首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mast cells are widely recognized as effector cells of allergic inflammatory reactions. They contribute to the pathogenesis of different chronic inflammatory diseases, wound healing, fibrosis, thrombosis/fibrinolysis, and anti-tumor immune responses. In this paper, we summarized the role of P2X and P2Y receptors in mast cell activation and effector functions. Mast cells are an abundant source of ATP which is stored in their granules and secreted upon activation. We discuss the contribution of mast cells to the extracellular ATP release and to the maintenance of extracellular nucleotides pool. Recent publications highlight the importance of purinergic signaling for the pathogenesis of chronic airway inflammation. Therefore, the role of ATP and P2 receptors in allergic inflammation with focus on mast cells was analyzed. Finally, ATP functions as mast cell autocrine/paracrine factor and as messenger in intercellular communication between mast cells, nerves, and glia in the central nervous system.  相似文献   

2.
Mast cells are critical effectors in the development of allergic diseases and in many immunoglobulin E-mediated immune responses. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymase and tryptase. Like macrophages and T lymphocytes, mast cells are inflammatory cells, and they participate in the pathogenesis of inflammatory diseases such as cardiovascular complications and metabolic disorders. Recent observations suggested that mast cells are involved in insulin resistance and type 2 diabetes. Data from animal models proved the direct participation of mast cells in diet-induced obesity and diabetes. Although the mechanisms by which mast cells participate in these metabolic diseases are not fully understood, established mast cell pathobiology in cardiovascular diseases and effective mast cell inhibitor medications used in pre-formed obesity and diabetes in experimental models offer hope to patients with these common chronic inflammatory diseases. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

3.
In allergic diseases such as asthma, eosinophils, basophils and mast cells, through release of preformed and newly generated mediators, granule proteins and cytokines, are recognized as key effector cells. While their surface protein phenotypes, mediator release profiles, ontogeny, cell trafficking and genomes have been generally explored and compared, there has yet to be any thorough analysis and comparison of their glycomes. Such studies are critical to understand the contribution of carbohydrates to the induction and regulation of allergic inflammatory responses and are now possible using improved technologies for detecting and characterizing cell-derived glycans. We thus report here the application of high-sensitivity mass spectrometric-based glycomics methodologies to the analysis of N-linked glycans derived from isolated populations of human mast cells, eosinophils and basophils. The samples were subjected to matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) screening analyses and MALDI-TOF/TOF sequencing studies. Results reveal substantive quantities of terminal N-acetylglucosamine containing structures in both the eosinophil and the basophil samples, whereas mast cells display greater relative quantities of sialylated terminal epitopes. For the first time, we characterize the cell surface glycan structures of principal allergic effector cells, which by interaction with glycan-binding proteins (e.g. lectins) have the possibility to dictate cellular functions, and might thus have important implications for the pathogenesis of inflammatory and allergic diseases.  相似文献   

4.
IL-4 plays a crucial role in the pathogenesis of allergic diseases, such as the induction of IgE synthesis and the development of mast cells. To further understand the effect of IL-4 on mast cells in skin, we utilized a mast cell/fibroblast co-culture system as an in vitro model of dermal mast cells. IL-4 induced mast cell growth in the culture with fibroblasts. Immunoblot analysis revealed that IL-4 activated Stat6 in both mast cells and fibroblasts. The over-expression of dominant-negative Stat6 in fibroblasts in the presence of IL-4 decreased the histamine content per mast cell, but not the number of mast cells. In contrast, the over-expression of constitutively-active Stat6 in fibroblasts increased the histamine content per mast cell, indicating that the activation of Stat6 in fibroblasts supports the maturation of mast cells co-cultured with fibroblasts.  相似文献   

5.
Mast cell activation by immunoglobulin E (IgE)-mediated stimuli is a central event in the pathogenesis of allergic disorders. The present report shows that treatment with pentagalloylglucose (PGG) resulted in a down-regulation of FcεRI surface expression on mucosal-type murine bone marrow-derived mast cells (mBMMCs), which correlated with a reduction in IgE-mediated activation of mBMMCs. Furthermore, PGG prevented development of allergic diarrhea in a food-allergy mouse model and suppressed the up-regulated FcεRI surface expression on mast cells derived from the food-allergy mouse colon. These findings on PGG suggest its therapeutic potential for allergic diseases through suppressing the FcεRI surface expression.  相似文献   

6.
Monocytes/macrophages usually make up the largest population of cells in the airways of allergic asthma patients and, as such, contribute substantially to the pathogenesis of this and other allergic diseases. In this report we address one mechanism by which monocytes can be recruited during allergic responses. We and others have shown previously that MCP-1 is important to monocyte infiltration of the tissues during allergic responses in mice and, independently, that mast cells activate fibroblasts to express type alpha1(I)-collagen during such responses. We demonstrate herein that immunologically activated, but not quiescent mouse bone-marrow-derived mast cells release mediators which in turn activate primary cultures of embryonic dermal fibroblasts for high-level secretion of monocyte chemoattractant activities. We identify the CC chemokine MCP-1 as a major component of this activity. Anti-MCP-1 antibodies neutralized approximately 80% of the monocyte chemoattractant activities secreted by such mast-cell-activated fibroblasts. Furthermore, our data implicate mast cell TGFbeta and TNFalpha in this process. Depletion of TGFbeta, TNFalpha, or both TGFbeta and TNFalpha from the mediator pool secreted by mast cells activated via the FcepsilonRI reduced the mast-cell-driven fibroblast MCP-1 response by 80+/-15, 56+/-11, or 82+/-5%, respectively. These data thus further delineate a mechanism by which fibroblasts are recruited into and participate in the mast cell-leukocyte cytokine cascades that orchestrate allergic responses.  相似文献   

7.
Mast cells are immune cells critical in the pathogenesis of allergic, but also inflammatory and autoimmune diseases through release of many pro-inflammatory cytokines such as IL-8 and TNF. Contact dermatitis and photosensitivity are skin conditions that involve non-immune triggers such as substance P (SP), and do not respond to conventional treatment. Inhibition of mast cell cytokine release could be effective therapy for such diseases. Unfortunately, disodium cromoglycate (cromolyn), the only compound marketed as a mast cell "stabilizer", is not particularly effective in blocking human mast cells. Instead, flavonoids are potent anti-oxidant and anti-inflammatory compounds with mast cell inhibitory actions. Here, we first compared the flavonoid quercetin (Que) and cromolyn on cultured human mast cells. Que and cromolyn (100 μM) can effectively inhibit secretion of histamine and PGD(2). Que and cromolyn also inhibit histamine, leukotrienes and PGD(2) from primary human cord blood-derived cultured mast cells (hCBMCs) stimulated by IgE/Anti-IgE. However, Que is more effective than cromolyn in inhibiting IL-8 and TNF release from LAD2 mast cells stimulated by SP. Moreover, Que reduces IL-6 release from hCBMCs in a dose-dependent manner. Que inhibits cytosolic calcium level increase and NF-kappa B activation. Interestingly, Que is effective prophylactically, while cromolyn must be added together with the trigger or it rapidly loses its effect. In two pilot, open-label, clinical trials, Que significantly decreased contact dermatitis and photosensitivity, skin conditions that do not respond to conventional treatment. In summary, Que is a promising candidate as an effective mast cell inhibitor for allergic and inflammatory diseases, especially in formulations that permit more sufficient oral absorption.  相似文献   

8.
Some nonpathogenic bacteria were found to have protective effects in mouse models of allergic and autoimmune diseases. These "probiotics" are thought to interact with dendritic cells during Ag presentation, at the initiation of adaptive immune responses. Many other myeloid cells are the effector cells of immune responses. They are responsible for inflammation that accounts for symptoms in allergic and autoimmune diseases. We investigated in this study whether probiotics might affect allergic and autoimmune inflammation by acting at the effector phase of adaptive immune responses. The effects of one strain of Lactobacillus casei were investigated in vivo on IgE-induced passive systemic anaphylaxis and IgG-induced passive arthritis, two murine models of acute allergic and autoimmune inflammation, respectively, which bypass the induction phase of immune responses, in vitro on IgE- and IgG-induced mouse mast cell activation and ex vivo on IgE-dependent human basophil activation. L. casei protected from anaphylaxis and arthritis, and inhibited mouse mast cell and human basophil activation. Inhibition required contact between mast cells and bacteria, was reversible, and selectively affected the Lyn/Syk/linker for activation of T cells pathway induced on engagement of IgE receptors, leading to decreased MAPK activation, Ca(2+) mobilization, degranulation, and cytokine secretion. Also, adoptive anaphylaxis induced on Ag challenge in mice injected with IgE-sensitized mast cells was abrogated in mice injected with IgE-sensitized mast cells exposed to bacteria. These results demonstrate that probiotics can influence the effector phase of adaptive immunity in allergic and autoimmune diseases. They might, therefore, prevent inflammation in patients who have already synthesized specific IgE or autoantibodies.  相似文献   

9.
Prostaglandin D2 (PGD2) is a major prostanoid produced mainly by mast cells in allergic diseases, including bronchial asthma. However, its role in the pathogenesis of asthma remains unclear. PGD2-induced vasodilatation and increased permeability are well-known classical effects that may facilitate transendothelial migration of inflammatory cells, such as eosinophils, mast cells, lymphocytes, and monocytes in allergic inflammation. These effects are initiated via a PGD2 receptor, D prostanoid receptor (DP), and are referred to as DP-mediated vasodilation-extravasation. Recently, novel functions of DP have been identified. Furthermore, a novel and different receptor of PGD2, CRTH2, has been discovered. To date, DP and CRTH2 have been shown to be major PGD(2)-related receptors that have pivotal roles in mediating allergic diseases by effects such as directly regulating the migration of inflammatory cells and controlling the production of cytokines and lipid mediators. Available evidence suggests that CRTH2 and DP may collaborate in allergic inflammation. This review focuses on the novel roles of DP and CRTH2 in the initiation and maintenance of allergy.  相似文献   

10.
Mast cells play a central role in type I hypersensitivity reactions and allergic disorders such as anaphylaxis and asthma. Activation of mast cells, through a cascade of phosphorylation events, leads to the release of mediators of the early phase allergic response. Understanding the molecular architecture underlying mast cell signaling may provide possibilities for therapeutic intervention in asthma and other allergic diseases. Although many details of mast cell signaling have been described previously, a systematic, quantitative analysis of the global tyrosine phosphorylation events that are triggered by activation of the mast cell receptor is lacking. In many cases, the involvement of particular proteins in mast cell signaling has been established generally, but the precise molecular mechanism of the interaction between known signaling proteins often mediated through phosphorylation is still obscure. Using recently advanced methodologies in mass spectrometry, including automation of phosphopeptide enrichments and detection, we have now substantially characterized, with temporal resolution as short as 10 s, the sites and levels of tyrosine phosphorylation across 10 min of FcepsilonRI-induced mast cell activation. These results reveal a far more extensive array of tyrosine phosphorylation events than previously known, including novel phosphorylation sites on canonical mast cell signaling molecules, as well as unexpected pathway components downstream of FcepsilonRI activation. Furthermore, our results, for the first time in mast cells, reveal the sequence of phosphorylation events for 171 modification sites across 121 proteins in the MCP5 mouse mast cell line and 179 modification sites on 117 proteins in mouse bone marrow-derived mast cells.  相似文献   

11.
Mast cells express high-affinity IgE receptor (FcεRI) on their surface, cross-linking of which leads to the immediate release of proinflammatory mediators such as histamine but also late-phase cytokine secretion, which are central to the pathogenesis of allergic diseases. Despite the growing evidences that mammalian target of rapamycin (mTOR) plays important roles in the immune system, it is still unclear how mTOR signaling regulates mast cell function. In this study, we investigated the effects of 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) as an mTOR agonist on FcεRI-mediated allergic responses of mast cells. Our data showed that administration of 3BDO decreased β-hexosaminidase, interleukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) release in murine bone marrow-derived mast cells (BMMCs) after FcεRI cross-linking, which was associated with an increase in mTOR complex 1 (mTORC1) signaling but a decrease in activation of Erk1/2, Jnk, and mTORC2-Akt. In addition, we found that a specific Akt agonist, SC79, is able to fully restore the decrease of β-hexosaminidase release in 3BDO-treated BMMCs but has no effect on IL-6 release in these cells, suggesting that 3BDO negatively regulates FcεRI-mediated degranulation and cytokine release through differential mechanisms in mast cells. The present data demonstrate that proper activation of mTORC1 is crucial for mast cell effector function, suggesting the applicability of the mTORC1 activator as a useful therapeutic agent in mast cell-related diseases.  相似文献   

12.
Mast cell-mediated responses are likely to be regulated by the cross talk between activatory and inhibitory signals. We have screened human cord blood mast cells for recently characterized inhibitory receptors expressed on NK cells. We found that IRp60, an Ig superfamily member, is expressed on human mast cells. On NK cells, IRp60 cross-linking leads to the inhibition of cytotoxic activity vs target cells in vitro. IRp60 is constitutively expressed on mast cells but is down-regulated in vitro by the eosinophil proteins major basic protein and eosinophil-derived neurotoxin. An immune complex-mediated cross-linking of IRp60 led to inhibition of IgE-induced degranulation and stem cell factor-mediated survival via a mechanism involving tyrosine phosphorylation, phosphatase recruitment, and termination of cellular calcium influx. To evaluate the role of IRp60 in regulation of allergic responses in vivo, a murine model of allergic peritonitis was used in which the murine homolog of IRp60, LMIR1, was neutralized in BALB/c mice by mAbs. This neutralization led to a significantly augmented release of inflammatory mediators and eosinophilic infiltration. These data demonstrate a novel pathway for the regulation of human mast cell function and allergic responses, indicating IRp60 as a candidate target for future treatment of allergic and mast cell-associated diseases.  相似文献   

13.
Mast cells are classically considered innate immune cells that act as first responders in many microbial infections and have long been appreciated as potent contributors to allergic reactions. However, recent advances in the realm of autoimmunity have made it clear that these cells are also involved in the pathogenic responses that exacerbate disease. In the murine models of multiple sclerosis, rheumatoid arthritis and bullous pemphigoid, both the pathogenic role of mast cells and some of their mechanisms of action are shared. Similar to their role in infection and a subset of allergic responses, mast cells are required for the efficient recruitment of neutrophils to sites of inflammation. Although this mast cell-dependent neutrophil response is protective in infection settings, it is postulated that neutrophils promote local vascular permeability and facilitate the entry of inflammatory cells that enhance tissue destruction at target sites. However, there is still much to learn. There is little information regarding mechanisms of mast cell activation in disease. Nor is it known how many mast cell-derived mediators are relevant and whether interactions with other cells are implicated in these diseases including T cells, B cells and astrocytes. Here we review the current state of knowledge about mast cells in autoimmune disease. We also discuss findings regarding newly discovered mast cell actions and factors that modulate mast cell function. We speculate that much of this new information will ultimately contribute to a greater understanding of the full range of mast cell actions in autoimmunity. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

14.
Regulation of apoptosis in mast cells   总被引:6,自引:0,他引:6  
Apoptosis is a physiological process of cell death that occurs in all multicellular organisms. Its dysregulation has been postulated as one of the main causes in the development of diseases such as cancer, AIDS, autoimmune diseases and allergy. Apoptosis has been mainly studied in the inflammatory cells that participate in the late and chronic stages of allergy (eosinophils, neutrophils, lymphocytes and macrophages) as a new way to elucidate the pathogenesis of this disease. Nevertheless, much less it is known about the regulation of apoptosis in the initiators of the allergic process: The Mast Cells. In normal conditions, mast cells are described as long-living cells that keep a constant number of cells in tissues. However, increased numbers of mast cells are observed in the late phase of asthma and in both the inflammatory and in the repair/remodeling stage of various inflammatory/fibrotic disorders. In this report, we discuss the possible mechanisms that regulate the apoptotic process in normal conditions and disease, such as survival factors and death receptors. A link between mast cell activation, during the early stages of the allergic process, and triggering of anti-apoptotic signaling pathways is also suggested as an important contributor to the extended life of mast cells.  相似文献   

15.
Mast cells play a critical role in host immune responses and are implicated in the pathogenesis of allergic inflammation. Though mouse mast cell line MC/9 expresses cell surface Fas Ag and is sensitive to Fas-induced apoptosis, activated MC/9 cells are resistant to Fas-induced cell death by cross-linking of FcepsilonRI or FcgammaR. Fas-associated death domain-like IL-1-converting enzyme (FLICE)-inhibitory protein (FLIP), a caspase-8 inhibitor that lacks the cysteine domain, is one of the negative regulators of receptor-mediated apoptosis. In this report, we show that activation of mast cells by cross-linking of FcepsilonRI or FcgammaR can induce enhanced expression of FLIP and consequently a resistance to Fas-induced apoptosis, although the expression level of Fas Ag is not changed. Addition of antisense oligonucleotide for FLIP prevents resistance to Fas-induced apoptosis of activated mast cells, suggesting that endogenous FLIP inhibits Fas-mediated apoptosis in activated mast cells. Thus, the enhanced expression of FLIP in activated mast cells contributes to the resistance to Fas-induced apoptosis, which may result in the development and prolongation of allergic inflammation.  相似文献   

16.
ABSTRACT

The increasing number of patients suffering from allergic diseases is a global health problem. Grifola frondosa is an edible mushroom consumed as a health food in Asia, and has recently been reported to have anti-allergic effects. We previously reported that G. frondosa extract (GFE) and its active components, ergosterol and its derivatives, inhibited the antigen-induced activation of RBL-2H3 cells. Here, we demonstrated that GFE and ergosterol also had an inhibitory effect on the degranulation of bone marrow–derived mast cells (BMMCs) and alleviated anaphylactic cutaneous responses in mice. Using an air pouch-type allergic inflammation mouse model, we confirmed that oral administration of GFE and ergosterol suppressed the degranulation of mast cells in vivo. Our findings suggest that G. frondosa, including ergosterol as its active component, reduces type I allergic reactions by suppressing mast cell degranulation in mice, and might be a novel functional food that prevents allergic diseases.  相似文献   

17.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

18.
Mast cells are well known for their role in allergic and anaphylactic reactions, as well as their involvement in acquired and innate immunity. Increasing evidence now implicates mast cells in inflammatory diseases where they are activated by non-allergic triggers, such as neuropeptides and cytokines, often exerting synergistic effects as in the case of IL-33 and neurotensin. Mast cells can also release pro-inflammatory mediators selectively without degranulation. In particular, IL-1 induces selective release of IL-6, while corticotropin-releasing hormone secreted under stress induces the release of vascular endothelial growth factor. Many inflammatory diseases involve mast cells in cross-talk with T cells, such as atopic dermatitis, psoriasis and multiple sclerosis, which all worsen by stress. How mast cell differential responses are regulated is still unresolved. Preliminary evidence suggests that mitochondrial function and dynamics control mast cell degranulation, but not selective release. Recent findings also indicate that mast cells have immunomodulatory properties. Understanding selective release of mediators could explain how mast cells participate in numerous diverse biologic processes, and how they exert both immunostimulatory and immunosuppressive actions. Unraveling selective mast cell secretion could also help develop unique mast cell inhibitors with novel therapeutic applications. This article is part of a Special Issue entitled: Mast cells in inflammation.  相似文献   

19.
Mast cells are considered the primary initiators of allergic diseases as a consequence of the release of multiple inflammatory mediators on activation. Although predominately activated through antigen-mediated aggregation of IgE-occupied-Fc?RI, they can also be induced to release mediators by other receptors and environmental stimuli. Based on studies conducted in the RBL 2H3 rodent mast cell line, the transient receptor potential melastatin 8 (TRPM8) cation channel has been implicated in the activation of mast cells in response to cold and, by inference, the development of urticaria. Here we investigated the expression and role of TRPM8 receptor, in both human and mouse non-transformed cells, with the aim of exploring the potential link between TRPM8 and the pathology of cold urticaria in humans. Although expressed in mouse mast cells, we found no evidence of TRPM8 expression in human mast cells or functional mutations in TRPM8 in cold urticaria patients. Furthermore, neither mouse nor human primary cultured mast cells degranulated in response to cold challenge or TRPM8 agonists and mast cell reactivity was unaffected in Trpm8−/− mice. From these data, we conclude that TRPM8 is unlikely to directly regulate mast cell activation in cold urticaria. Thus, alternative mechanisms likely exist for the pathogenesis of this disease.  相似文献   

20.
Molecular aspects of allergy   总被引:7,自引:0,他引:7  
Atopic diseases such as asthma, rhinitis, eczema and food allergies have increased in most industrialised countries of the world during the last 20 years. The reasons for this increase are not known and different hypotheses have been assessed including increased exposure to sensitising allergens or decreased stimulation of the immune system during critical periods of development.

In allergic diseases there is a polarisation of the Th2 response and an increase in the production of type 2 cytokines which are involved in the production of immunoglobulin E and the development of mast cells, basophils and eosinophils leading to inflammation and disease. The effector phase of atopy is initiated by interaction with FcRI expressed on effector cells such as mast cells and basophils but also found on an ever increasing list of cells. Binding of a polyvalent allergen to the variable part of IgE leads to a cross-link of the receptor that triggers the cell to release histamine and pharmacological mediators of the symptomatic allergic response. Cross-linking of FcRI by autoantibodies against the -chain of the FcRI, causing subsequent histamine release is thought to be involved in the pathogenesis of other diseases such as chronic idiopathic urticaria (CIU).

To date, most therapeutic strategies are aimed at inhibiting and controlling components of the inflammatory response. Recently, new treatment strategies have emerged that focus on the development of preventive and even curative treatments. The most promising therapeutic approaches are aimed at inhibiting the IgE–FcRI interaction with the use of non-anaphylactogenic anti-IgE or anti-FcRI autoantibodies. Clinical trials in humans using an humanised anti-IgE antibody showed that this antibody was well tolerated and reduced both symptoms and use of medication in asthma and allergic rhinitis. Thus interruption of the atopic cascade at the level of the IgE–FcRI interaction with the use of non-anaphylactogenic antibodies is effective and represents an attractive therapy for the treatment of atopic disease.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号