed seeds, and not derived through post-dormancy de novo synthesis, contributed to the inhibition of seed germination. Examination of bleach and mechanical treatments indicated the physical barrier presented by the seed-encasing structures provided additional mechanism for the long-term delay of seed germination. Based on the results of this study and others, we discussed the implications of sawgrass seed dormancy and germination in relation to its natural habitat and proposed a hypothesis that the protracted seed dormancy in sawgrass offered an adaptive advantage in the pre-anthropogenic Everglades environment, but may become a liability in the current man-managed Everglades water system.  相似文献   

12.
Abstract

Aerobic organisms have developed defensive systems to survive in the presence of oxygen and its highly reactive species (ROS). The cellular mechanisms of protection against oxidative injury include: (i) specific enzymes, such as catalase, glutathione peroxidase and superoxide dismutase; (ii) small hydrophilic molecules, such as ascorbate, glutathione and uric acid; and (iii) hydrophobic agents, such as ubiquinone and α-tocopherol in membranes.1 Among these, coenzyme Q (CoQ) is the only lipid-soluble antioxidant that can be synthesized in all organisms so far studied.  相似文献   

13.
14.
Human DNA polymerase iota (poliota) is a unique member of the Y-family of specialised polymerases that displays a 5'deoxyribose phosphate (dRP) lyase activity. Although poliota is well conserved in higher eukaryotes, its role in mammalian cells remains unclear. To investigate the biological importance of poliota in human cells, we generated fibroblasts stably downregulating poliota (MRC5-pol iota(KD)) and examined their response to several types of DNA-damaging agents. We show that cell lines downregulating poliota exhibit hypersensitivity to DNA damage induced by hydrogen peroxide (H(2)O(2)) or menadione but not to ethylmethane sulphonate (EMS), UVC or UVA. Interestingly, extracts from cells downregulating poliota show reduced base excision repair (BER) activity. In addition, poliota binds to chromatin after treatment of cells with H(2)O(2) and interacts with the BER factor XRCC1. Finally, green fluorescent protein-tagged poliota accumulates at the sites of oxidative DNA damage in living cells. This recruitment is partially mediated by its dRP lyase domain and ubiquitin-binding domains. These data reveal a novel role of human poliota in protecting cells from oxidative damage.  相似文献   

15.
Reactive oxygen species (ROS) may cause skeletal muscle degeneration in a number of pathological conditions. Small heat shock proteins (HSPs) have been found to confer resistance against ROS in different cell types; however, the importance of their antioxidant function in skeletal muscle cells remains to be determined. In the present study, differentiation of skeletal myoblasts resulted in protection against hydrogen peroxide-induced cell death and protein oxidation. This differentiation-induced resistance to oxidative stress was associated with increased protein expression of HSP25, increased glutathione levels, and glutathione peroxidase activity, but little change in catalase activity. Overexpression of HSP25 in stably transfected myoblasts produced dose-dependent protection against hydrogen peroxide-induced damage that was associated with increased glutathione levels and glutathione peroxidase activity. Inhibition of glutathione synthesis with buthionine sulfoximine abrogated the protection induced by HSP25 overexpression. These findings indicate that HSP25 may play a key role in regulating the glutathione system and resistance to ROS in skeletal muscle cells.  相似文献   

16.
We previously showed that total sleep deprivation increased antioxidant responses in several rat brain regions. We also reported that chronic hypoxia enhanced antioxidant responses and increased oxidative stress in rat cerebellum and pons, relative to normoxic conditions. In the current study, we examined the interaction between these two parameters (sleep and hypoxia). We exposed rats to total sleep deprivation under sustained hypoxia (SDSH) and compared changes in antioxidant responses and oxidative stress markers in the neocortex, hippocampus, brainstem, and cerebellum to those in control animals left undisturbed under either sustained hypoxia (UCSH) or normoxia (UCN). We measured changes in total nitrite levels as an indicator of nitric oxide (NO) production, superoxide dismutase (SOD) activity and total glutathione (GSHt) levels as markers of antioxidant responses, and levels of thiobarbituric acid-reactive substances (TBARS) and protein carbonyls as signs of lipid and protein oxidation products, respectively. We found that acute (6h) SDSH increased NO production in the hippocampus and increased GSHt levels in the neocortex, brainstem, and cerebellum while decreasing hippocampal lipid oxidation. Additionally, we observed increased hexokinase activity in the neocortex of SDSH rats compared to UCSH rats, suggesting that elevated glucose metabolism may be one potential source of the enhanced free radicals produced in this brain region. We conclude that short-term insomnia under hypoxia may serve as an adaptive response to prevent oxidative stress.  相似文献   

17.
Chronic hyperglycemia in diabetes determines the overproduction of free radicals, and evidence is increasing that these contribute to the development of diabetic complications. It has recently been reported that dehydroepiandrosterone possesses antioxidant properties; this study evaluates whether, administered daily for three weeks per os, it may provide antioxidant protection in tissues of rats with streptozotocin-induced diabetes. Lipid peroxidation was evaluated on liver, brain and kidney homogenates from diabetic animals, measuring both steady-state concentrations of thiobarbituric acid reactive substances and fluorescent chromolipids. Hyperglycemic rats had higher thiobarbituric acid reactive substances formation and fluorescent chromolipids levels than controls. Dehydroepiandrosterone-treatment (4 mg/day for 3 weeks) protected tissues against lipid peroxidation: liver, kidney and brain homogenates from dehydroepiandrosterone-treated animals showed a significant decrease of both thiobarbituric acid reactive substances and fluorescent chromolipids formation. The effect of dehydroepiandrosterone on the cellular antioxidant defenses was also investigated, as impaired antioxidant enzyme activities were considered proof of oxygen-dependent toxicity. In kidney and liver homogenates, dehydroepiandrosterone treatment restored to near-control values the cytosolic level of reduced glutathione, as well as the enzymatic activities of superoxide-dismutase, glutathione-peroxidase, catalase. In the brain, only an increase of catalase activity was evident (p < .05), which reverted with dehydroepiandrosterone treatment. The results demonstrate that DHEA treatment clearly reduces oxidative stress products in the tissues of streptozotocin-treated rats.  相似文献   

18.
Ethanol causes oxidative stress and tissue damage. The aim of this study was to investigate the effect of antioxidant carnosine on the oxidative stress induced by ethanol in the rat brain tissue. Forty male rats were divided equally into four groups as control, carnosine (CAR), ethanol (EtOH), and ethanol plus carnosine (EtOH + CAR). Rats in the control group (n = 10) were injected intraperitoneally (i.p.) with 0.9% saline; EtOH group (n = 10) with 2 g/kg/day ethanol, CAR group (n = 10) received carnosine at a dose of 1 mg/kg/day and EtOH + CAR group (n = 10) received carnosine (orally) and ethanol (i.p.). All animals were sacrificed using ketamine and brain tissues were removed. Malondialdehyde (MDA), protein carbonyl (PCO) and tissue carnosine levels, and superoxide dismutase (SOD) activities were measured. Endogenous CAR levels in the rat brain tissue specimens were significantly increased in the CAR and EtOH groups when compared to the control animals. MDA and PCO levels in the EtOH group were significantly increased as compared to the other groups (P < 0.05). CAR treatment also decreased MDA levels in the CAR group as compared to the control group. Increased SOD activities were obtained in the EtOH + CAR group as compared to the control (P < 0.05). CAR levels in the rat brain were significantly increased in the CAR, EtOH and CAR + EtOH groups when compared to the control animals. These findings indicated that carnosine may appear as a protective agent against ethanol-induced brain damage.  相似文献   

19.
Oxidative stress is due to an imbalance of antioxidant/pro-oxidant homeostasis and is associated with the progression of several neurological diseases, including Parkinson''s and Alzheimer''s disease and amyotrophic lateral sclerosis. Furthermore, oxidative stress is responsible for the neuronal loss and dysfunction associated with disease pathogenesis. Survivin is a member of the inhibitors of the apoptosis (IAP) family of proteins, but its neuroprotective effects have not been studied. Here, we demonstrate that SurR9-C84A, a survivin mutant, has neuroprotective effects against H2O2-induced neurotoxicity. Our results show that H2O2 toxicity is associated with an increase in cell death, mitochondrial membrane depolarisation, and the expression of cyclin D1 and caspases 9 and 3. In addition, pre-treatment with SurR9-C84A reduces cell death by decreasing both the level of mitochondrial depolarisation and the expression of cyclin D1 and caspases 9 and 3. We further show that SurR9-C84A increases the antioxidant activity of GSH-peroxidase and catalase, and effectively counteracts oxidant activity following exposure to H2O2. These results suggest for the first time that SurR9-C84A is a promising treatment to protect neuronal cells against H2O2-induced neurotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号