首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In most sexual organisms, including isogamous, anisogamous and oogamous organisms, uniparental transmission is a striking and universal characteristic of the transmission of organelle (plastid and mitochondrial) genomes (DNA). Using genetic, biochemical and molecular biological techniques, mechanisms of uniparental (maternal and parental) and biparental transmission of organelle genomes have been studied and reviewed. Although to date there has been no cytological review of the transmission of organelle genomes, cytology offers advantages in terms of direct evidence and can enhance global studies of the transmission of organelle genomes. In this review, I focus on the cytological mechanism of uniparental inheritance by “active digestion of male or female organelle nuclei (nucleoids, DNA)” which is universal among isogamous, anisogamous, and oogamous organisms. The global existence of uniparental transmission since the evolution of sexual eukaryotes may imply that the cell nuclear genome continues to inhibit quantitative evolution of organelles by organelle recombination.  相似文献   

2.
ULTRASTRUCTURE OF PLASTID INHERITANCE: GREEN ALGAE TO ANGIOSPERMS   总被引:2,自引:0,他引:2  
1. Plastid inheritance in most green algae and land plants is uniparental. In oogamous species, plastids are usually derived from the maternal parent; even when inheritance is biparental, maternal plastids usually predominate. Only a few species of conifer are known to have essentially paternal plastid inheritance. In spite of the overall strong maternal bias, there exists a spectrum of species in which plastid inheritance ranges from purely maternal to predominantly paternal. 2. Factors that influence the pattern of plastid inheritance operate both before (often long before) and after fertilization. For example, several different mechanisms for exclusion of plastids from particular cells, none of which is completely effective on its own, may operate sequentially during both gametogenesis and embryo-genesis. There appears to exist a general trend such that the more highly evolved the organism, the more numerous the mechanisms employed and the earlier they first come into operation. The pattern of plastid inheritance shown by a species represents the efficiency or lack of efficiency of these combined mechanisms. 3. In the newly-formed zygote of many unicellular algae, the plastids from both gametes are present and there is direct competition between them. Often the plastid from one mating type (usually the ‘invading’ male gamete, where this can be identified) quickly degenerates. Species such as Chlamydomonas are unusual in that the plastids from the two gametes fuse. In spite of this, inheritance of plastid DNA is normally uniparental. How this is accomplished remains unclear. In oogamous algae, the paternal plastids which enter the egg cell are frequently fewer in number and smaller in size than those contributed by the female gamete. The reduced contribution of paternal plastids can result from asymmetrical cell division or from differential timing of cell and plastid division during spermatogenesis. 4. In species ranging from unicellular algae to angiosperms, plastids may be partially or completely debarred from particular cells at critical stages during the reproductive cycle. An important factor in this form of plastid elimination is their postioning with respect to the nucleus prior to a cell division. When plastids closely encircle the nucleus, they are usually incorporated equally into the two daughter cells; when the plastids are concentrated at some distance from the nucleus, they are frequently excluded from one daughter cell. 5. Elimination of plastids from a gamete prior to plasmogamy prevents direct competition between the two types of plastid in the zygote or embryo. Perhaps the most effective method of excluding paternal plastids from the egg cell has been achieved by some lower land plants; the plastids migrate to the posterior part of the spermatozoid, and are discarded from there in a discrete vesicle before the egg is reached. 6. Plastid inheritance in conifers appears to be unique. In those species in which the derivation of plastids in the pro-embryo can be determined, it has been found that they come only from the male gamete. Maternal plastids are positively excluded from the pro-embryo and later degenerate. 7. In most angiosperm species plastid inheritance is maternal; in only a few species is it regularly biparental. The first step towards exclusion of paternal plastids often takes place in the uninucleate pollen grain where the plastids may be concentrated at the pole of the cell farthest from the site of the future generative cell. Any plastids that succeed in entering the generative cell may degenerate before the gametes are released from the pollen tube. Even if paternal plastids reach the egg, they are at a disadvantage because they are (a) entering an environment that is essentially alien, and (b) normally present in much smaller numbers than maternal plastids. Later, when the zygote divides, the few paternal plastids may fail to become incorporated in the small terminal cell which gives rise to the embryo proper. 8. There appears to be no consistent evolutionary progression in the use of more efficient mechanisms to influence plastid inheritance; most of the mechanisms associated with exclusion of paternal plastids in angiosperms, for example, can also be found in one or other species of green alga. The primary factors that influence plastid inheritance appear to be (I) direct competition in the zygote between plastids of the two parental types – the principal mechanism operating in isogamous algae, but also operating in some angiosperms; and (2) the divergent evolution of the two types of gamete - on the one hand a small male gamete with a minimum of cytoplasm which is capable of moving (spermatozoid) or being moved (pollen) efficiently, and, on the other hand, a large egg cell with numerous organelles, which is well able to act as ‘host’ for the future zygote. Many of the additional mechanisms that influence the pattern of plastid inheritance seem to be the more or less ‘accidental’ result of other evolutionary events.  相似文献   

3.
Jianping Xu 《Génome》2005,48(6):951-958
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.  相似文献   

4.
Within plastid-bearing species, the relative rates of evolution between mitochondrial and plastid genomes are poorly studied, but for the few lineages in which they have been explored, including land plants and green algae, the mitochondrial DNA mutation rate is nearly always estimated to be lower than or equal to that of the plastid DNA. Here, we show that in protists from three distinct lineages with secondary, red algal-derived plastids, the opposite is true: their mitochondrial genomes are evolving 5-30 times faster than their plastid genomes, even when the plastid is nonphotosynthetic. These findings have implications for understanding the origins and evolution of organelle genome architecture and the genes they encode.  相似文献   

5.
Gametogenesis in male and female gametophytes was studied by light microscopy and EM in the dioecious multinucleate green alga Derbesia tenuissima (Moris & De Notaris) P. Crouan & H. Crouan, where male and female gametes differ in size. Gametogenesis was divided into five stages: 32 h (stage 1), 24 h (stage 2), 16 h (stage 3), 8 h (stage 4), and 0.5 h (stage 5) before gamete release. At stage 1, the first sign of gametogenesis observed was the aggregation of gametophyte protoplasm to form putative gametangia. At stage 2, gametangia were separated from the vegetative protoplasm of gametophytes. Morphological changes of nuclei and organelles occurred at this early stage of male gametogenesis, and organelle DNA degenerated. At stage 3, male organelle DNA had completely degenerated, whereas in female gametangia, organelle DNA continued to exist in both chloroplasts and mitochondria. Gametogenesis was almost completed at stage 4 and fully at stage 5. Small male gametes had a DNA‐containing nucleus and a large mitochondrion and one or several degenerated chloroplasts. The mitochondria and plastids were devoid of DNA. The large female gametes had a nucleus and multiple organelles, all of which contained their own DNA. Thus, degeneration of chloroplast DNA along with morphological changes of organelles occurred at male gametogenesis in anisogamous green algae (Bryopsis and D. tenuissima), in contrast with previous studies in isogamous green algae (Chlamydomonas, Acetabularia caliculus, and Dictyosphaeria cavernosa) in which degeneration of chloroplast DNA occurred after zygote formation.  相似文献   

6.
The sexual reproductive processes of some representative freshwater green algae are reviewed. Chlamydomonas reinhardtii is a unicellular volvocine alga having two mating types: mating type plus (mt+) and mating type minus (mt?), which are controlled by a single, complex mating-type locus. Sexual adhesion between the gametes is mediated by sex-specific agglutinin molecules on their flagellar membranes. Cell fusion is initiated by an adhesive interaction between the mt+ and mt? mating structures, followed by localized membrane fusion. The loci of sex-limited genes and the conformation of sex-determining regions have been rearranged during the evolution of volvocine algae; however, the essential function of the sex-determining genes of the isogamous unicellular Chlamydomonas reinhardtii is conserved in the multicellular oogamous Volvox carteri. The sexual reproduction of the unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex, is also focused on here. The sexual reproductive processes of heterothallic strains are controlled by two multifunctional sex pheromones, PR-IP and PR-IP Inducer, which independently promote multiple steps in conjugation at the appropriate times through different induction mechanisms. The molecules involved in sexual reproduction and sex determination have also been characterized.  相似文献   

7.
Most of the available mitochondrial and plastid genome sequences are biased towards adenine and thymine (AT) over guanine and cytosine (GC). Examples of GC-rich organelle DNAs are limited to a small but eclectic list of species, including certain green algae. Here, to gain insight in the evolution of organelle nucleotide landscape, we present the GC-rich mitochondrial and plastid DNAs from the trebouxiophyte green alga Coccomyxa sp. C-169. We compare these sequences with other GC-rich organelle DNAs and argue that the forces biasing them towards G and C are nonadaptive and linked to the metabolic and/or life history features of this species. The Coccomyxa organelle genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve the interrelationships among the core chlorophyte green algae, but ultimately favour a sister relationship between the Ulvophyceae and Chlorophyceae, with the Trebouxiophyceae branching at the base of the chlorophyte crown.  相似文献   

8.
Liu Y  Cui H  Zhang Q  Sodmergen 《Plant physiology》2004,136(1):2762-2770
Epifluorescence microscopic detection of organelle DNA in the mature generative cell is a rapid method for determining the potential for the mode of cytoplasmic inheritance. We used this method to examine 19 of the known 22 to 27 species in the genus Syringa. Organelle DNA was undetectable in seven species, all in the subgenus Syringa, but was detected in the 12 species examined of the subgenera Syringa and Ligustrina. Therefore, species within the genus Syringa display differences in the potential cytoplasmic inheritance. Closer examination revealed that the mature generative cells of the species in which organelle DNA was detected contained both mitochondria and plastids, but cells of the species lacking detectable organelle DNA contained only mitochondria, and the epifluorescent organelle DNA signals from the mature generative cells corresponded to plastid DNA. In addition, semiquantitative analysis was used to demonstrate that, during pollen development, the amount of mitochondrial DNA decreased greatly in the generative cells of the species examined, but the amount of plastid DNA increased remarkably in the species containing plastids in the generative cell. The results suggest that all Syringa species exhibit potential maternal mitochondrial inheritance, and a number of the species exhibit potential biparental plastid inheritance. The difference between the modes of potential plastid inheritance among the species suggests different phylogenies for the species; it also supports recent conclusions of molecular, systematic studies of the Syringa. In addition, the results provide new evidence for the mechanisms of maternal mitochondrial inheritance in angiosperms.  相似文献   

9.
A combined data set of DNA sequences (6021 bp) from five protein-coding genes of the chloroplast genome (rbcL, atpB, psaA, psaB, and psbC genes) were analyzed for 42 strains representing 30 species of the colonial Volvocales (Volvox and its relatives) and 5 related species of green algae to deduce robust phylogenetic relationships within the colonial green flagellates. The 4-celled family Tetrabaenaceae was robustly resolved as the most basal group within the colonial Volvocales. The sequence data also suggested that all five volvocacean genera with 32 or more cells in a vegetative colony (all four of the anisogamous/oogamous genera, Eudorina, Platydorina, Pleodorina, and Volvox, plus the isogamous genus Yamagishiella) constituted a large monophyletic group, in which 2 Pleodorina species were positioned distally to 3 species of Volvox. Therefore, most of the evolution of the colonial Volvocales appears to constitute a gradual progression in colonial complexity and in types of sexual reproduction, as in the traditional volvocine lineage hypothesis, although reverse evolution must be considered for the origin of certain species of Pleodorina. Data presented here also provide robust support for a monophyletic family Goniaceae consisting of two genera: Gonium and Astrephomene.  相似文献   

10.
The fates of mitochondrial and plastid nucleoids during pollen development in six angiosperm species (Antirrhinum majus, Glycine max, Medicago sativa, Nicotiana tabacum, Pisum sativum, and Trifolium pratense) were examined using epifluorescence microscopy after double staining with 4',6-diamidino-2- phenylindole (DAPI) to stain DNA and with a potentiometric dye (either DiOC7 or rhodamine 123) for visualization of metabolically active mitochondria. From the pollen mother cell stage to the microspore stage of pollen development, mitochondria and plastids both contained DNA detectable by DAPI staining. However, during the further maturation preceding anthesis, mitochondrial DNA became undetectable cytologically in either the generative or the vegetative cell of mature pollen; even in germinated pollen tubes containing hundreds of metabolically active mitochondria undergoing cytoplasmic streaming, vital staining with DAPI failed to reveal mitochondrial DNA. By the mature pollen stage, plastid DNA also became undetectable by DAPI staining in the vegetative cell. However, in the generative cell of mature pollen the timing of plastid DNA disappearance as detected by DAPI varied with the species. Plastid DNA remained detectable only in the generative cells of pollen grains from species known or suspected to have biparental transmission of plastids. The apparent absence of cytologically detectable organelle genomes in living pollen was further examined using molecular methods by hybridizing organelle DNA-specific probes to digests of total DNA from mature pollen and from other organs of A. majus and N. tabacum, both known to be maternal for organelle inheritance. Mitochondrial DNA was detected in pollen of both species; thus the cytological alteration of mitochondrial genomes during pollen development does not correspond with total mtDNA loss from the pollen. Plastid DNA was detectable with molecular probes in N. tabacum pollen but not in A. majus pollen. Since the organelle DNA detected by molecular methods in mature pollen may lie solely in the vegetative cell, further study of the basis of maternal inheritance of mitochondria and plastids will require molecular methods which distinguish vegetative cell from reproductive cell organelle genomes. The biological effect of the striking morphological alteration of organelle genomes during later stages of pollen development, which leaves them detectable by molecular methods but not by DAPI staining, is as yet unknown.  相似文献   

11.
The behavior of centrioles in zygotes and female gametes developing parthenogenetically in the anisogamous brown alga Cutieria cyiindrica Okamura was studied using electron and immunofluorescence microscopy. Two pairs of centrioles, detected using anti-centrin antibody, were observed in the vicinity of the male and female nuclei, respectively, just after plasmogamy. The fluorescence intensity of one of the two centrin foci became weak 6 h after plasmogamy and finally disappeared. It was impossible to determine whether the male- or female-derived centrioles disappeared in zygotes, because there was nothing to detect morphological differences between the two centrioles. However, a prominent anti-centrin staining focus was located at the condensed male nucleus in zygotes in which karyogamy had not occurred yet. As a result, it was considered that the maternally inherited centrioles had selectively disappeared during development in C. cylindrica. The paternal inheritance of centrioles in zygotes was also confirmed by electron microscopy. Considering previous observations from oogamous and isogamous species of brown algae, we concluded that the paternal inheriance of centrioles could be universal in the brown algae.  相似文献   

12.
The inheritance of mitochondria and plastids in angiosperms has been categorized into three modes: maternal, biparental and paternal. Many mechanisms have been proposed for maternal inheritance, including: (1) physical exclusion of the organelle itself during pollen mitosis I (PMI); (2) elimination of the organelle by formation of enucleated cytoplasmic bodies (ECB); (3) autophagic degradation of organelles during male gametophyte development; (4) digestion of the organelle after fertilization; and (5)—the most likely possibility—digestion of organellar DNA in generative cells just after PMI. In detailed cytological observations, the presence or absence of mitochondrial and plastid DNA in generative cells corresponds to biparental/paternal inheritance or maternal inheritance of the respective organelle examined genetically. These improved cytological observations demonstrate that the replication or digestion of organellar DNA in young generative cells just after PMI is a critical point determining the mode of cytoplasmic inheritance. This review describes the independent control mechanisms in mitochondria and plastids that lead to differences in cytoplasmic inheritance in angiosperms.  相似文献   

13.
Chlamydomonas reinhardi, a haploid isogamous green alga, presents a classic case of uniparental inheritance of chloroplast genes. Since the molecular basis of this phenomenon is poorly understood, an examination of the cytology of the C. reinhardi plastid DNA was made in gametes, newly formed zygotes, maturing zygotes, and at zygote germination.The single plastid per cell of Chlamydomonas contains a small number of DNA aggregates (‘nucleoids’) which can be seen after staining with DNA-binding fluorochromes. In zygotes formed by pre-stained gametes, the fluorescing nucleoids disappear from the plastid of mating type minus (male) gamete plastids but not from the plastid of mating type plus (female) gamete plastids about 1 h after zygote formation. Subsequently, nucleoids aggregate slowly to a final average of two or three in the single plastid of the mature zygote.Quantitative microspectrofluorimetry indicates that gametes of both mating types have equal amounts of plastid DNA, and that zoospores arising from zygotes have 3.5 × as much as gametes. Assuming degradation of male plastid DNA, there must be a very major synthesis of plastid DNA between zygote formation and zoospore release when zygotes produce the typical 8–16 zoospores. That synthesis appears to occur at germination, where there is a massive increase in plastid DNA and nucleoid number beginning just prior to meiosis. The results support the theory that uniparental inheritance results from degradation of plastid DNA entering the zygote via the male gamete and suggest further studies, using mutants and altered conditions, which might explain how male plastid DNA sometimes survives.  相似文献   

14.
Volvocalean green algae have among the most diverse mitochondrial and plastid DNAs (mtDNAs and ptDNAs) from the eukaryotic domain. However, nearly all of the organelle genome data from this group are restricted to unicellular species, like Chlamydomonas reinhardtii, and presently only one multicellular species, the ∼4,000-celled Volvox carteri, has had its organelle DNAs sequenced. The V. carteri organelle genomes are repeat rich, and the ptDNA is the largest plastome ever sequenced. Here, we present the complete mtDNA and ptDNA of the colonial volvocalean Gonium pectorale, which is comprised of ∼16 cells and occupies a phylogenetic position closer to that of V. carteri than C. reinhardtii within the volvocine line. The mtDNA and ptDNA of G. pectorale are circular-mapping AT-rich molecules with respective lengths and coding densities of 16 and 222.6 kilobases and 73 and 44%. They share some features with the organelle DNAs of V. carteri, including palindromic repeats within the plastid compartment, but show more similarities with those of C. reinhardtii, such as a compact mtDNA architecture and relatively low organelle DNA intron contents. Overall, the G. pectorale organelle genomes raise several interesting questions about the origin of linear mitochondrial chromosomes within the Volvocales and the relationship between multicellularity and organelle genome expansion.  相似文献   

15.
Summary The inheritance of organelle DNAs in loblolly pine was studied by using restriction fragment length polymorphisms. Chloroplast DNA from loblolly pine is paternally inherited in pitch pine x loblolly pine hybrids. Mitochondrial DNA is maternally inherited in loblolly pine crosses. The uniparental inheritance of organelle genomes from opposite sexes within the same plant appears to be unique among those higher plants that have been tested and indicates that loblolly pine, and possibly other conifers, must have special mechanisms for organelle exclusion or degradation or both. This genetic system creates an exceptional opportunity for the study of maternal and paternal genetic lineages within a single species.  相似文献   

16.
Nakamura S  Aoyama H  van Woesik R 《Protoplasma》2003,221(3-4):205-210
Summary.  The non-Mendelian inheritance of organelle DNA is common in most plants and animals. Here we examined inheritance mechanisms involved in the transfer of mitochondrial DNA. We successively backcrossed (to F5) two interfertile strains of the unicellular isogamous haploid algae Chlamydomonas reinhardtii and Chlamydomonas smithii to match nuclear backgrounds and examine transmission patterns of mitochondrial DNA by PCR analysis of cob gene sequences. Mitochondrial DNA was strictly transmitted paternally. To investigate the behavior of parental mitochondrial DNA, we used F5 progeny to form zygotes and isolated single zygotes. The results showed selective disappearance of maternal mitochondrial nucleoids occurred between 3 and 6 h after zygote formation. Received July 11, 2002; accepted September 28, 2002; published online June 13, 2003 RID="*" ID="*" Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.  相似文献   

17.
We report the complete organelle genome sequences of Trebouxiophyceae sp. strain MX-AZ01, an acidophilic green microalga isolated from a geothermal field in Mexico. This eukaryote has the remarkable ability to thrive in a particular shallow lake with emerging hot springs at the bottom, extremely low pH, and toxic heavy metal concentrations. Trebouxiophyceae sp. MX-AZ01 represents one of few described photosynthetic eukaryotes living in such a hostile environment. The organelle genomes of Trebouxiophyceae sp. MX-AZ01 are remarkable. The plastid genome sequence currently presents the highest G+C content for a trebouxiophyte. The mitochondrial genome sequence is the largest reported to date for the Trebouxiophyceae class of green algae. The analysis of the genome sequences presented here provides insight into the evolution of organelle genomes of trebouxiophytes and green algae.  相似文献   

18.
The sex-determination system of the unicellular green alga, Chlamydomonas reinhardtii, is governed by genes in the mating-type (MT) locus and entails additional genes located in autosomes. Gene expression is initiated by nitrogen starvation, and cells differentiate into plus or minus gametes within 6h. Reviewed is our current understanding of gametic differentiation and fertilization, initiation of zygote development, and the uniparental inheritance of organelle genomes.  相似文献   

19.
Summary The two interfertile algal species Chlamydomonas reinhardtii and C. smithii possess physically distinct mitochondrial (mit) genomes. Recently, use was made of this difference to demonstrate that sexual zygotes transmit the mit DNA from the mating-type minus (mt -, or paternal) parent exclusively. Diploid clones homozygous or heterozygous for the mt locus and carrying the mit genome of either of the two species were constructed by sexual crosses or artificially induced fusions. Haploid x diploid and diploid x diploid crosses were performed in order to analyze the role of both the mt locus and ploidy on the mode of transmission of mit DNA to the meiotic progeny. The inheritance of the mit DNA was determined by use of two molecular probes which hybridize to different regions of the organelle genomes. The mt u+/mt - gametes, which behave as mt - in the mating reaction, usually transmit their mit genome to the meiotic progeny, as do mt - or mt -/mt - gametes, regardless of the ploidy of the mt + gametes. In the cross mt + x mt +/mt - however, 2 zygospore clones (out of 14) transmitted recombinant DNA molecules containing a large segment of the C. reinhardtii mit genome and a 1 kb fragment typical of C. smithii. It can thus be concluded that, contrary to what was observed earlier for chloroplast gene transmission: (1) mt - is dominant to mt +with regard to mit DNA transmission, and (2) nuclear ploidy has little, if any, effect on mit DNA transmission.  相似文献   

20.
Electron microscopic and DNA fluorescence microscopic observations of the plastids, mitochondria and their DNA in the developing pollen of Phaseolus vulgaris L. have demonstrated that the male plastids were excluded during microspore mitosis. The formed generative cell was free of plastids because of regional localization of plastids in early developing microspore and the extremely unequal distribution during division. The fluorescence observations of DNA showed that cytoplasmic (plastid and mitochondria) nucleoids degenerated and disappeared during the development of microspore/pollen, and were never presented in the generative cell at different development stages. These results provided precise cytological evidence of maternal plastid inheritance in Phaseolus vulgaris, which was not in accord with the biparental plastid inheritance identified from early genetic analysis. Based on authors' previous observations in a variety of common bean that the organelle DNA of male gamete was completely degenerated, the early genetic finding of the biparental plastid inheritance was unlikely to be effected by genotypic difference. Thus those biparental plastid inheritance might be caused by occational male plastid transmission, and plastid uniparental maternal inheritance was the species character of Phaseolus vulgaris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号