首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The exosome is a protein complex that is important in both degradation and 3'-processing of eukaryotic RNAs. We present the crystal structure of the Rrp40 exosome subunit from Saccharomyces cerevisiae at a resolution of 2.2 A. The structure comprises an S1 domain and an unusual KH (K homology) domain. Close packing of the S1 and KH domains is stabilized by a GxNG sequence, which is uniquely conserved in exosome KH domains. Nuclear magnetic resonance data reveal the presence of a manganese-binding site at the interface of the two domains. Isothermal titration calorimetry shows that Rrp40 and archaeal Rrp4 alone have very low intrinsic affinity for RNA. The affinity of an archaeal core exosome for RNA is significantly increased in the presence of the S1-KH subunit Rrp4, indicating that multiple subunits might contribute to cooperative binding of RNA substrates by the exosome.  相似文献   

6.
7.
8.
9.
10.
11.
12.
The nucleotide sequence of chicken, pheasant, duck and Tetrahymena pyriformis U5 RNAs as well as that of new mammalian variant U5 RNAs was determined and compared to that of rat and HeLa cells U5 RNAs. Primary structure conservation is about 95% between rat and human cells, 82% between mammals and birds and 57% between the Protozoan and mammals. The same model of secondary structure, a free single-stranded region flanked by two hairpins can be constructed from all RNAs and is identical to the model previously proposed for mammalian U5 RNA on an experimental basis (1). Thus, this model is confirmed and is likely to be that of an ancestor U5 RNA. The 3' region of the U5 RNA molecule constitutes domain A, and is common to U1, U2, U4 and U5 RNAs (2). The characteristic nucleotide sequences of domain A are highly conserved throughout the phylogenetic evolution of U5 RNA suggesting that they are important elements in the function of the four small RNAs. Another region of high evolutionary conservation is the top part of the 5' side hairpin whose conserved sequence is specific to U5 RNA. It might participate in the particular function of U5 RNA.  相似文献   

13.
14.
15.
Early development in Xenopus laevis is programmed in part by maternally inherited mRNAs that are synthesized and stored in the growing oocyte. During oocyte maturation, several of these messages are translationally activated by poly(A) elongation, which in turn is regulated by two cis elements in the 3' untranslated region, the hexanucleotide AAUAAA and a cytoplasmic polyadenylation element (CPE) consisting of UUUUUAU or similar sequence. In the early embryo, a different set of maternal mRNAs is translationally activated. We have shown previously that one of these, C12, requires a CPE consisting of at least 12 uridine residues, in addition to the hexanucleotide, for its cytoplasmic polyadenylation and subsequent translation (R. Simon, J.-P. Tassan, and J.D. Richter, Genes Dev. 6:2580-2591, 1992). To assess whether this embryonic CPE functions in other maternal mRNAs, we have chosen Cl1 RNA, which is known to be polyadenylated during early embryogenesis (J. Paris, B. Osborne, A. Couturier, R. LeGuellec, and M. Philippe, Gene 72:169-176, 1988). Wild-type as well as mutated versions of Cl1 RNA were injected into fertilized eggs and were analyzed for cytoplasmic polyadenylation at times up to the gastrula stage. This RNA also required a poly(U) CPE for cytoplasmic polyadenylation in embryos, but in this case the CPE consisted of 18 uridine residues. In addition, the timing and extent of cytoplasmic poly(A) elongation during early embryogenesis were dependent upon the distance between the CPE and the hexanucleotide. Further, as was the case with Cl2 RNA, Cl1 RNA contains a large masking element that prevents premature cytoplasmic polyadenylation during oocyte maturation. To examine the factors that may be involved in the cytoplasmic polyadenylation of both C12 and C11 RNAs, we performed UV cross-linking experiments in egg extracts. Two proteins with sizes of ~36 and ~45 kDa interacted specifically with the CPEs of both RNAs, although they bound preferentially to the C12 CPE. The role that these proteins might play in cytoplasmic polyadenylation is discussed.  相似文献   

16.
17.
Nuclear segregation of U2 snRNA requires binding of specific snRNP proteins   总被引:90,自引:0,他引:90  
I W Mattaj  E M De Robertis 《Cell》1985,40(1):111-118
  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号